HAO Ji-ping, HUANG Yu-qi, FAN Chun-lei, XUE Qiang. QUASI-STATIC TESTS OF WALLED CONCRETE-FILLED STEEL TUBULAR COLUMNS WITH BINDING BARS[J]. Engineering Mechanics, 2021, 38(12): 39-48. DOI: 10.6052/j.issn.1000-4750.2020.11.0821
Citation: HAO Ji-ping, HUANG Yu-qi, FAN Chun-lei, XUE Qiang. QUASI-STATIC TESTS OF WALLED CONCRETE-FILLED STEEL TUBULAR COLUMNS WITH BINDING BARS[J]. Engineering Mechanics, 2021, 38(12): 39-48. DOI: 10.6052/j.issn.1000-4750.2020.11.0821

QUASI-STATIC TESTS OF WALLED CONCRETE-FILLED STEEL TUBULAR COLUMNS WITH BINDING BARS

More Information
  • Received Date: November 12, 2020
  • Revised Date: January 27, 2021
  • Available Online: March 05, 2021
  • To avoid column protruding from the infill wall in multi-story steel structure buildings, a walled concrete-filled steel tube column with binding bars and with a section height-to-width ratio of 3.0 is proposed. To study the seismic behavior of the walled concrete-filled steel tubular column with binding bars (WCFT-B Column), the quasi-static experiments were conducted on two full-scale specimens. The test results show that: the binding bars can effectively restrain the local buckling of the column walls on both sides; the specimens fail in the local buckling of steel plates, and the longitudinal welds tear between steel plates at the bottom of the column; the hysteresis curves of the specimen are relatively plump without significant pinching effects; the yield drift ratios of the specimens vary 1/147 rad to 1/121 rad and the ultimate drift ratios are between 1/51 rad and 1/41 rad; the displacement ductility coefficient is about 2.61 to 3.11 and the bearing capacity degradation coefficients of the specimens are between 0.86 and 1.04; upon the failure of the specimens, the equivalent viscous damping coefficients are above 0.3. Based on the quasi-static experiments, the finite element (FE) model of the specimens was developed; The FE results are in a good agreement with the test ones, which verify the correctness of the FE model and provide a reference for the numerical simulation of such components. The research results enriched the types of rectangular concrete-filled steel tube composite components and promoted the development of fabricated steel structure buildings.
  • [1]
    Yuan F, Huang H, Chen M. Effect of stiffeners on the eccentric compression behaviour of square concrete-filled steel tubular columns [J]. Thin Walled Structures, 2019, 135(2): 196 − 209.
    [2]
    Tao Z, Han L H, Wang Z B. Experimental behaviour of stiffened concrete-filled thin-walled hollow steel structural (HSS) stub columns [J]. Journal of Constructional Steel Research, 2005, 61(7): 962 − 983. doi: 10.1016/j.jcsr.2004.12.003
    [3]
    Tao Z, Han L H, Wang D Y. Strength and ductility of stiffened thin-walled hollow steel structural stub columns filled with concrete [J]. Thin-Walled Structures, 2008, 46(10): 1113 − 1128. doi: 10.1016/j.tws.2008.01.007
    [4]
    Uy B. Local and post-local buckling of concrete filled steel welded box columns [J]. Journal of Constructional Steel Research, 1998, 47(1): 47 − 72.
    [5]
    Liang Q Q, Uy B. Theoretical study on the post-local buckling of steel plates in concrete-filled box columns [J]. Computers and Structures, 2000, 75(5): 479 − 490. doi: 10.1016/S0045-7949(99)00104-2
    [6]
    Huang Z C, Li D X, Uy B. Local and post-local buckling of fabricated high-strength steel and composite columns [J]. Journal of Constructional Steel Research, 2019, 154(3): 235 − 249.
    [7]
    Cai J, Long Y L. Axial load behavior of rectangular CFT stub columns with binding bars [J]. Advance in Structure Engineering, 2007, 10(5): 551 − 565. doi: 10.1260/136943307782417663
    [8]
    Cai J, Long Y L. Local buckling of steel plates in rectangular CFT stub columns with binding bars [J]. Journal of Constructional Steel Research, 2009, 65(4): 965 − 972. doi: 10.1016/j.jcsr.2008.07.025
    [9]
    Nie J G, Wang Y H, Fan J S. Experimental research on concrete filled steel tube columns under combined compression-bending-torsion cyclic load [J]. Thin-Walled Structures, 2013, 67: 1 − 14. doi: 10.1016/j.tws.2013.01.013
    [10]
    郝际平, 孙晓岭, 薛强, 等. 绿色装配式钢结构建筑体系研究与应用[J]. 工程力学, 2017, 34(1): 1 − 13. doi: 10.6052/j.issn.1000-4750.2016.08.ST14

    Hao Jiping, Sun Xiaoling, Xue Qiang, et al. Research and application of fabricated steel structure building system [J]. Engineering Mechanics, 2017, 34(1): 1 − 13. (in Chinese) doi: 10.6052/j.issn.1000-4750.2016.08.ST14
    [11]
    黄育琪, 郝际平, 樊春雷, 等. WCFT柱-钢梁节点抗震性能试验研究[J]. 工程力学, 2020, 37(12): 41 − 49. doi: 10.6052/j.issn.1000-4750.2020.02.0092

    Huang Yuqi, Hao Jiping, Fan Chunlei, et al. Experimental research on seismic performance of WCFT column-steel beam joints [J]. Engineering Mechanics, 2020, 37(12): 41 − 49. (in Chinese) doi: 10.6052/j.issn.1000-4750.2020.02.0092
    [12]
    GB 50010−2010, 混凝土结构设计规范[S]. 北京: 中国建筑工业出版社, 2010.

    GB 50010−2010, Code for design of concrete structures [S]. Beijing: China Architecture & Building Press, 2010. (in Chinese)
    [13]
    李俊华, 章子华, 池玉宇. 火灾后型钢混凝土梁柱节点抗震性能试验研究[J]. 工程力学, 2017, 34(7): 162 − 171. doi: 10.6052/j.issn.1000-4750.2016.02.0124

    Li Junhua, Zhang Zihua, Chi Yuyu. Experimental study on seismic performance of steel reinforced concrete beam-column joints after exposure to fire [J]. Engineering Mechanics, 2017, 34(7): 162 − 171. (in Chinese) doi: 10.6052/j.issn.1000-4750.2016.02.0124
    [14]
    龙跃凌, 蔡健, 王英涛, 等. 带约束拉杆矩形钢管混凝土短柱抗震性能试验研究[J]. 建筑结构学报, 2016, 37(2): 133 − 141.

    Long Yueling, Cai Jian, Wang Yingtao, et al. Experimental study on seismic behavior of rectangular concrete-filled steel tubular stub columns with binding bars [J]. Journal of Building Structures, 2016, 37(2): 133 − 141. (in Chinese)
    [15]
    赵鸿铁. 钢与混凝土组合结构[M]. 北京: 科学出版社, 2001: 163 − 165.

    Zhao Hongtie. Steel and concrete composite structure [M]. Beijing: Science Press, 2001: 163 − 165. (in Chinese)
    [16]
    GB 50011−2010, 建筑抗震设计规范[S]. 北京: 中国建筑工业出版社, 2016.

    GB 50011−2010, Code for seismic design of buildings [S]. Beijing: China Architecture & Building Press, 2016. (in Chinese)
    [17]
    李杨, 李延涛, 邢万里, 等. 钢管混凝土柱-双面组合作用梁框架节点抗震性能试验研究[J]. 工程力学, 2020, 37(7): 99 − 109. doi: 10.6052/j.issn.1000-4750.2019.08.0427

    Li Yang, Li Yantao, Xing Wanli, et al. Experimental study on seismic behavior of frame joints with concrete-filled steel tubular column and double-sided composite beam [J]. Engineering Mechanics, 2020, 37(7): 99 − 109. (in Chinese) doi: 10.6052/j.issn.1000-4750.2019.08.0427
    [18]
    杨俊芬, 陈雷, 程锦鹏, 等. 一种新型装配式梁柱节点抗震性能试验研究[J]. 工程力学, 2017, 34(12): 75 − 86. doi: 10.6052/j.issn.1000-4750.2016.08.0582

    Yang Junfen, Chen Lei, Cheng Jinpeng, et al. Experimental study on seismic behavior of a new type of fully assembled beam-column joints [J]. Engineering Mechanics, 2017, 34(12): 75 − 86. (in Chinese) doi: 10.6052/j.issn.1000-4750.2016.08.0582
    [19]
    Dassault Systèmes Corporation. ABAQUS Analysis User's Manual [M]. Providence, RI: Dassault Systèmes Corporation, 2012.
    [20]
    Baltay P, Gjelsvik A. Coefficient of friction for steel on concrete at high normal stress [J]. Journal of Materials in Civil Engineering, 1990, 2(1): 46 − 49. doi: 10.1061/(ASCE)0899-1561(1990)2:1(46)
    [21]
    Han L H, Zhao X L, Tao Z. Tests and mechanics model for concrete-filled SHS stub columns, columns, and beam-columns [J]. Columns and Beam Columns Steel and Composite Structures-An International Journal, 2001, 1(1): 51 − 74.
    [22]
    Maeno H, Morishita N, Nonaka T. A study on seismic design for steel viaduct [C]// Proceeding of the 3rd Symposium on Nonlinear Numerical Analysis and its Application to Seismic Design of Steel Structures JSCE, Tokyo Japan, Japan Society of Civil Engineers, 2000.
    [23]
    Watanabe H, Sakimoto T, Takahashi I. A simplified analysis on ultimate behaviour of concrete-filled steel box piers under horizontal cyclic loads [C]// Proceeding of the 2nd Symposium on Nonlinear Numerical Analysis and its Application to Seismic Design of Steel Structures JSCE, Tokyo Japan, Japan Society of Civil Engineers, 1998.
    [24]
    徐礼华, 凡红, 刘胜兵, 等. 方钢管混凝土柱-钢梁节点抗震性能试验研究与有限元分析[J]. 工程力学, 2008, 25(2): 122 − 131.

    Xu Lihua, Fan Hong, Liu Shengbing, et al. Experimental studies on seismic behavior of connection between concrete-filled steel square tubular column and steel beam [J]. Engineering Mechanics, 2008, 25(2): 122 − 131. (in Chinese)
    [25]
    Susantha K A S, Ge H B, Usami T. Cyclic analysis and capacity prediction of concrete-filled steel box columns [J]. Earthquake Engineering & Structural Dynamic, 2002, 31(2): 195 − 216.
  • Cited by

    Periodical cited type(7)

    1. 王力,潘启仁,顾皓玮,胡琦,虞庐松,李子奇. 考虑环境温度的钢管约束混凝土柱拟静力试验研究. 振动与冲击. 2025(05): 155-168 .
    2. 张涛,甘丹,李扬,黄辉辉,黄尚斌. 花瓣形钢管混凝土柱轴压受力机理和承载力研究. 建筑钢结构进展. 2024(03): 70-79 .
    3. 廖常斌,丁发兴,刘怡岑,王恩,王莉萍,张亮亮,邓亦南. 高轴压比拉筋圆钢管混凝土柱界面滑移行为与抗震性能研究. 钢结构(中英文). 2024(01): 41-52 .
    4. 李露,郝际平,薛强,樊春雷,黄育琪,杜智洋. 壁式钢管混凝土柱-钢梁嵌入式双侧板节点抗震性能研究及设计建议. 建筑结构. 2024(06): 1-9 .
    5. 金浏,梁健,李冬,杜修力. 结构尺寸对方钢管混凝土短柱抗震性能影响的试验研究. 工程力学. 2023(04): 35-45 . 本站查看
    6. 孙浩,徐庆元,吕飞,丁发兴. 动力荷载下钢管混凝土墩柱抗震性能极限分析. 铁道学报. 2023(03): 97-108 .
    7. 甘丹,张鑫泽,周绪红,李泽湘. 斜拉肋加劲方钢管混凝土柱偏压承载力简化计算方法. 建筑结构学报. 2023(S1): 256-265 .

    Other cited types(10)

Catalog

    Article Metrics

    Article views (438) PDF downloads (89) Cited by(17)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return