ZHONG Zi-lan, WANG Xiao-jing, DU Xiu-li, HU Zheng-yi, LI Li-yun. STUDY ON JOINT ROTATION LIMITS OF UTILITY TUNNELS BASED ON FUNCTIONAL LIMIT STATES[J]. Engineering Mechanics, 2021, 38(11): 33-42, 65. DOI: 10.6052/j.issn.1000-4750.2020.10.0757
Citation: ZHONG Zi-lan, WANG Xiao-jing, DU Xiu-li, HU Zheng-yi, LI Li-yun. STUDY ON JOINT ROTATION LIMITS OF UTILITY TUNNELS BASED ON FUNCTIONAL LIMIT STATES[J]. Engineering Mechanics, 2021, 38(11): 33-42, 65. DOI: 10.6052/j.issn.1000-4750.2020.10.0757

STUDY ON JOINT ROTATION LIMITS OF UTILITY TUNNELS BASED ON FUNCTIONAL LIMIT STATES

More Information
  • Received Date: October 20, 2020
  • Revised Date: March 05, 2021
  • Available Online: March 31, 2021
  • Aiming at the problem of functional integrity of underground utility tunnel disturbed by adjacent engineering construction, Based on the assumption that rigid body rotation occurs in the section near the joint of a utility tunnel, the geometric relationship is established between the rotation of the utility tunnel joint and the detail geometries of the utility tunnel considering the water-proof failure at the joint, and the joint rotation limits is preliminarily investigated for the utility tunnels with different cross-sectional geometries corresponding to the water-proof failure. Based on the ultimate tensile and compressive strain of the internal pipelines of a underground utility tunnel, the joint rotation limits are also presented for the utility tunnel corresponding to the failure of internal pipelines with different diameters. The analysis results show that: the joint rotation limit corresponding to the water-proof failure of the utility tunnel is closely related to the configuration of the water proof material at the joint and the cross-sectional geometries of the utility tunnel; the water-proof failure of the utility tunnel joint plays a critical rule to the functional integrity of the utility tunnel when the width of the utility tunnel is less than 10 m and when the pipeline is smaller than the nominal diameter of DN500. Otherwise, when the width of the utility tunnel is more than 10 m and the pipeline is larger than DN500, the failure of internal pipelines occurs before the water-proof failure of the utility tunnel joint. Considering the two failure modes of water-proof failure and internal pipelines failure in the utility tunnel, the limited value of the joint rotation can provides a technical reference for the functional integrity and safety design of the utility tunnels.
  • [1]
    钱七虎. 建设城市地下综合管廊, 转变城市发展方式[J]. 隧道建设, 2017, 37(6): 647 − 654. doi: 10.3973/j.issn.1672-741X.2017.06.001

    Qian Qihu. To transform way of urban development by constructing underground utility tunnel [J]. Tunnel Construction, 2017, 37(6): 647 − 654. (in Chinese) doi: 10.3973/j.issn.1672-741X.2017.06.001
    [2]
    Hou Y, Fang Q, Zhang D, Wong L. Excavation failure due to pipeline damage during shallow tunnelling in soft ground [J]. Tunnelling and Underground Space Technology incorporating Trenchless Technology Research, 2015, 46(4): 76 − 84.
    [3]
    李宏远. 城市地下综合管廊运维安全风险管理研究[D]. 北京: 北京建筑大学, 2019.

    Li Hongyuan. Security risk management of urban underground utility tunnel operation and maintenance [D]. Beijing: Beijing University of Civil Engineering and Architecture, 2019. (in Chinese)
    [4]
    Cho B H, Nam B H, Seo S, et al. Waterproof performance of waterstop with adhesive bonding used at joints of underground concrete structures [J]. Construction and Building Materials, 2019(221): 491 − 500.
    [5]
    叶美锡, 丁文其, 陈俊伟, 等. 盾构隧道管片接缝三元乙丙橡胶密封垫力学性能影响因素敏感度分析[J]. 隧道建设, 2019, 39(增刊 2): 200 − 206. doi: 10.3973/j.issn.2096-4498.2019.S2.026

    Ye Meixi, Ding Wenqi, Chen Junwei, et al. Sensitivity analysis of influencing factors on mechanical properties of EPDM sealing gasket of segment joint of shield tunnel [J]. Tunnel Construction, 2019, 39(Suppl 2): 200 − 206. (in Chinese) doi: 10.3973/j.issn.2096-4498.2019.S2.026
    [6]
    黄明利, 杨泽, 谭忠盛, 等. 明挖法地下装配式结构接缝防水技术探讨[J]. 中国工程科学, 2017, 19(6): 139 − 147.

    Huang Mingli, Yang Ze, Tan Zhongsheng, et al. Waterproof technology for underground fabricated structure joints based on the open cut method [J]. Strategic Study of CAE, 2017, 19(6): 139 − 147. (in Chinese)
    [7]
    张景生. 邻近基坑开挖对既有综合管廊变形影响研究[J]. 山西建筑, 2020, 46(10): 1 − 4. doi: 10.3969/j.issn.1009-6825.2020.10.001

    Zhang Jingsheng. Study of urban comprehensive pipe corridor affected by adjacent deep excavation [J]. Shanxi Architecture, 2020, 46(10): 1 − 4. (in Chinese) doi: 10.3969/j.issn.1009-6825.2020.10.001
    [8]
    唐华春. 纵向连接接口对预制综合管廊受力性能影响研究 [D]. 吉林: 吉林建筑大学, 2019.

    Tang Huachun. Research on the influence of longitudinal connection joints on the mechanical performance of prefabricated integrated pipe gallery [D]. Jilin: Jilin Jianzhu University, 2019. (in Chinese)
    [9]
    Diao Y, Chu Z X, Song X X, et al. Study on influence of utility tunnel leakage on its deformation and settlement of surrounding soil [J]. China Civil Engineering Journal, 2019, 52(Suppl 1): 106 − 112.
    [10]
    Li L C, Luo D, Liu L Y, et al. Research on the waterproof design of the prefabricated assembled utility tunnel joints [C]. IOP Conference Series: Materials Science and Engineering, 2018(439): 1579 − 1583.
    [11]
    张瑞顺. 城际铁路近接下穿既有综合管廊隧道施工技术研究 [D]. 石家庄: 石家庄铁道大学, 2019.

    Zhang Ruishun. Research on tunnel construction technology of intercity railways underpassing existing integrated pipe gallery [D]. Shijiazhuang: Shijiazhuang Tiedao University, 2019. (in Chinese)
    [12]
    袁勇, 禹海涛, 萧文浩, 等. 沉管隧道管节接头混凝土剪力键压剪破坏试验研究[J]. 工程力学, 2017, 34(3): 149 − 154, 181.

    Yuan Yong, Yu Haitao, Xiao Wenhao, et al. Experimental failure analysis on concrete shear keys in immersion joint subjected to compression-shear loading [J]. Engineering Mechanics, 2017, 34(3): 149 − 154, 181. (in Chinese)
    [13]
    冯立, 丁选明, 王成龙, 等. 考虑接缝影响的地下综合管廊振动台模型试验[J]. 岩土力学, 2020, 41(4): 1295 − 1304.

    Feng Li, Ding Xuanming, Wang Chenglong, et al. Shaking table model test on seismic responses of utility tunnel with joint [J]. Rock and Soil Mechanics, 2020, 41(4): 1295 − 1304. (in Chinese)
    [14]
    Yoo C, Kim J H. A web-based tunneling-induced building/utility damage assessment system: TU-Risk [J]. Tunnelling and Underground Space Technology, 2003, 18(5): 497 − 511. doi: 10.1016/S0886-7798(03)00067-1
    [15]
    Liu H Y, Small J C, Carter J P, Williams D J. Effects of tunnelling on existing support systems of perpendicularly crossing tunnels [J]. Computers & Geotechnics, 2009, 36(5): 880 − 894.
    [16]
    胡翔, 薛伟辰, 王恒栋. 上海世博园区预制预应力综合管廊接口防水性能试验研究[J]. 特种结构, 2009, 26(1): 109 − 113.

    Hu Xiang, Xue Weichen, Wang Hengdong. Experimental study on waterproof performance of prefabricated prestressed composite pipe gallery joint in Shanghai World Expo Park [J]. Special Structures, 2009, 26(1): 109 − 113. (in Chinese)
    [17]
    胡翔, 薛伟辰. 预制预应力综合管廊受力性能试验研究[J]. 土木工程学报, 2010, 43(5): 37 − 45.

    Hu Xiang, Xue Weichen. Experimental study of mechanical properties of PPMT [J]. China Civil Engineering Journal, 2010, 43(5): 37 − 45. (in Chinese)
    [18]
    Wang P, Wang S, Khan M I, et al. Bending mechanics model and value of transverse joints in precast prestressed utility tunnel [J]. Journal of Asian Architecture and Building Engineering, 2020, 19(3): 203 − 219. doi: 10.1080/13467581.2020.1743294
    [19]
    王鹏宇, 王述红, 阿力普江·杰如拉, 等. 现浇管廊接口力学行为数值模拟与分析研究[J]. 东北大学学报(自然科学版), 2018, 39(12): 1788 − 1793. doi: 10.12068/j.issn.1005-3026.2018.12.023

    Wang Pengyu, Wang Shuhong, Jierula AlPJ, et al. Numerical simulation and analytical study on mechanical behavior of cast-in-place utility tunnel joint [J]. Journal of Northeastern University (Natural Science), 2018, 39(12): 1788 − 1793. (in Chinese) doi: 10.12068/j.issn.1005-3026.2018.12.023
    [20]
    Pan Y, Yi D, Wu W, Bao Y, et al. Mechanical performance test and finite element analysis of prefabricated utility tunnel L-shaped joint [J]. Structural Design of Tall and Special Buildings, 2020, 29(11): e1748.
    [21]
    刘四进, 封坤, 何川, 等. 大断面盾构隧道管片接头抗弯力学模型研究[J]. 工程力学, 2015, 32(12): 215 − 224. doi: 10.6052/j.issn.1000-4750.2014.07.0599

    Liu Sijin, Feng Kun, He Chuan, et al. Study on the bending mechanical model of segmental [J]. Engineering Mechanics, 2015, 32(12): 215 − 224. (in Chinese) doi: 10.6052/j.issn.1000-4750.2014.07.0599
    [22]
    张景, 何川, 耿萍, 等. 盾构隧道环间接头弯曲状态非线性研究[J]. 工程力学, 2018, 35(11): 35 − 44. doi: 10.6052/j.issn.1000-4750.2017.08.0624

    Zhang Jing, He Chuan, Geng Ping, et al. Study on bending state nonlinearity of shield-tunnel ring joints [J]. Engineering mechanics, 2018, 35(11): 35 − 44. (in Chinese) doi: 10.6052/j.issn.1000-4750.2017.08.0624
    [23]
    耿萍, 唐睿, 陈枰良, 等. 考虑剪切作用的盾构隧道管片接头力学模型研究[J]. 工程力学, 2020, 37(3): 157 − 166.

    Geng Ping, Tang Rui, Chen Pingliang, et al. Research of mechanical model of shield tunnel’s segment joint under the shearing effect [J]. Engineering Mechanics, 2020, 37(3): 157 − 166. (in Chinese)
    [24]
    Gong C, Ding W Q, Soga K, et al. Failure mechanism of joint waterproof in precast segmental tunnel linings [J]. Tunnelling and Underground Space Technology, 2019(84): 334 − 352.
    [25]
    Gong C, Ding W Q, Mosalam K M. Performance-based design of joint waterproofing of segmental tunnel linings using hybrid computational/experimental procedures [J]. Tunnelling and Underground Space Technology, 2020, 96: 103172. doi: 10.1016/j.tust.2019.103172
    [26]
    Ding W, Gong C, Mosalam K M, et al. Development and application of the integrated sealant test apparatus for sealing gaskets in tunnel segmental joints [J]. Tunnelling and Underground Space Technology, 2017(63): 54 − 68.
    [27]
    Andreotti G, Calvi G M, Soga K, et al. Cyclic model with damage assessment of longitudinal joints in segmental tunnel linings [J]. Tunnelling and Underground Space Technology, 2020, 103: 103472. doi: 10.1016/j.tust.2020.103472
    [28]
    林刚, 罗世培, 倪娟. 地铁结构地震破坏及处理措施[J]. 现代隧道技术, 2009, 46(4): 36 − 41, 47.

    Lin Gang, Luo Shipei, Ni Juan. Damages of metro structures due to earthquake and corresponding treatment measures [J]. Modern Tunnelling Technology, 2009, 46(4): 36 − 41, 47. (in Chinese)
    [29]
    Mair R J. Tunnelling and geotechnics: New horizons [J]. Geotechnique, 2008, 58(9): 695 − 736. doi: 10.1680/geot.2008.58.9.695
    [30]
    Shin J H. A numerical study of the effect of groundwater movement on long-term tunnel behavior [J]. Geotechnique, 2002, 52(6): 391 − 403. doi: 10.1680/geot.2002.52.6.391
    [31]
    曹生龙. 预制混凝土综合管廊接口密封设计方法[J]. 混凝土与水泥品, 2018(1): 35 − 42.

    Cao Shenglong. Design method of prefabricated concrete pipe gallery interface seal [J]. China Concrete and Cement Products, 2018(1): 35 − 42. (in Chinese)
    [32]
    GB 50838−2015, 城市综合管廊工程技术规范 [S]. 北京: 中国计划出版社, 2015.

    GB 50838−2015, Technical code for urban utility tunnel engineering [S]. Beijing: China Planning Press, 2015. (in Chinese)
    [33]
    DGJ 08-109−2004, 城市轨道交通设计规范 [S]. 上海: 同济大学出版社, 2004.

    DGJ 08-109−2004, Urban rail transit design standard [S]. Shanghai: Tongji University Press, 2004. (in Chinese)
    [34]
    BS EN 681-1, Elastomeric seals-material requirements for pipe joint seals used in water and drainage applications (Part 1: Vulcanized rubber) [S]. Australia: Committee WS-010, 2008.
    [35]
    郭敏. 综合管廊预制结构的接口形式与防水分析[J]. 中外建筑, 2018(7): 269 − 271.

    Guo Min. The joint forms and waterproof analysis of precast prestressed municipal tunnel [J]. Chinese and Overseas Architecture, 2018(7): 269 − 271. (in Chinese)
    [36]
    Vazouras P, Karamanos S A, Dakoulas P. Mechanical behavior of buried steel pipes crossing active strike-slip faults [J]. Soil Dynamics and Earthquake Engineering, 2012, 41: 164 − 180. doi: 10.1016/j.soildyn.2012.05.012
    [37]
    BS EN 1998-4, Eurocode 8: Design of structures for earthquake resistance Part 4: Silos, tanks and pipelines [S]. France: European Standards Institute, 2008.
    [38]
    O'Rourke M J, Liu X. Seismic design of buried and offshore pipelines: MCEER-12-MN04 [R]. State University of New York at Buffalo: Multidisciplinary Center for Earthquake Engineering, 2012.
  • Related Articles

    [1]HE Wen-tao, HU Yan-lin, GE Xin, WANG Kai-yun. RESEARCH ON OPERATIONAL SAFETY OF EMPTY GONDOLA CARS IN FREIGHT TRAINS SUBJECTED TO CROSSWIND[J]. Engineering Mechanics, 2025, 42(1): 249-258. DOI: 10.6052/j.issn.1000-4750.2022.10.0919
    [2]CHEN Ning, SUN Hong-xin, ZHANG Long-wei, LI Yong-le. DYNAMIC RESPONSES AND DRIVING SAFETY OF VEHICLES OVERTAKING ON BRIDGE UNDER CROSSWINDS[J]. Engineering Mechanics. DOI: 10.6052/j.issn.1000-4750.2023.02.0119
    [3]YUE Lei, WANG Hui, DU Yu-chuan, YAO Hong-yun. MOUNTAIN HIGHWAY DESIGN INDEXES OF ASSEMBLE SECTION OF FLAT AND VERTICAL CURVE BASED ON SAFETY ANALYSIS[J]. Engineering Mechanics, 2019, 36(11): 158-167. DOI: 10.6052/j.issn.1000-4750.2018.12.0652
    [4]WANG Yuan-qing, LIAO Xiao-wei, ZHOU Hui, SHI Yong-jiu, CHEN Jian-ling, YE Guo-ping. SAFETY ASSESSMENT OF STEEL STRUCTURE COMPONENT WITH CRACK DEFECTS USING SINTAP-FAD METHOD[J]. Engineering Mechanics, 2017, 34(5): 42-51. DOI: 10.6052/j.issn.1000-4750.2016.06.0429
    [5]YANG Xun, WANG Huan-huan, JIN Xian-long. DYNAMIC RESPONSE AND RUNNING SAFETY EVALUATION OF A TUNNEL-TRAIN SYSTEM DURING EARTHQUAKE[J]. Engineering Mechanics, 2016, 33(12): 176-185. DOI: 10.6052/j.issn.1000-4750.2015.05.0378
    [6]SHAO Yong-bo, SONG Sheng-zhi, LI Tao. STUDY ON SAFETY OF CIRCULAR TUBULAR T-JOINTS CONTAINING FATIGUE CRACK BASED ON FAILURE ASSESSMENT DIAGRAM (FAD)[J]. Engineering Mechanics, 2013, 30(9): 184-193. DOI: 10.6052/j.issn.1000-4750.2012.05.0358
    [7]XIE Nan, LIANG Ren-zhong, WANG Jing-jing. OCCURRENCE OF HUMAN ERRORS IN HIGH FALSEWORK AND INFLUENCE ON STRUCTURAL SAFETY[J]. Engineering Mechanics, 2012, 29(增刊I): 63-67. DOI: 10.6052/j.issn.1000-4750.2011.11.S010
    [8]WANG Xiao-dong, WANG Wei, WANG Lin-an, FAN Feng, YONG Xin-qun, MA Qing-lin. STUDY ON EXISTING SITUATION OF CANGZHOU IRON LION UNDER REAR EARTHQUAKE[J]. Engineering Mechanics, 2011, 28(12): 238-243.
    [9]XIONG Zhong-ming, FENG Cheng-shuai. APPLICATION STUDY ON THE METHOD FOR FUZZY COMPREHENSIVE EVALUATION OF LARGE-SPAN STEEL STRUCTURE SAFETY[J]. Engineering Mechanics, 2011, 28(4): 128-133.
    [10]LI Jian, YANG Guo-long, XU Tian-ping, WANG Xu-dong. EXPERIMENTAL STUDY ON PREDICTION ERROR METHOD-BASED SECOND-ORDER STRUCTURE IDENTIFICATION ALGORITHM[J]. Engineering Mechanics, 2011, 28(1): 26-030,.
  • Cited by

    Periodical cited type(3)

    1. 丰土根,周坤,张箭,陈子昂,彭朋. 大截面矩形顶管施工对既有管线影响研究. 工程力学. 2024(05): 1-12 . 本站查看
    2. 缪惠全. 地下管线中日美三国抗震设计规范的对比与转换. 工程力学. 2022(S1): 229-238+249 . 本站查看
    3. 许成顺,胡正一,史跃波,钟紫蓝,赵密. SV波斜入射下预制拼装式综合管廊接口的地震响应规律. 北京工业大学学报. 2022(12): 1215-1225 .

    Other cited types(1)

Catalog

    Article Metrics

    Article views (503) PDF downloads (79) Cited by(4)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return