海相淤泥质土中后注浆微型钢管桩浆液扩散及承载特性研究

文磊, 孔纲强, 张振东, 李青松

文磊, 孔纲强, 张振东, 李青松. 海相淤泥质土中后注浆微型钢管桩浆液扩散及承载特性研究[J]. 工程力学, 2019, 36(4): 214-220,230. DOI: 10.6052/j.issn.1000-4750.2018.03.0133
引用本文: 文磊, 孔纲强, 张振东, 李青松. 海相淤泥质土中后注浆微型钢管桩浆液扩散及承载特性研究[J]. 工程力学, 2019, 36(4): 214-220,230. DOI: 10.6052/j.issn.1000-4750.2018.03.0133
WEN Lei, KONG Gang-qiang, ZHANG Zhen-dong, LI Qing-song. STUDY ON THE DIFFUSION AND BEARING CAPACITY OF POSTGROUTING STEEL PIPE MICROPILES IN MARINE MUDDY SOIL[J]. Engineering Mechanics, 2019, 36(4): 214-220,230. DOI: 10.6052/j.issn.1000-4750.2018.03.0133
Citation: WEN Lei, KONG Gang-qiang, ZHANG Zhen-dong, LI Qing-song. STUDY ON THE DIFFUSION AND BEARING CAPACITY OF POSTGROUTING STEEL PIPE MICROPILES IN MARINE MUDDY SOIL[J]. Engineering Mechanics, 2019, 36(4): 214-220,230. DOI: 10.6052/j.issn.1000-4750.2018.03.0133

海相淤泥质土中后注浆微型钢管桩浆液扩散及承载特性研究

基金项目: 国家自然科学基金项目(51478165,51639002)
详细信息
    作者简介:

    文磊(1991-),男,湖北荆门人,博士生,主要从事桩-土相互作用及透明土试验技术方面的研究工作(E-mail:wenleihhu@163.com);张振东(1979-),男,辽宁人,副教授,博士,主要从事结构-土相互作用方面的教学与研究(E-mail:qinghan0623@126.com);李青松(1975-),男,江苏人,副教授,博士,主要从事结构-土相互作用方面的教学与研究(E-mail:lqshhit@163.com).

    通讯作者:

    孔纲强(1982-),男,浙江磐安人,教授,博士,博导,主要从事桩-土相互作用方面的教学与研究工作(E-mail:gqkong1@163.com).

  • 中图分类号: TU47

STUDY ON THE DIFFUSION AND BEARING CAPACITY OF POSTGROUTING STEEL PIPE MICROPILES IN MARINE MUDDY SOIL

  • 摘要: 后注浆微型钢管桩以其施工速度快、场地适应性好及承载力高等技术特点,广泛应用于基础托换及软基加固工程中;然而,针对海相淤泥质土中浆液扩散规律及承载特性的研究仍相对较少。开展连云港海相淤泥质土中静压微型钢管桩及后注浆微型钢管桩承载特性现场试验,对比分析桩侧注浆对微型钢管桩承载特性的影响规律。基于透明黏土材料和PIV技术,开展后注浆微型钢管桩沉桩及注浆过程可视化模型试验研究,观测分析微型钢管桩静压沉桩过程中桩周土体位移场、桩侧注浆施工过程中浆液扩散规律。研究结果表明,现场实测后注浆微型钢管桩竖向抗压承载力约为常规微型钢管桩承载力的2.4倍;静压微型钢管桩沉桩挤土效应小于4.5D,海相淤泥质土中注浆浆液扩散形式以水平向二次劈裂注浆为主。
    Abstract: Post-grouting steel pipe micropiles are widely used in the underpinning and soft ground reinforcement engineering due to its fast construction, good adaptability and high bearing capacity. However, there is little research on the grouting diffusion mechanisms and the bearing capacity of the micropiles in marine muddy soil. Field tests on the bearing capacity of both grouted and non-grouted steel pipe micropiles in muddy soil in Lianyungang were carried out. The influence of post-grouting on the bearing capacity of the steel pipe micropiles was evaluated. Based on the transparent clay and the particle image velocimetry (PIV) technique, visual model tests on the construction process of steel pipe micropiles were conducted. The displacement of surrounding soil and side-grouting diffusion in transparent clay were measured and discussed. Field test results show that the bearing capacity of the grouted micropile was improved to nearly 2.4 times compared to that of the non-grouted micropiles. It also shows that the maximum influence range of the pile installation in the horizontal direction was about 4.5D from the center of the micropile; and grouting diffusion in the muddy soil mainly belonged to fracture grouting in the horizontal direction.
  • [1] Han J, Ye S L. A field study on the behavior of a foundation underpinned by micropile[J]. Canadian Geotechnical Journal, 2006, 43(1):30-42.
    [2] Larsson K, Jog D. Performance of micropiles used to underpin highway bridges[J]. Journal of Performance of Constructed Facilities, 2012, 28(3):592-607.
    [3] 吕凡任, 陈仁朋, 陈云敏, 等. 软土地基上微型桩抗压和抗拔特性试验研究[J]. 土木工程学报, 2005, 38(3):99-105. Lü Fanren, Chen Renpeng, Chen Yunmin, et al. Field tests on compression and uplift behavior of micropiles in soft ground[J]. China Civil Engineering Journal, 2005, 38(3):99-105. (in Chinese)
    [4] Han J, Ye S L. A field study on the behavior of micropiles in clay under compression or tension[J]. Canadian Geotechnical Journal, 2006, 43(1):19-29.
    [5] Jang Y E, Han J T. Field study on the axial bearing capacity and load transfer characteristic of waveform micropile[J]. Canadian Geotechnical Journal, 2018, 55:653-665.
    [6] 苏荣臻, 郑卫锋, 鲁先龙. 压力注浆对微型桩抗拔承载力影响的试验对比[J]. 工业建筑, 2011, 41(1):93-96. Su Rongzhen, Zheng Weifeng, Lu Xianlong. Test comparison of influence of pressure grouting on uplift capacity of micropiles[J]. Industrial Construction, 2011, 41(1):93-96. (in Chinese)
    [7] 马忠政. 注浆钢管桩抗拔承载力试验研究[J]. 土工基础, 2014, 28(2):22-25. Ma Zhongzhen. Field static uplift test of grouted steel pipe piles[J]. Soil Engineering and Foundation, 2014, 28(2):22-25. (in Chinese)
    [8] Russo G. Full-scale load tests on instrumented micropiles[J]. Geotechnical Engineering, 2004, 157(3):127-135.
    [9] Elaziz A Y A, El-Naggarm M H. Geotechnical capacity of hollow-bar micropiles in cohesive soils[J]. Canadian Geotechnical Journal, 2014, 51(10):1123-1138.
    [10] 龚晓南, 李向红. 静力压桩挤土效应中的若干力学问题[J]. 工程力学, 2000, 17(4):7-12. Gong Xiaonan, Li Xianghong. Several mechanical problems in compacting effects of static piling in soft clay ground[J]. Engineering Mechanics, 2000, 17(4):7-12. (in Chinese)
    [11] 曹兆虎, 孔纲强, 刘汉龙, 等. 基于PIV技术的沉桩过程土体位移场模型试验研究[J]. 工程力学, 2014, 31(8):168-174. Cao Zhaohu, Kong Gangqiang, Liu Hanlong, et al. Model test on deformation characristic of pile driving in sand using PIV technique[J]. Engineering Mechanics, 2014, 31(8):168-174. (in Chinese)
    [12] 曹兆虎, 孔纲强, 刘汉龙, 等. 基于透明土的管桩贯入特性模型试验研究[J]. 岩土工程学报, 2014, 36(8):1564-1568. Cao Zhaohu, Kong Gangqiang, Liu Hanlong, et al. Model tests on pipe pile penetration by using transparent soils[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(8):1564-1568. (in Chinese)
    [13] Kong G Q, Cao Z H, Zhou H, et al. Analysis of piles under oblique pullout load using transparent-soil models[J]. Geotechnical Testing Journal, 2015, 38(5):725-738.
    [14] 曹兆虎, 孔纲强, 文磊, 等. 楔形管桩沉桩及桩端后注浆可视化模型试验[J]. 铁道科学与工程学报, 2017, 14(5):922-927. Cao Zhaohu, Kong Gangqiang, Wen Lei, et al. Visualization model test on tapered pipe pile installation and pile tip grouting process[J]. Journal of Railway Science and Engineering, 2017, 14(5):922-927. (in Chinese)
    [15] Gao Y, Sui W H, Liu J Y. Visualization of chemical grout permeation in transparent soil[J]. Geotechnical Testing Journal, 2015, 38(5):774-786.
    [16] Schlue B F, Moerz T, Kreiter S. Influence of shear rate on undrained vane shear strength of organic harbor mud[J]. Journal of Geotechnical & Geoenvironmental Engineering, ASCE, 2010, 136(10):1437-1447.
    [17] Tavenas F, Jean P, Leblond P, et al. The permeability of natural soft clays[J]. Canadian Geotechnical Journal, 2011, 20(4):645-660.
    [18] 孔纲强, 周杨, 刘汉龙, 等. 新型透明黏土制配及其物理力学性质[J]. 岩土工程学报, 2018, 40(12):2208-2214. Kong Gangqiang, Zhou Yang, Liu Hanlong, et al. Study on new transparent clay manufacture and its physical and mechanical properties[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(12):2208-2214.
    [19] 张忠苗. 灌注桩后注浆技术及工程应用[M]. 北京:中国建筑工业出版社, 2009. Zhang Zhongmiao. Post-grouting technology of cast-inplace pile and its engineering applications[M]. Beijing:China Architecture & Building Press, 2009. (in Chinese)
  • 期刊类型引用(14)

    1. 高宗文. 淤质土地层钻孔灌注桩单桩承载性能研究. 中国建筑金属结构. 2024(01): 106-108+112 . 百度学术
    2. 王长虹,杨天笑,马铖涛,沈洋. 束浆挤扩钢管桩竖向抗拔承载力计算方法. 岩土力学. 2024(03): 846-856 . 百度学术
    3. 刘江涛,李存军,于江华,张彦红,张春彬,孔纲强. 施工顺序对微型钢管桩加固既有基础变形的影响试验研究. 土木与环境工程学报(中英文). 2024(04): 100-108 . 百度学术
    4. 何欢,寇磊. 基于扩孔理论的劈裂注浆启劈压力解析. 应用数学和力学. 2024(12): 1555-1566 . 百度学术
    5. 蒋德稳,张涛,田安国,涂家璇,翟秋萍,刘强. 压注同步对钢管桩承压性能提升机制研究. 江苏建筑. 2024(06): 138-142+149 . 百度学术
    6. 宋开灼. 微型桩在下穿高架桥深厚软土基坑工程中的应用. 福建建材. 2022(09): 67-70 . 百度学术
    7. 李谊. 高填方路基施工工艺及沉降监测分析. 交通世界. 2022(35): 70-72 . 百度学术
    8. 宁乐. 注浆微型钢管桩在改扩建公路高挡土墙施工中的应用. 交通世界. 2022(35): 85-87 . 百度学术
    9. 孟甲. 钢管桩单桩涂料防腐施工质量管控方式探讨. 珠江水运. 2021(05): 59-60 . 百度学术
    10. 李伟,张楷,郭超溢,崔强,张传庆,马海辉. 后注浆钢管桩桩-土界面力学特性及微观结构. 科学技术与工程. 2021(19): 8159-8165 . 百度学术
    11. 薛振年,冯泓鸣,任晨宁,周志军. 黄土地区桥梁灌注桩桩侧-桩端联合压浆模型试验. 长安大学学报(自然科学版). 2021(06): 19-28 . 百度学术
    12. 孔纲强,沈扬,杨庆,崔春义,杨钢. 三维透明土实验技术平台开发及在实践教学中的应用. 实验技术与管理. 2020(05): 94-97+115 . 百度学术
    13. 毛元伟,张佳. 杂填土条件下微型钢管桩支护效果监测分析. 城市建筑. 2020(29): 113-114+117 . 百度学术
    14. 肖增富. 建筑地基处理中灌注桩后注浆工法的运用分析. 工程技术研究. 2019(20): 55-56 . 百度学术

    其他类型引用(5)

计量
  • 文章访问数:  389
  • HTML全文浏览量:  52
  • PDF下载量:  107
  • 被引次数: 19
出版历程
  • 收稿日期:  2018-03-06
  • 修回日期:  2018-06-19
  • 刊出日期:  2019-04-24

目录

    /

    返回文章
    返回