弹性波三维散射快速多极子间接边界元法求解

王冬, 刘中宪, 武凤娇, 刘蕾

王冬, 刘中宪, 武凤娇, 刘蕾. 弹性波三维散射快速多极子间接边界元法求解[J]. 工程力学, 2017, 34(1): 33-44. DOI: 10.6052/j.issn.1000-4750.2015.05.0435
引用本文: 王冬, 刘中宪, 武凤娇, 刘蕾. 弹性波三维散射快速多极子间接边界元法求解[J]. 工程力学, 2017, 34(1): 33-44. DOI: 10.6052/j.issn.1000-4750.2015.05.0435
WANG Dong, LIU Zhong-xian, WU Feng-jiao, LIU Lei. THE FMM-IBEM SOLUTION OF THREE-DIMENSIONAL SCATTERING OF ELASTIC WAVES[J]. Engineering Mechanics, 2017, 34(1): 33-44. DOI: 10.6052/j.issn.1000-4750.2015.05.0435
Citation: WANG Dong, LIU Zhong-xian, WU Feng-jiao, LIU Lei. THE FMM-IBEM SOLUTION OF THREE-DIMENSIONAL SCATTERING OF ELASTIC WAVES[J]. Engineering Mechanics, 2017, 34(1): 33-44. DOI: 10.6052/j.issn.1000-4750.2015.05.0435

弹性波三维散射快速多极子间接边界元法求解

基金项目: 国家自然科学基金项目(51278327);国家科技支撑计划项目(2012BAJO7B05);天津市科技支撑重大项目(15ZXCXSF0070)
详细信息
    作者简介:

    王冬(1988-),男,四川人,硕士生,主要从事动力边界元法研究(E-mail:wang_dong_0832@163.com);武凤娇(1989-),女,内蒙人,硕士生,主要从事弹性波散射研究(E-mail:wudiwufengjiao@163.com);刘蕾(1987-),女,河南人,硕士生,主要从事地震波散射研究(E-mail:liulei870905@163.com)

    通讯作者:

    刘中宪(1982-),男,河南人,副教授,博士后,硕导,主要从事地震工程和工程波动领域研究(E-mail:zhongxian1212@163.com)

  • 中图分类号: O347.41

THE FMM-IBEM SOLUTION OF THREE-DIMENSIONAL SCATTERING OF ELASTIC WAVES

  • 摘要: 边界元方法对于无限域中弹性波散射求解具有独特优势,但求解矩阵的非对称稠密特征极大限制了该方法在大规模实际工程中的应用。为此,基于单层位势理论,结合快速多极子展开技术,通过对球面压缩波和剪切波势函数的泰勒级数展开,建立一种新的快速多极间接边界元方法,以实现大规模弹性波三维散射的精确高效模拟。算例分析表明所提方法能够大幅度降低计算时间和存储量,可在目前普通计算机上快速实现上百万自由度弹性波三维散射问题的快速精确求解。最后以全空间椭球形孔洞群对平面P波、SV波的散射为例,揭示了三维孔洞群周围稳态位移场和应力场的若干分布规律。该文方法对低无量纲频率(ka<5.0)的大规模多体散射问题尤为适合。
    Abstract: Boundary element method has unique advantages to solve elastic wave scattering problems, while the asymmetric and dense matrix equation greatly restrict the application of traditional boundary element in practical engineering. Therefore, based on the single-layer potential theory, combined with the fast multipole expansion technique, a new rapid indirect boundary element method is developed by using the Taylor series expansion of compressible and shear wave potential function for solving large scale elastic wave scattering problems efficiently and accurately. It is verified that this method greatly improves the computing speed and reduces the calculation storage. Then the elastic wave scattering problem for millions of DOFs can be solved effectively and accurately on an ordinary personal workstation. Finally, the scattering problem of P wave by ellipsoidal cavities group in elastic full-space is solved, and some important characteristics for the displacement and stress fields in steady state are discussed based on the numerical results. This method is especially suitable for solving the multiple scattering problems at low dimensionless frequency (ka<5.0).
  • [1] Yuan X, Men F L. Scattering of plane SH waves by a semi-cylindrical hill[J]. Earthquake Engineering & Structural Dynamics,1992, 21(12):1091-1098.
    [2] 廖振鹏. 工程波动理论导论[M]. 第2版. 北京:科学出版社, 2002:248-250. Liao Zhenpeng. Introduction to wave motion theories for engineering[M]. 2nd ed. Beijing:Science Press, 2002:248-250. (in Chinese)
    [3] 陈少林, 张莉莉, 李山有. 半圆柱型沉积盆地对SH波散射的数值分析[J]. 工程力学, 2014, 31(4):218-224. Chen Shaolin, Zhang Lili, Li Shanyou. Numerical analysis of the plane SH waves scattering by semi-cylindrical alluvial valley[J]. Engineering Mechanics, 2014, 31(4):218-224. (in Chinese)
    [4] Graves RW. Simulating seismic wave propagation in 3D elastic media using staggered-grid finite differences[J]. Bulletin of the Seismological Society of America, 1996, 86(4):1091-1106.
    [5] Manolis G D. Elastic wave scattering around cavities in inhomogeneous continua by the BEM[J]. Journal of Sound and Vibration, 2003, 266(2):281-305.
    [6] 巴振宁, 梁建文, 梅雄一. 层状饱和半空间中沉积谷地对斜入射平面P1波的三维散射[J]. 工程力学, 2013, 30(9):47-55, 62. Ba Zhenning, Liang Jianwen, Mei Xiongyi. 3D scattering by an alluvial valley embedded in a fluid-saturated, layered half-space for obliquely incident plane P1 waves[J]. Engineering Mechanics, 2013, 30(9):47-55, 62. (in Chinese)
    [7] Semblat J F, Brioist J J. Efficiency of higher order finite elements for the analysis of seismic wave propagation[J]. Journal of Sound & Vibration, 2000, 231(2):460-467.
    [8] Gumerov N A, Duraiswami R. Wideband fast multipole accelerated boundary element methods for the three-dimensional Helmholtz equation[J]. The Journal of the Acoustical Society of America, 2009, 125(4):2566-2566.
    [9] Xiao J, Tausch J, Hu Y. A posteriori compression of wavelet-BEM matrices[J]. Comput Mech, 2009, 44(5):705-715.
    [10] Kurz S, Rain O, Rjasanow S. The adaptive cross-approximation technique for the 3D boundaryelement method[J]. Magnetics, IEEE Transactions on Magnetics, 2002, 38(2):421-424.
    [11] Xiao J, Ye W, Cai Y, et al. Precorrected FFT accelerated BEM for large-scale transient elastodynamic analysis using frequency-domain approach[J]. International Journal for Numerical Methods in Engineering, 2012, 90(1):116-134.
    [12] 姚振汉, 王海涛. 边界元法[M]. 北京:高等教育出版社, 2009:226-323. Yao Zhenhan, Wang Haitao. Boundary element method[M]. Beijing:Higher Education Press, 2009:226-323. (in Chinese)
    [13] 王海涛, 姚振汉. 快速多极边界元法在大规模传热分析中的应用[J]. 工程力学, 2008, 25(9):23-27. Wang Haitao, Yao Zhenhan. Application of fast multipole boundary element method on large scale thermal analysis[J]. Engineering Mechanics, 2008, 25(9):23-27. (in Chinese)
    [14] Song J, Lu C C, Chew W C. Multilevel fast multipole algorithm for electromagnetic scattering by large complex objects[J]. Antennas and Propagation, IEEE Transactions on Magnetics, 1997, 45(10):1488-1493.
    [15] 雷霆, 姚振汉, 王海涛. 二维弹性力学快速多极边界元法的并行计算[C]. 南昌:第13届全国结构工程学术会议, 2004:305-308. Lei Ting, Yao Zhenhan, Wang Haitao. Parallel computation of 2-d elastic solid using fast multipole boundary element method[J]. Nanchang:Proceedings of the Thirteenth National Conference on Structural Engineering, 2004:305-308. (in Chinese)
    [16] 荣俊杰, 校金友, 文立华. 弹性动力学高阶核无关快速多极边界元法[J]. 力学学报, 2014, 46(5):776-785. Rong Junjie, Xiao Jinyou, Wen Lihua. A high order kernel independent fast multipole boundary element method for elastodynamics[J]. Acta Mechanica Sinica, 2014, 46(5):776-785. (in Chinese)
    [17] 于春肖, 申光宪. 规划-迭代型弹塑性摩擦接触多极边界元法[J]. 计算力学学报, 2008, 25(1):65-71. Yu Chunxiao, Shen Guangxian. Program iteration pattern fast multipole BEM for elasto-plastic contact with friction[J]. Chinese Journal of Computational Mechanics, 2008, 25(1):65-71. (in Chinese)
    [18] 滕斌, 勾莹. 大型浮体水弹性作用的频域分析[J]. 工程力学, 2006, 23(增刊Ⅱ):36-48. Teng Bin, Gou Ying. Hydroelastic analysis of very large floating structure in frequency domain[J]. Engineering Mechanics, 2006, 23(Suppll Ⅱ):36-48. (in Chinese)
    [19] 沈永明, 郑永红, 吴朝安. 斜向波与任意多个长水平圆柱的相互作用[J]. 中国科学E辑, 2007, 37(1):107-126. Shen Yongming, Zheng Yonghong, Wu Chaoan. The interaction between oblique wave and arbitrary number of long horizontally cylindrical inclusions[J]. Science China Technological Sciences E, 2007, 37(1):107-126. (in Chinese)
    [20] Shen L, Liu Y J. An adaptive fast multipole boundary element method for three-dimensional acoustic wave problems based on the Burton-Miller formulation[J]. Computational Mechanics, 2007, 40(3):461-472.
    [21] 刘从建, 陈文, 王海涛, 等. 自适应快速多极正则化无网格法求解大规模三维位势问题[J]. 应用数学和力学, 2013, 34(3):259-271. Liu Congjian, Chen Wen, Wang Haitao, et al. Adaptive fast multipole regularized meshless method for large-scale three-dimensional potential problems[J]. Applied Mathematics and Mechanics, 2013, 34(3):259-271. (in Chinese)
    [22] Nishimura N. Fast multipole accelerated boundary integral equation methods[J]. Applied Mechanics Reviews, 2002, 55(4):299.
    [23] 王海涛. 快速多极边界元法在二维弹性力学中的应用[D]. 北京:清华大学, 2002. Wang Haitao. Application of fast multipole boundary element method for two dimensional elasticity[D]. Beijing:Tsinghua University, 2002. (in Chinese)
    [24] Fujiwara H. The fast multipole method for solving integral equations of three-dimensional topography and basin problems[J]. Geophysical Journal International, 2000, 140(1):198-210.
    [25] Tong M S, Chew W C. Multilevel fast multipole algorithm for elastic wave scattering by large three-dimensional objects[J]. Journal of Computational Physics, 2009, 228(3):921-932.
    [26] Chaillat S, Bonnet M. Recent advances on the fast multipole accelerated boundary element method for 3D time-harmonic elastodynamics[J]. Wave Motion, 2013, 50(7):1090-1104.
    [27] Sanchez-Sesma F J, Luzon F. Seismic response of three-dimensional alluvial valleys for incident P, S, and Rayleigh waves[J]. Bulletin of the Seismological Society of America, 1995, 85(1):269-284.
    [28] Saad Y, Schultz M H. GMRES:A generalized minimal residual algorithm for solving nonsymmetric linear systems[J]. Siam Journal on Scientific & Statistical Computing, 1986, 7(3):856-869.
    [29] 刘中宪, 唐河仓, 王冬. 弹性波二维散射快速多极子间接边界元法求解[J]. 工程力学, 2015, 32(5):6-12. Liu Zhongxian, Tang Hecang, Wang Dong. The FMM-IBEM solution to Two-Dimensinal scattering of elastic waves[J]. Engineering Mechanics, 2015, 32(5):6-12. (in Chinese)
    [30] Wang H T, Yao Z H, Wang P. On the preconditioners for fast multipole boundary element methods for 2D multi-domain elastostatics[J]. Engineering Analysis with Boundary Elements, 2005, 29(7):673-688.
    [31] Yih-Hsing Pao, Chao-Chow Mao. Diffraction of elastic waves and dynamic stress concentrations[J]. Crane Russak & Company Inc in US, 1973, 40(4):193-198.
    [32] Moon F C, Pao Y H. The influence of the curvature of spherical waves on dynamic stress concentration[J]. Journal of Applied Mechanics, 1967, 34(2):373-379.
  • 期刊类型引用(8)

    1. 乔松,朱建新,吕宝林,赵军,叶晓节. 球壳中球形夹杂对SV波的三维散射与动应力集中研究. 固体力学学报. 2021(04): 420-433 . 百度学术
    2. 张海,杜雪姣,刘中宪,徐颖,杨国岗. 平面SV波入射下山体地形中双线隧道动力响应. 工程力学. 2020(07): 77-88 . 本站查看
    3. 刘耀,高峰,田沙,海俪馨. 基于边界元法的液压试验台静刚度解析. 机械设计. 2019(04): 114-118 . 百度学术
    4. 刘中宪,张征,王少杰,梁建文,王海良. 基于快速多极子间接边界元法的城市区域沉积盆地三维地震响应宽频模拟. 岩土力学. 2019(10): 4101-4110 . 百度学术
    5. 刘中宪,符瞻远,苗雨,王治坤,李昌俊. 非连续屏障对Rayleigh波宽频散射三维快速边界元模拟. 振动与冲击. 2019(19): 89-97 . 百度学术
    6. 周枫林,谢贵重,张见明,李落星. 一种新型三角形裂尖单元及其在结构裂纹分析中的应用. 计算力学学报. 2019(05): 656-663 . 百度学术
    7. 陈久川,田东兴. 快速多极子技术在高阶边界元法计算弹性浮体问题中的应用. 舰船科学技术. 2018(14): 22-24 . 百度学术
    8. 刘中宪,王楚楚,蒋坪临,李天勋. 球面压缩波入射下深埋三维衬砌洞室的动应力集中效应. 应用力学学报. 2017(05): 904-911+1014 . 百度学术

    其他类型引用(9)

计量
  • 文章访问数:  384
  • HTML全文浏览量:  37
  • PDF下载量:  132
  • 被引次数: 17
出版历程
  • 收稿日期:  2015-05-18
  • 修回日期:  2016-04-03
  • 刊出日期:  2017-01-24

目录

    /

    返回文章
    返回