Processing math: 0%

基于广义协同高斯过程模型的结构全局敏感性分析解析方法

万华平, 祁尚瑾, 张梓楠, 葛荟斌, 罗尧治, 任伟新

万华平, 祁尚瑾, 张梓楠, 葛荟斌, 罗尧治, 任伟新. 基于广义协同高斯过程模型的结构全局敏感性分析解析方法[J]. 工程力学. DOI: 10.6052/j.issn.1000-4750.2023.02.0088
引用本文: 万华平, 祁尚瑾, 张梓楠, 葛荟斌, 罗尧治, 任伟新. 基于广义协同高斯过程模型的结构全局敏感性分析解析方法[J]. 工程力学. DOI: 10.6052/j.issn.1000-4750.2023.02.0088
WAN Hua-ping, QI Shang-jin, ZHANG Zi-nan, GE Hui-bin, LUO Yao-zhi, REN Wei-xin. ANALYTICAL METHOD FOR GLOBAL SENSITIVITY ANALYSIS OF STRUCTURES BASED ON GENERALIZED CO-GAUSSIAN PROCESS MODEL[J]. Engineering Mechanics. DOI: 10.6052/j.issn.1000-4750.2023.02.0088
Citation: WAN Hua-ping, QI Shang-jin, ZHANG Zi-nan, GE Hui-bin, LUO Yao-zhi, REN Wei-xin. ANALYTICAL METHOD FOR GLOBAL SENSITIVITY ANALYSIS OF STRUCTURES BASED ON GENERALIZED CO-GAUSSIAN PROCESS MODEL[J]. Engineering Mechanics. DOI: 10.6052/j.issn.1000-4750.2023.02.0088

基于广义协同高斯过程模型的结构全局敏感性分析解析方法

基金项目: 国家重点研发计划项目(2021YFF0501001);浙江省自然科学基金项目(LR23E080003);浙江省重点研发计划项目(2021C03154)
详细信息
    作者简介:

    万华平(1986−),男,江西人,研究员,博士学位,博导,主要从事结构不确定性分析与健康监测研究(E-mail:hpwan@zju.edu.cn)

    祁尚瑾(1998−),女,河北人,硕士生,主要从事结构不确定性分析研究(E-mail: shangjin_qi@zju.edu.cn)

    张梓楠(1997−),女,云南人,硕士生,主要从事结构不确定性分析研究(E-mail: zinanzhang@zju.edu.cn)

    葛荟斌(1992−),男,浙江人,博士后,主要从事空间结构体系与力学性能研究(E-mail: gehuibin@zju.edu.cn)

    任伟新(1960−),男,湖南人,教授,博士学位,博导,主要从事桥梁结构健康监测、桥梁结构安全性能评估研究(E-mail: renwx@szu.edu.cn)

    通讯作者:

    罗尧治(1966−),男,浙江人,教授,博士学位,院长,博导,主要从事空间结构研究(E-mail: luoyz@zju.edu.cn)

  • 中图分类号: O342

ANALYTICAL METHOD FOR GLOBAL SENSITIVITY ANALYSIS OF STRUCTURES BASED ON GENERALIZED CO-GAUSSIAN PROCESS MODEL

  • 摘要:

    工程结构参数不可避免存在不确定性,量化结构参数敏感性对结构分析设计具有重要意义。全局敏感性分析方法是评价不确定性参数敏感性的有效方法。蒙特卡洛方法常用于全局敏感性分析,但由于计算成本高,难以应用于复杂工程结构。广义协同高斯过程代理模型将高、低精度模型结合,在保证精度的同时提高计算效率。该文提出基于广义协同高斯过程模型的结构全局敏感性分析解析方法,将高维积分转化为一维积分,实现了全局敏感性指标的解析计算。四参数函数和Borehole函数用来验证所提全局敏感性解析方法的有效性,与蒙特卡洛方法对比,结果表明该方法具有高精度高效率的优点。最后,将该文所提方法应用于空间网壳结构稳定性的全局敏感性分析,可有效定量结构不确定性参数的敏感性。

    Abstract:

    Engineering structure parameters are unavoidably subjected to uncertainty. It is important for structural analysis and design to quantify the sensitivity of structural uncertain parameters. Global sensitivity analysis (GSA) is an effective approach to evaluate the sensitivity of uncertain parameters. However, the widely used Monte Carlo simulation (MCS) may be impractical for GSA of complex structures because it needs a large number of runs of the expensive finite element model to obtain a confident estimate of the sensitivity indices. The generalized co-Gaussian process surrogate model (GC-GPM) integrates high- and low-fidelity training samples, which has advantages of high computational accuracy and efficiency. This paper proposes an analytical GSA method based on GC-GPM, which converts high-dimensional integrals into one-dimensional integrals. The sensitivity indices can be analytically obtained. The effectiveness of the proposed analytical GSA method is verified with four-parameter function and borehole function, and the MCS is used for comparison. It can be concluded that the GC-GPM based GSA method has advantages of high computational accuracy and efficiency. Finally, the proposed method is applied to the GSA of the stability of a reticulated shell structure, and the sensitivities of structural uncertain parameters are effectively assessed.

  • 工程结构参数不可避免存在不确定性,材料变异性、制造加工误差、环境侵蚀等因素均会在一定程度上引起不确定性,在结构分析中应考虑参数不确定性的影响[1-4]。敏感性分析可定性或定量地评价模型参数不确定性对模型输出的影响,能有效揭示参数不确定性影响结构响应的机理。

    局部敏感性分析是采用直接求导或有限差分法评估参数的敏感性,适用于线性模型或变化范围小的参数;全局敏感性分析不受模型限制,可有效定量参数在整个变化空间的作用及参数间的相互作用,是评价参数敏感性(重要性)的有效方法。蒙特卡罗模拟(Monte Carlo Simulation, MCS)[5]是计算全局敏感性指标的常用方法,需通过大量采样确保敏感性指标计算的收敛,具有计算量大、耗时长的不足。大型复杂结构通常模拟为高精度(精细化)有限元模型,导致的计算成本高问题尤为突出,MCS难以在工程实际中应用。代理模型方法以低维数学模型替代真实输入输出关系,降低了计算成本。高斯过程模型(Gaussian Process Model, GPM)是一种非参数概率模型,模拟复杂系统能力强,可量化预测不确定性。近年来,高斯过程模型在结构全局敏感性分析中得到广泛应用。比如,WAN等[6]将GPM取代耗时的大跨拱桥有限元模型,在GPM基础上进行全局敏感性分析,用于有限元模型修正的关键参数选择。罗琪等[7]采用GPM对钢-木混合结构的刚度比进行全局敏感性分析。LIU等[8]提出基于多响应GPM的全局敏感性分析方法,对飞机尾翼旋转轴和管道模型进行全局敏感性分析。

    代理模型的建立需要训练样本,训练样本精度越高模型越准确,则相应的有限元模型越复杂,会在一定程度上增加计算成本。WAN等[9-10]提出了广义协同高斯过程模型(Generalized Co-GPM, GC-GPM),采用较多的低精度样本和较少的高精度样本进行建模进一步降低计算成本,同时适用于嵌套样本和非嵌套样本;同时实现了基于GC-GPM的解析结构不确定性量化,在计算精度和效率方面均具有优势。不确定性量化是定量参数不确定性传递到结构响应不确定性大小,全局敏感性是定量各不确定性参数对结构响应不确定性的贡献大小,即定量评价各不确定性参数的重要性。本文将GC-GPM作为代理模型,提出基于广义协同高斯过程模型的结构全局敏感性分析解析方法,将全局敏感性指标的高维积分转化为一维积分,实现了解析计算。

    广义协同高斯过程模型(Generalized Co-GPM, GC-GPM)整合了高低精度训练样本,采用较多低精度样本建立低精度高斯过程模型,用于拟合输入输出关系的整体趋势,较少高精度样本建立差值高斯过程模型,用于修正先前建立的低精度高斯过程模型,二者组合构成GC-GPM。

    假设低精度训练样本集为 {\mathcal{D}_1} = \left( {{{\boldsymbol{X}}_1},{{\boldsymbol{Y}}_1}} \right) ,高精度训练样本集为 {\mathcal{D}_2} = \left( {{{\boldsymbol{X}}_2},{{\boldsymbol{Y}}_2}} \right) ,其中,低精度样本有{n_1}个观测值,高精度样本中有{n_2}个观测值,且{n_1} > {n_2}。GC-GPM预测值由低精度预测值和高斯误差线性组合表示:

    \left\{ \begin{aligned} & {{y_2}({\boldsymbol{x}}) = {\rho _1}{y_1}({\boldsymbol{x}}) + {\delta _2}({\boldsymbol{x}})} \\ & {{y_1}({\boldsymbol{x}}) \bot {\delta _2}({\boldsymbol{x}})} \end{aligned} \right. (1)

    式中:{y_1}({\boldsymbol{x}})为低精度的高斯过程预测值;{y_2}({\boldsymbol{x}})为高精度的高斯过程预测值;{\delta _2}({\boldsymbol{x}})为高斯过程误差; \bot 表示相互独立;{\rho _1}为比例系数。

    采用低精度训练样本 {\mathcal{D}_1} 训练得到低精度高斯过程模型后验分布:

    {y_1}\sim \mathcal{N} ({\hat y_1},{v_{{y_1}}}) (2)

    其中,预测均值和方差分别为:

    {\hat y_1} = {\mu _1} + {\boldsymbol{\alpha }}_1^ \top {{\boldsymbol{C}}_{*1}} (3)
    {v_{{y_1}}} = \eta _1^2 - {\boldsymbol{C}}_{*1}^ \top {\boldsymbol{C}}_1^{ - 1}{{\boldsymbol{C}}_{*1}} (4)

    同样地,建立差值高斯过程模型{\delta _2}({\boldsymbol{x}}),考虑低精度模型的预测误差{\varepsilon _{\text{1}}}({\boldsymbol{x}}){\varepsilon _{\text{1}}}({\boldsymbol{x}})\sim \mathcal{N}\left( {0,{v_{{y_1}}}({\boldsymbol{x}})} \right),则预测均值与真实值之间的关系可表示为:

    {\hat y_1}({\boldsymbol{x}}) = {y_{\text{1}}}({\boldsymbol{x}}) + {\varepsilon _{\text{1}}}({\boldsymbol{x}}) (5)

    联立式(1)和式(5),可将高斯误差{\delta _2}({\boldsymbol{x}})写为:

    \begin{split} & {\delta _{\text{2}}}({\boldsymbol{x}}) = {y_{\text{2}}}({\boldsymbol{x}}) - {\rho _{\text{1}}}{y_{\text{1}}}({\boldsymbol{x}}) = {y_{\text{2}}}({\boldsymbol{x}}) - {\rho _{\text{1}}}{{\hat y}_{\text{1}}}({\boldsymbol{x}}) + {\rho _{\text{1}}}{\varepsilon _1}({\boldsymbol{x}}) \end{split} (6)

    {y_{\text{2}}}({\boldsymbol{x}}) - {\rho _{\text{1}}}{\hat y_{\text{1}}}({\boldsymbol{x}})记为 \delta _2'\left( {\boldsymbol{x}} \right) ,建立高斯过程模型:

    \delta _2'\sim \mathcal{N} (\hat \delta _2',{v_{\delta _2'}}) (7)

    其中:

    \hat \delta _2' = {\mu _2} + {\boldsymbol{\alpha }}_2^ \top {{\boldsymbol{C}}_{*2}} (8)
    {v_{\delta _2'}} = \eta _2^2 - {\boldsymbol{C}}_{*2}^ \top {\boldsymbol{\varLambda }}_2^{ - 1}{{\boldsymbol{C}}_{*2}} (9)

    式中: {\mu _1} = {( {{\boldsymbol{e}}_1^ \top {\boldsymbol{C}}_1^{ - 1}{{\boldsymbol{e}}_1}} )^{ - 1}}{\boldsymbol{e}}_1^ \top {\boldsymbol{C}}_1^{ - 1}{{\boldsymbol{Y}}_1} {{\boldsymbol{\alpha }}_1} = {\boldsymbol{C}}_1^{ - 1}({{\boldsymbol{Y}}_1} - {{\boldsymbol{e}}_1}{\mu _1}) {\mu _2} = {( {{\boldsymbol{e}}_2^ \top {\boldsymbol{\varLambda }}_2^{ - 1}{{\boldsymbol{e}}_2}} )^{ - 1}}{\boldsymbol{e}}_2^ \top {\boldsymbol{\varLambda }}_2^{ - 1}{{\boldsymbol{\varPsi }}_2} {{\boldsymbol{\alpha }}_2} = {\boldsymbol{\varLambda }}_2^{ - 1}({{\boldsymbol{\psi }}_2} - {{\boldsymbol{e}}_2}{\mu _2}) ;其中 {{\boldsymbol{e}}_{1(2)}} 为长度为 {n_{1(2)}} 的单位列向量; {{\boldsymbol{\varPsi }}_2} = {y_2} - {\rho _1}{\hat y_1} {\boldsymbol{\varLambda }}_2^{} = {{\boldsymbol{C}}_2} + \rho _1^2{{\boldsymbol{S}}_1}{{\boldsymbol{C}}_{1(2)}} = C( {{{\boldsymbol{X}}_{1(2)}},{{\boldsymbol{X}}_{1(2)}}} ){{\boldsymbol{X}}_{1(2)}}的协方差函数矩阵; {{\boldsymbol{S}}_1} = \mathrm{diag}\{ {v_{{y_1}}}({{\boldsymbol{x}}_{2,1}}), \cdots ,{v_{{y_1}}}({{\boldsymbol{x}}_{2,{n_2}}})\} 为低精度高斯过程模型在{{\boldsymbol{X}}_2}处的预测方差; {{\boldsymbol{C}}_{*1(2)}} = {[ {C( {{{\boldsymbol{x}}_{1(2),1}},{{\boldsymbol{x}}_*}} ), \cdots ,C( {{{\boldsymbol{x}}_{1(2),{n_{1(2)}}}},{{\boldsymbol{x}}_*}} )} ]^ \top } 为预测点{{\boldsymbol{x}}_*}{{\boldsymbol{X}}_{1(2)}}之间的相关性;\eta _{1(2)}^2为低精度(差值)高斯过程的协方差函数变化尺度;{{\boldsymbol{x}}_{1(2),i}}(i = 1,2, \cdots ,{n_{1(2)}}){{\boldsymbol{X}}_{1(2)}}的第 i 个元素。

    因此,高精度模型预测均值为:

    {\hat y_2} = {\rho _1}{\hat y_1} + {\mu _2} + {\boldsymbol{\alpha }}_2^ \top {{\boldsymbol{C}}_{*2}} (10)

    预测方差为:

    {v_{{y_2}}} = {\text{2}}\rho _1^2{v_{{y_1}}} + \eta _2^2 - {\boldsymbol{C}}_{*2}^ \top {\boldsymbol{\varLambda }}_2^{ - 1}{{\boldsymbol{C}}_{*2}} (11)

    可通过最大化边缘似然函数求解GC-GPM的两个超参数{{\boldsymbol{\varTheta }}_1} = \left\{ {{l_{1,1}},{l_{1,2}}, \cdots ,{l_{1,k}}, \cdots ,{l_{1,d}},\eta _1^2} \right\}{{\boldsymbol{\varTheta }}_2} = \{ {{\rho _1}} , {l_{2,1}},{l_{2,2}}, \cdots ,{l_{2,k}}, \cdots ,{l_{2,d}}, {\eta _2^2} \}[9-10]

    全局敏感性分析的基本思想是将模型输出的总方差分解为由单个输入的主效应及其相互作用效应引起的子方差之和。设模型输出函数 y({\boldsymbol{x}}) 表示具有 d 个随机输入 {\boldsymbol{x}} = \left\{ {{x_1}} \right.,{x_2}, \cdots , \left. {{x_d}} \right\} ,可以分解为维数增加的主效应项和相互作用效应项,使所有的和相互正交[11]

    \begin{split} & y({\boldsymbol{x}})={\textit{z}}_{0}+\sum _{1{\leqslant} i{\leqslant} d}{\textit{z}}_{i}({\boldsymbol{x}}_{i})+\sum _{1{\leqslant} i < j{\leqslant} d}{\textit{z}}_{i,j}({\boldsymbol{x}}_{i,j})+\\&\;\;\;\; \sum _{1{\leqslant} i < j < k{\leqslant} d}{\textit{z}}_{i,j,k}({\boldsymbol{x}}_{i,j,k})+\cdots +{\textit{z}}_{1,2,\cdots ,d}({\boldsymbol{x}}),\\& {{\textit{z}}_0} = \mathbb{E}(y) ,\\& {{\textit{z}}_i}( {{x_i}} ) = \mathbb{E}( {y|{x_i}} ) - {{\textit{z}}_0} ,\\& {{\textit{z}}_{i,j,k}}( {{{\boldsymbol{x}}_{i,j,k}}} ) = \mathbb{E}( {y|{{\boldsymbol{x}}_{i,j,k}}} ) - {{\textit{z}}_{i,j}}( {{{\boldsymbol{x}}_{i,j}}} ) - {{\textit{z}}_{i,k}}( {{{\boldsymbol{x}}_{i,k}}} ) -\\& \qquad {{\textit{z}}_{j,k}}( {{{\boldsymbol{x}}_{j,k}}} ) - {{\textit{z}}_i}( {{x_i}} ) - {{\textit{z}}_j}( {{x_j}} ) - {{\textit{z}}_k}( {{x_k}} ) - {{\textit{z}}_0} , \cdots \end{split} (12)

    式中: {{\textit{z}}_0} 为模型 y({\boldsymbol{x}}) (零阶)的全局均值; {{\textit{z}}_i}\left( {{x_i}} \right) 为输入 {x_i} (一阶)的主效应; {{\textit{z}}_{i,j}}\left( {{{\boldsymbol{x}}_{i,j}}} \right) 为输入的相互作用效应 {x_i} {x_j} (二阶),依此类推。

    由于式(12)右边除常数项E(y)外的所有项互相独立,对两端进行求方差运算可得到:

    \begin{split} V=&\sum _{1{\leqslant} i{\leqslant} d}{V}_{i}+\sum _{1{\leqslant} i < j{\leqslant} d}{V}_{i,j}+ \sum _{1{\leqslant} i < j < k{\leqslant} d}{V}_{i,j,k}+ \cdots +{V}_{1,2,\cdots ,d} \end{split} (13)

    式中: V = \mathbb{V}(y) {V_i} = \mathbb{V}\left( {\mathbb{E}\left( {y|{x_i}} \right)} \right) {V_{i,j}} = \mathbb{V}\left( {\mathbb{E}\left( {y|{{\boldsymbol{x}}_{i,j}}} \right)} \right) - {V_i} - {V_j} {V_{i,j,k}} = \mathbb{V}\left( {\mathbb{E}\left( {y|{{\boldsymbol{x}}_{i,j,k}}} \right)} \right) - {V_{i,j}} - {V_{i,k}} - {V_{j,k}} - {V_i} - {V_j} - {V_k} \cdots 。其中 \mathbb{E}(·) \mathbb{V}(·) 分别表示期望和方差算子。

    全局敏感性指标定义为子方差{V_i},{V_{i,j}}, \cdots , {V_{1,2, \cdots ,d}}与总方差 V 的比值。一阶敏感性指标{S_i}和总敏感性指标{S_{Ti}}常用来全面评估不确定参数的敏感性:

    {S_i} = \frac{{{V_i}}}{V} (14)
    {S_{Ti}} = 1 - \frac{{{V_{ - i}}}}{V} (15)

    式中,{V_{ - i}} = \mathbb{V}\left( {\mathbb{E}\left( {y\left| {{{\text{x}}_{ - i}}} \right.} \right)} \right)表示与参数{x_i}无关的总方差。

    一阶敏感性指标 {S_i} 定义了{x_i}自身对模型输出的影响,总敏感性指标 {S_{Ti}} 定义了{x_i}自身及{x_i}与其它参数相互作用的总影响。如果 {S_i} {S_{Ti}} 相差不大,表明参数{x_i}与其它参数间相互作用不明显。

    在GC-GPM框架下,推导一阶敏感性指标 {S_i} 和总敏感性指标 {S_{Ti}} 的解析表达式。先建立广义协同高斯过程模型{y_{\text{2}}} = \mathcal{G}\mathcal{P}({\boldsymbol{x}}),再计算全局敏感性指标所需的方差项 V {V_i} 以及 {V_{ - i}} 。由GC-GPM可知:

    {\hat y_2} = {\rho _1}\left( {{\mu _1} + {\boldsymbol{\alpha }}_1^ \top {{\boldsymbol{C}}_{1,{\boldsymbol{x}}}}} \right) + {\mu _2} + {\boldsymbol{\alpha }}_2^ \top {{\boldsymbol{C}}_{2,{\boldsymbol{x}}}} (16)
    \hat y_2' = {\rho _1}\left( {{\mu _1} + {\boldsymbol{\alpha }}_1^ \top {{\boldsymbol{C}}_{1,{\boldsymbol{x}}'}}} \right) + {\mu _2} + {\boldsymbol{\alpha }}_2^ \top {{\boldsymbol{C}}_{2,{\boldsymbol{x}}'}} (17)

    式中, {\hat y_2} \hat y_2' 分别代表在不同输入 {\boldsymbol{x}} {\boldsymbol{x}}' 处的预测值。

    根据高斯过程模型特性,即观测值的后验预测分布是联合高斯分布,因此观测值 {y_2} y_2' 服从高斯联合分布[12]

    p({y_2},y_2')\sim \mathcal{N}\left( {\left[ \begin{matrix} {{{\hat y}_2}} \\ {\hat y_2'} \end{matrix} \right],\left[ \begin{matrix} {{\text{2}}\rho _1^2( {\eta _1^2 - {\boldsymbol{C}}_{1,{\boldsymbol{x}}}^ \top {\boldsymbol{C}}_1^{ - 1}{{\boldsymbol{C}}_{1,{\boldsymbol{x}}}}} ) + \eta _2^2 - {\boldsymbol{C}}_{2,{\boldsymbol{x}}}^ \top \varLambda _2^{ - 1}{{\boldsymbol{C}}_{2,{\boldsymbol{x}}}}}&{{\text{2}}\rho _1^2( {{{\tilde C}_1} - {\boldsymbol{C}}_{1,{\boldsymbol{x}}}^ \top {\boldsymbol{C}}_1^{ - 1}{{\boldsymbol{C}}_{1,{\boldsymbol{x}}'}}} ) + {{\tilde C}_2} - {\boldsymbol{C}}_{2,{\boldsymbol{x}}}^ \top {\boldsymbol{\varLambda }}_2^{ - 1}{{\boldsymbol{C}}_{2,{\boldsymbol{x}}'}}} \\ {{\text{2}}\rho _1^2( {{{\tilde C}_1} - {\boldsymbol{C}}_{1,{\boldsymbol{x}}'}^ \top {\boldsymbol{C}}_1^{ - 1}{{\boldsymbol{C}}_{1,{\boldsymbol{x}}}}} ) + {{\tilde C}_2} - {\boldsymbol{C}}_{2,{\boldsymbol{x}}'}^ \top \varLambda _2^{ - 1}{{\boldsymbol{C}}_{2,{\boldsymbol{x}}}}}&{{\text{2}}\rho _1^2( {\eta _1^2 - {\boldsymbol{C}}_{1,{\boldsymbol{x}}'}^ \top {\boldsymbol{C}}_1^{ - 1}{{\boldsymbol{C}}_{1,{\boldsymbol{x}}'}}} ) + \eta _2^2 - {\boldsymbol{C}}_{2,{\boldsymbol{x}}'}^ \top {\boldsymbol{\varLambda }}_2^{ - 1}{{\boldsymbol{C}}_{2,{\boldsymbol{x}}'}}} \end{matrix} \right]} \right) (18)

    式中:

    {C}_{1(2),{\boldsymbol{x}}}=C({\boldsymbol{x}}_{1(2)},{\boldsymbol{x}}) ={a}_{1(2)}{\displaystyle \sum _{k=1}^{d}{\mathcal{N}}_{{\boldsymbol{x}}_{k}}({\boldsymbol{x}}_{1(2),k},{l}_{1(2),k}^{2})} (19)
    {C}_{1(2),{\boldsymbol{x}}'}=C({\boldsymbol{x}}_{1(2)},{\boldsymbol{x}}') ={a}_{1(2)}{\displaystyle \sum _{k=1}^{d}{\mathcal{N}}_{{\boldsymbol{x}}_{k}'}({\boldsymbol{x}}_{1(2),k},{l}_{1(2),k}^{2})} (20)
    {\tilde{C}}_{1(2)}=C({\boldsymbol{x}}_{1(2)},{\boldsymbol{x}}_{1(2)}') ={a}_{1(2)}{\displaystyle \sum _{k=1}^{d}{\mathcal{N}}_{{\boldsymbol{x}}_{1(2),k}}({x}^{\prime }_{1(2),k},{l}_{1(2),k}^{2})} (21)
    {{\hat y}_2} = {\rho _1}\left({\mu _1} + {a_1}\sum\limits_{p = 1}^{{n_1}} \alpha _{1,p} \mathop \Pi \limits_{k = 1}^d \mathcal{N}_{{x_k}}^{1,p}\right) + {\mu _{\text{2}}} + {a_2}\sum\limits_{q = 1}^{{n_2}} {\alpha _{2,q}^{}\mathop \Pi \limits_{k = 1}^d \mathcal{N}_{{x_k}}^{2,q}} (22)
    {{\hat y}'}_2 = {\rho _1}\left({\mu _1} + {a_1}\sum\limits_{p = 1}^{{n_1}} \alpha _{1,p}\mathop \Pi \limits_{k = 1}^d \mathcal{N}_{x_k'}^{1,p}\right) + {\mu _{\text{2}}} + {a_2}\sum\limits_{q = 1}^{{n_2}} {\alpha _{2,q}\mathop \Pi \limits_{k = 1}^d \mathcal{N}_{x_k'}^{2,q}} (23)

    式中: {a_{1(2)}} = \eta _{1(2)}^2(2\pi )^{d /2}\mathop \Pi \limits_{k = 1}^d l_{1(2),k}^{} {\alpha _{1(2),p(q)}}表示{{\boldsymbol{\alpha }}_{1(2)}}的第 p( q ) 个元素; {\mathcal{N}_{x_k'}}( {x_{1(2),k}^{p(q)},l_{1(2),k}^2} ) = \dfrac{1}{{{l_{1(2),k}}\sqrt {2\pi } }} \times \exp \left[ { - \dfrac{1}{{2l_{1(2),k}^2}}{{( {{x_k} - x_{1(2),k}^{\prime p(q)}} )}^2}} \right] {\mathcal{N}_{{x_k}}}( {x_{1(2),k}^{p(q)},l_{1(2),k}^2} ) {\mathcal{N}_{{x_{1(2),k}}}}( {x_{1(2),k}^{\prime p(q)},l_{1(2),k}^2} ) {\mathcal{N}_{x_k'}}( {x_{1(2),k}^{p(q)},l_{1(2),k}^2} ) 类似; \mathcal{N}_{{x_k}}^{1(2),p(q)} = \mathcal{N}_{{x_k}}^{}( {x_{1(2),k}^{p(q)},l_{1(2),k}^2} ) \mathcal{N}_{x_k'}^{1(2),p(q)} \mathcal{N}_{{x_k}}^{1(2),p(q)} 类似; {x_k} 表示待预测点 {\boldsymbol{x}}* 的第 k 个元素;x_{1(2),k}^{p(q)}表示样本点集 {{\boldsymbol{X}}_{1( 2 )}} p( q ) 行、第 k 列的元素; {l_{1( 2 ),k}} 表示 {{\boldsymbol{l}}_{1( 2 )}} 的第 k 个元素。

    全局敏感性指标的后验期望被定义为子方差的期望与总方差的期望之比[13]

    {\mathbb{E}_ * }\left( {{S_i}} \right) = \frac{{{\mathbb{E}_ * }\left( {{V_i}} \right)}}{{{\mathbb{E}_ * }(V)}} (24)
    {\mathbb{E}_ * }\left( {{S_{ - i}}} \right) = \frac{{{\mathbb{E}_ * }\left( {{V_{ - i}}} \right)}}{{{\mathbb{E}_ * }(V)}} (25)

    根据定义和概率论原理,则有:

    \begin{split} & {\mathbb{E}_*}({V_i}) = {\mathbb{E}_ * }\{ {\mathbb{V}[ {\mathbb{E}( {{y_2}|{{\boldsymbol{x}}_i}} )} ]} \} = {\mathbb{E}_ * }\{ {\mathbb{E}[ {{\mathbb{E}^2}( {{y_2}|{{\boldsymbol{x}}_i}} )} ]} -\\& {\mathbb{E}^2}[ {\mathbb{E}( {{y_2}|{{\boldsymbol{x}}_i}} )} ] \} = {\mathbb{E}_{{{\boldsymbol{x}}_i}}}\{ {{\mathbb{E}_{{{\boldsymbol{x}}_{ - i}}{\boldsymbol{x}}_{ - i}'}}[ {{\mathbb{E}_*}( {{y_2}y_2'} )} ]} \} - {\mathbb{E}_{{\boldsymbol{xx}}'}}[ {{\mathbb{E}_*}( {{y_2}y_2'} )} ] \end{split} (26)
    \begin{split} & {\mathbb{E}_ * }( {{V_{ - i}}} ) = {\mathbb{E}_ * }\{ {\mathbb{V}[ {\mathbb{E}( {y|{{\boldsymbol{x}}_{ - i}}} )} ]} \} = {\mathbb{E}_{{{\boldsymbol{x}}_{ - i}}}}\{ {{\mathbb{E}_{{{\boldsymbol{x}}_i}{\boldsymbol{x}}_{i}'}}[ {{\mathbb{E}_*}( {{y_2}y_2'} )} ]} \} - \\& \qquad\qquad {\mathbb{E}_{{\boldsymbol{xx}}'}}[ {{\mathbb{E}_*}( {{y_2}y_2'} )} ] \end{split} (27)
    \begin{split} & {\mathbb{E}_ * }(V) = {\mathbb{E}_ * }[ {{\mathbb{E}^2}( {y_2^2} ) - {\mathbb{E}^2}({y_2})} ] = \\&\qquad\quad\;\; {\mathbb{E}_{\boldsymbol{x}}}[ {{\mathbb{E}_*}( {y_2^2} )} ] - {\mathbb{E}_{{\boldsymbol{xx}}'}}[ {{\mathbb{E}_*}( {{y_2}y_2'} )} ] \end{split} (28)

    利用平方指数协方差的分离特性性质,再结合式(18)~式(23),式(26)~式(28)中的 {\mathbb{E}_*}\left( {{y_2}y_2'} \right) {\mathbb{E}_*}\left( {y_2^2} \right) 可写为:

    \begin{split} {\mathbb{E}_*}({y_2}y_2') =& {\text{2}}\rho _1^2( {{{\tilde C}_1} - {\boldsymbol{C}}_{1,x}^ \top {\boldsymbol{C}}_1^{ - 1}{{\boldsymbol{C}}_{1,x'}}} ) + {{\tilde C}_2} - {\boldsymbol{C}}_{2,x}^ \top {\boldsymbol{\varLambda }}_2^{ - 1}{{\boldsymbol{C}}_{2,x'}} + {{\hat y}_2}\hat y_2' = {\text{2}}\rho _1^2( {{{\tilde C}_1} - {\boldsymbol{C}}_{1,x}^ \top {\boldsymbol{C}}_1^{ - 1}{{\boldsymbol{C}}_{1,x'}}} ) + {{\tilde C}_2} - {\boldsymbol{C}}_{2,x}^ \top {\boldsymbol{\varLambda }}_2^{ - 1}{{\boldsymbol{C}}_{2,x'}} + \\& ( {{\rho _1}{{\hat y}_1} + {\mu _2} + {\boldsymbol{\alpha }}_2^ \top {{\boldsymbol{C}}_{2,{\boldsymbol{x}}}}} )( {{\rho _1}\hat y_1' + {\mu _2} + {\boldsymbol{\alpha }}_2^ \top {{\boldsymbol{C}}_{2,{\boldsymbol{x}}'}}} ) = {\text{2}}\rho _1^2( {{{\tilde C}_1} - {\boldsymbol{C}}_{1,x}^ \top {\boldsymbol{C}}_1^{ - 1}{{\boldsymbol{C}}_{1,x'}}} ) + {{\tilde C}_2} - {\boldsymbol{C}}_{2,x}^ \top {\boldsymbol{\varLambda }}_2^{ - 1}{{\boldsymbol{C}}_{2,x'}} + \\& \rho _1^2[ {\mu _1^2 + \mu _1^{}( {{\boldsymbol{\alpha }}_1^ \top {{\boldsymbol{C}}_{1,{\boldsymbol{x}}}} + {\boldsymbol{\alpha }}_1^ \top {{\boldsymbol{C}}_{1,{\boldsymbol{x}}'}}} ) + {\boldsymbol{C}}_{1,{\boldsymbol{x}}}^ \top {\boldsymbol{\alpha }}_1^{}{\boldsymbol{\alpha }}_1^ \top {{\boldsymbol{C}}_{1,{\boldsymbol{x}}'}}} ] + {\rho _1}( {{\mu _1} + {\boldsymbol{\alpha }}_1^ \top {{\boldsymbol{C}}_{1,{\boldsymbol{x}}}}} )( {{\mu _2} + {\boldsymbol{\alpha }}_2^ \top {{\boldsymbol{C}}_{2,{\boldsymbol{x}}'}}} ) + \mu _2^2 + \\& {\rho _1}( {{\mu _1} + {\boldsymbol{\alpha }}_1^ \top {{\boldsymbol{C}}_{1,{\boldsymbol{x}}'}}} )( {{\mu _2} + {\boldsymbol{\alpha }}_2^ \top {{\boldsymbol{C}}_{2,{\boldsymbol{x}}}}} ) + {\mu _2}( {{\boldsymbol{\alpha }}_2^ \top {{\boldsymbol{C}}_{2,{\boldsymbol{x}}}} + {\boldsymbol{\alpha }}_2^ \top {{\boldsymbol{C}}_{2,{\boldsymbol{x}}'}}} ) + {\boldsymbol{C}}_{2,{\boldsymbol{x}}}^ \top {\boldsymbol{\alpha }}_2^{}{\boldsymbol{\alpha }}_2^ \top {{\boldsymbol{C}}_{2,{\boldsymbol{x}}'}} =\\& {\text{2}}\rho _1^2{{\tilde C}_1} + \rho _1^2{\boldsymbol{C}}_{1,x}^ \top ( {{\boldsymbol{\alpha }}_1^{}{\boldsymbol{\alpha }}_1^ \top - 2{\boldsymbol{C}}_1^{ - 1}} ){{\boldsymbol{C}}_{1,x'}} + \rho _1^2[ {\mu _1^2 + \mu _1^{}{\boldsymbol{\alpha }}_1^ \top ( {{{\boldsymbol{C}}_{1,{\boldsymbol{x}}}} + {{\boldsymbol{C}}_{1,{\boldsymbol{x}}'}}} )} ] + 2{\rho _1}{\mu _1}{\mu _2} +\\& {\rho _1}[ {{\mu _1}{\boldsymbol{\alpha }}_2^ \top ( {{{\boldsymbol{C}}_{2,{\boldsymbol{x}}'}} + {{\boldsymbol{C}}_{2,{\boldsymbol{x}}}}} ) + {\mu _2}{\boldsymbol{\alpha }}_1^ \top ( {{{\boldsymbol{C}}_{1,{\boldsymbol{x}}}} + {{\boldsymbol{C}}_{1,{\boldsymbol{x}}'}}} ) + {\boldsymbol{C}}_{1,{\boldsymbol{x}}}^ \top {\boldsymbol{\alpha }}_1^{}{\boldsymbol{\alpha }}_2^ \top {{\boldsymbol{C}}_{2,{\boldsymbol{x}}'}} + {\boldsymbol{C}}_{1,{\boldsymbol{x}}'}^ \top {\boldsymbol{\alpha }}_1^{}{\boldsymbol{\alpha }}_2^ \top {{\boldsymbol{C}}_{2,{\boldsymbol{x}}}}} ] + \mu _2^2 + \\& {\mu _2}{\boldsymbol{\alpha }}_2^ \top ( {{{\boldsymbol{C}}_{2,{\boldsymbol{x}}}} + {{\boldsymbol{C}}_{2,{\boldsymbol{x}}'}}} ) + {{\tilde C}_2} + {\boldsymbol{C}}_{2,x}^ \top ( {{\boldsymbol{\alpha }}_2^{}{\boldsymbol{\alpha }}_2^ \top - {\boldsymbol{\varLambda }}_2^{ - 1}} ){{\boldsymbol{C}}_{2,x'}} = {\text{2}}\rho _1^2{{\tilde C}_1} + \rho _1^2{\boldsymbol{C}}_{1,x}^ \top {{\boldsymbol{\varXi }}_1}{{\boldsymbol{C}}_{1,x'}} + \\& \rho _1^2[ {\mu _1^2 + \mu _1^{}{\boldsymbol{\alpha }}_1^ \top ( {{{\boldsymbol{C}}_{1,{\boldsymbol{x}}}} + {{\boldsymbol{C}}_{1,{\boldsymbol{x}}'}}} )} ] + 2{\rho _1}{\mu _1}{\mu _2} + {\rho _1}[ {\mu _1}{\boldsymbol{\alpha }}_2^ \top ( {{{\boldsymbol{C}}_{2,{\boldsymbol{x}}'}} + {{\boldsymbol{C}}_{2,{\boldsymbol{x}}}}} ) + {\mu _2}{\boldsymbol{\alpha }}_1^ \top ( {{{\boldsymbol{C}}_{1,{\boldsymbol{x}}}} + {{\boldsymbol{C}}_{1,{\boldsymbol{x}}'}}} ) +\\& {\boldsymbol{C}}_{1,{\boldsymbol{x}}}^ \top {\boldsymbol{\alpha }}_1^{}{\boldsymbol{\alpha }}_2^ \top {{\boldsymbol{C}}_{2,{\boldsymbol{x}}'}} + {\boldsymbol{C}}_{1,{\boldsymbol{x}}'}^ \top {\boldsymbol{\alpha }}_1^{}{\boldsymbol{\alpha }}_2^ \top {{\boldsymbol{C}}_{2,{\boldsymbol{x}}}} ] + \mu _2^2 + {\mu _2}{\boldsymbol{\alpha }}_2^ \top ( {{{\boldsymbol{C}}_{2,{\boldsymbol{x}}}} + {{\boldsymbol{C}}_{2,{\boldsymbol{x}}'}}} ) + {{\tilde C}_2} + {\boldsymbol{C}}_{2,x}^ \top {{\boldsymbol{\varXi }}_2}{{\boldsymbol{C}}_{2,x'}} \end{split} (29)
    \begin{split} {\mathbb{E}_*}(y_2^2) =& {\text{2}}\rho _1^2( {\eta _1^2 - {\boldsymbol{C}}_{1,x}^ \top {\boldsymbol{C}}_1^{ - 1}{{\boldsymbol{C}}_{1,x}}} ) + \eta _2^2 - {\boldsymbol{C}}_{2,x}^ \top {\boldsymbol{\varLambda }}_2^{ - 1}{{\boldsymbol{C}}_{2,x}} + \hat y_2^2 = {\text{2}}\rho _1^2( {\eta _1^2 - {\boldsymbol{C}}_{1,x}^ \top {\boldsymbol{C}}_1^{ - 1}{{\boldsymbol{C}}_{1,x}}} ) + \eta _2^2 - {\boldsymbol{C}}_{2,x}^ \top {\boldsymbol{\varLambda }}_2^{ - 1}{{\boldsymbol{C}}_{2,x}} + \\& \rho _1^2( {{\mu _1} + {\boldsymbol{\alpha }}_1^ \top {{\boldsymbol{C}}_{1,{\boldsymbol{x}}}}} )( {{\mu _1} + {\boldsymbol{\alpha }}_1^ \top {{\boldsymbol{C}}_{1,{\boldsymbol{x}}}}} ) + 2{\rho _1}{\mu _2}( {{\mu _1} + {\boldsymbol{\alpha }}_1^ \top {{\boldsymbol{C}}_{1,{\boldsymbol{x}}}}} ) + 2{\rho _1}( {{\mu _1} + {\boldsymbol{\alpha }}_1^ \top {{\boldsymbol{C}}_{1,{\boldsymbol{x}}}}} ){\boldsymbol{\alpha }}_2^ \top {{\boldsymbol{C}}_{2,{\boldsymbol{x}}}} + 2{\mu _2}{\boldsymbol{\alpha }}_2^ \top {{\boldsymbol{C}}_{2,{\boldsymbol{x}}}} + \mu _2^2 +\\& ( {{\boldsymbol{\alpha }}_2^ \top {{\boldsymbol{C}}_{2,{\boldsymbol{x}}}}} )( {{\boldsymbol{\alpha }}_2^ \top {{\boldsymbol{C}}_{2,{\boldsymbol{x}}}}} ) = {\text{2}}\rho _1^2\eta _1^2 + \rho _1^2{\boldsymbol{C}}_{1,x}^ \top ( {{\boldsymbol{\alpha }}_1^{}{\boldsymbol{\alpha }}_1^ \top - 2{\boldsymbol{C}}_1^{ - 1}} ){{\boldsymbol{C}}_{1,x}} + \rho _1^2( {\mu _1^2 + 2\mu _1^{}{\boldsymbol{\alpha }}_1^ \top {{\boldsymbol{C}}_{1,{\boldsymbol{x}}}}} ) + 2{\rho _1}{\mu _1}{\mu _2} + \\& ( {2{\rho _1}{\mu _1} + 2{\mu _2}} ){\boldsymbol{\alpha }}_2^ \top {{\boldsymbol{C}}_{2,{\boldsymbol{x}}}} + 2{\rho _1}( {{\mu _2}{\boldsymbol{\alpha }}_1^ \top {{\boldsymbol{C}}_{1,{\boldsymbol{x}}}} + {\boldsymbol{C}}_{1,{\boldsymbol{x}}}^ \top {\boldsymbol{\alpha }}_1^{}{\boldsymbol{\alpha }}_2^ \top {{\boldsymbol{C}}_{2,{\boldsymbol{x}}}}} ) + \mu _2^2 + \eta _2^2 + {\boldsymbol{C}}_{2,{\boldsymbol{x}}}^ \top ( {{\boldsymbol{\alpha }}_2^{}{\boldsymbol{\alpha }}_2^ \top - {\boldsymbol{\varLambda }}_2^{ - 1}} ){{\boldsymbol{C}}_{2,{\boldsymbol{x}}}} = \\& {\text{2}}\rho _1^2\eta _1^2 + \rho _1^2{\boldsymbol{C}}_{1,x}^ \top {{\boldsymbol{\varXi }}_1}{{\boldsymbol{C}}_{1,x}} + \rho _1^2( {\mu _1^2 + 2\mu _1^{}{\boldsymbol{\alpha }}_1^ \top {{\boldsymbol{C}}_{1,{\boldsymbol{x}}}}} ) + 2{\rho _1}{\mu _1}{\mu _2} + ( {2{\rho _1}{\mu _1} + 2{\mu _2}} ){\boldsymbol{\alpha }}_2^ \top {{\boldsymbol{C}}_{2,{\boldsymbol{x}}}} + \\& 2{\rho _1}( {{\mu _2}{\boldsymbol{\alpha }}_1^ \top {{\boldsymbol{C}}_{1,{\boldsymbol{x}}}} + {\boldsymbol{C}}_{1,{\boldsymbol{x}}}^ \top {\boldsymbol{\alpha }}_1^{}{\boldsymbol{\alpha }}_2^ \top {{\boldsymbol{C}}_{2,{\boldsymbol{x}}}}} ) + \mu _2^2 + \eta _2^2 + {\boldsymbol{C}}_{2,{\boldsymbol{x}}}^ \top {{\boldsymbol{\varXi }}_2}{{\boldsymbol{C}}_{2,{\boldsymbol{x}}}} \end{split} (30)

    式中: {{\boldsymbol{\varXi }}_1} = {\boldsymbol{\alpha }}_1^{}{\boldsymbol{\alpha }}_1^ \top - 2{\boldsymbol{C}}_1^{ - 1} {{\boldsymbol{\varXi }}_2} = {\boldsymbol{\alpha }}_2^{}{\boldsymbol{\alpha }}_2^ \top - {\boldsymbol{\varLambda }}_2^{ - 1}

    将式(29)和式(30)代入式(26)~式(28)中, {\mathbb{E}_ * }\left( {{V_i}} \right) {\mathbb{E}_ * }\left( {{V_{ - i}}} \right) {\mathbb{E}_ * }(V) 的表达式可写为:

    \begin{split} {\mathbb{E}_*}({V_i}) =& {\mathbb{E}_{{{\boldsymbol{x}}_i}}}\{ {{\mathbb{E}_{{{\boldsymbol{x}}_{ - i}}{\boldsymbol{x}}_{_{ - i}}'}}[ {{\mathbb{E}_*}({y_2}y_2')} ]} \} - {\mathbb{E}_{{\boldsymbol{xx}}'}}[ {{\mathbb{E}_*}({y_2}y_2')} ] = \{ {{\text{2}}\rho _1^2{\mathbb{E}_{{{\boldsymbol{x}}_i}}}[ {{\mathbb{E}_{{{\boldsymbol{x}}_{ - i}}{\boldsymbol{x}}_{_{ - i}}'}}( {{{\tilde C}_1}} )} ] + \rho _1^2{\mathbb{E}_{{{\boldsymbol{x}}_i}}}[ {{\mathbb{E}_{{{\boldsymbol{x}}_{ - i}}{\boldsymbol{x}}_{_{ - i}}'}}( {{\boldsymbol{C}}_{1,x}^ \top {{\boldsymbol{\varXi }}_1}{{\boldsymbol{C}}_{1,x'}}} )} ] + \rho _1^2\mu _1^2 + } \\& \rho _1^2{\mathbb{E}_{{{\boldsymbol{x}}_i}}}[ {{\mathbb{E}_{{{\boldsymbol{x}}_{ - i}}{\boldsymbol{x}}_{_{ - i}}'}}( {\mu _1{\boldsymbol{\alpha }}_1^ \top {{\boldsymbol{C}}_{1,{\boldsymbol{x}}}} + \mu _1{\boldsymbol{\alpha }}_1^ \top {{\boldsymbol{C}}_{1,{\boldsymbol{x}}'}}} )} ] + 2{\rho _1}{\mu _1}{\mu _2} + {\rho _1}{\mathbb{E}_{{{\boldsymbol{x}}_i}}}[ {\mathbb{E}_{{{\boldsymbol{x}}_{ - i}}{\boldsymbol{x}}_{_{ - i}}'}}( {\mu _1}{\boldsymbol{\alpha }}_2^ \top {{\boldsymbol{C}}_{2,{\boldsymbol{x}}}} + {\mu _1}{\boldsymbol{\alpha }}_2^ \top {{\boldsymbol{C}}_{2,{\boldsymbol{x}}'}} + {\mu _2}{\boldsymbol{\alpha }}_1^ \top {{\boldsymbol{C}}_{1,{\boldsymbol{x}}}} + \\& {\mu _2}{\boldsymbol{\alpha }}_1^ \top {{\boldsymbol{C}}_{1,{\boldsymbol{x}}'}} ) ] + {\rho _1}{\mathbb{E}_{{{\boldsymbol{x}}_i}}}[ {{\mathbb{E}_{{{\boldsymbol{x}}_{ - i}}{\boldsymbol{x}}_{_{ - i}}'}}( {{\boldsymbol{C}}_{1,{\boldsymbol{x}}}^ \top {\boldsymbol{\alpha }}_1{\boldsymbol{\alpha }}_2^ \top {{\boldsymbol{C}}_{2,{\boldsymbol{x}}'}} + {\boldsymbol{C}}_{1,{\boldsymbol{x}}'}^ \top {\boldsymbol{\alpha }}_1{\boldsymbol{\alpha }}_2^ \top {{\boldsymbol{C}}_{2,{\boldsymbol{x}}}}} )} ] + \mu _2^2 + {\mu _2}{\mathbb{E}_{{{\boldsymbol{x}}_i}}}[ {{\mathbb{E}_{{{\boldsymbol{x}}_{ - i}}{\boldsymbol{x}}_{_{ - i}}'}}( {{\boldsymbol{\alpha }}_2^ \top {{\boldsymbol{C}}_{2,{\boldsymbol{x}}}} + {\boldsymbol{\alpha }}_2^ \top {{\boldsymbol{C}}_{2,{\boldsymbol{x}}'}}} )} ] +\\& {\mathbb{E}_{{{\boldsymbol{x}}_i}}}[ {{\mathbb{E}_{{{\boldsymbol{x}}_{ - i}}{\boldsymbol{x}}_{_{ - i}}'}}( {{{\tilde C}_2}} )} ] + {\mathbb{E}_{{{\boldsymbol{x}}_i}}}[ {\mathbb{E}_{{{\boldsymbol{x}}_{ - i}}{\boldsymbol{x}}_{_{ - i}}'}}( {{\boldsymbol{C}}_{2,x}^ \top {{\boldsymbol{\varXi }}_2}{{\boldsymbol{C}}_{2,x'}}} ) ] \} - [ {\text{2}}\rho _1^2{\mathbb{E}_{{\boldsymbol{x}}{{\boldsymbol{x}}'}}}( {{{\tilde C}_1}} ) + \rho _1^2{\mathbb{E}_{{\boldsymbol{x}}{{\boldsymbol{x}}'}}}( {{\boldsymbol{C}}_{1,x}^ \top {{\boldsymbol{\varXi }}_1}{{\boldsymbol{C}}_{1,x'}}} ) + \\& \rho _1^2\mu _1^2 + \rho _1^2{\mathbb{E}_{{\boldsymbol{x}}{{\boldsymbol{x}}'}}}( {\mu _1{\boldsymbol{\alpha }}_1^ \top ( {{{\boldsymbol{C}}_{1,{\boldsymbol{x}}}} + {{\boldsymbol{C}}_{1,{\boldsymbol{x}}'}}} )} ) + 2{\rho _1}{\mu _1}{\mu _2} + {\rho _1}{\mathbb{E}_{{\boldsymbol{x}}{{\boldsymbol{x}}'}}}( {{\mu _1}{\boldsymbol{\alpha }}_2^ \top ( {{{\boldsymbol{C}}_{2,{\boldsymbol{x}}}} + {{\boldsymbol{C}}_{2,{\boldsymbol{x}}'}}} ) + {\mu _2}{\boldsymbol{\alpha }}_1^ \top ( {{{\boldsymbol{C}}_{1,{\boldsymbol{x}}}} + {{\boldsymbol{C}}_{1,{\boldsymbol{x}}'}}} )} ) + \\& {\rho _1}{\mathbb{E}_{{\boldsymbol{x}}{{\boldsymbol{x}}'}}}( {{\boldsymbol{C}}_{1,{\boldsymbol{x}}}^ \top {\boldsymbol{\alpha }}_1{\boldsymbol{\alpha }}_2^ \top {{\boldsymbol{C}}_{2,{\boldsymbol{x}}'}} + {\boldsymbol{C}}_{1,{\boldsymbol{x}}'}^ \top {\boldsymbol{\alpha }}_1{\boldsymbol{\alpha }}_2^ \top {{\boldsymbol{C}}_{2,{\boldsymbol{x}}}}} ) + {\mu _2^2 + {\mu _2}{\mathbb{E}_{{\boldsymbol{x}}{{\boldsymbol{x}}'}}}( {{\boldsymbol{\alpha }}_2^ \top ( {{{\boldsymbol{C}}_{2,{\boldsymbol{x}}}} + {{\boldsymbol{C}}_{2,{\boldsymbol{x}}'}}} )} ) + {\mathbb{E}_{{\boldsymbol{x}}{{\boldsymbol{x}}'}}}( {{{\tilde C}_2}} ) + {\mathbb{E}_{{\boldsymbol{x}}{{\boldsymbol{x}}'}}}( {{\boldsymbol{C}}_{2,x}^ \top {{\boldsymbol{\varXi }}_2}{{\boldsymbol{C}}_{2,x'}}} )} ] = \\& [ {\rho _1^2( {2{\boldsymbol{I}}_{i,1} + {{{\boldsymbol{I'}}}_{i,1}}} ) + 2{\rho _1}{\boldsymbol{I}}_{i,12} + {\boldsymbol{I}}_{i,2} + {{{\boldsymbol{I'}}}_{i,2}}} ] - [ {\rho _1^2( {2{\boldsymbol{I}}_1 + {{{\boldsymbol{I'}}}_1}} ) + 2{\rho _1}{\boldsymbol{I}}_{12} + {\boldsymbol{I}}_2 + {{{\boldsymbol{I'}}}_2}} ] \end{split} (31)
    \begin{split} {\mathbb{E}_*}({V_{ - i}}) =& {\mathbb{E}_{{{\boldsymbol{x}}_{ - i}}}}\{ {{\mathbb{E}_{{{\boldsymbol{x}}_i}{\boldsymbol{x}}_{_i}'}}[ {{\mathbb{E}_*}({y_2}y_2')} ]} \} - {\mathbb{E}_{{\boldsymbol{xx}}'}}[ {{\mathbb{E}_*}({y_2}y_2')} ] = \{ {{\text{2}}\rho _1^2{\mathbb{E}_{{{\boldsymbol{x}}_{ - i}}}}[ {{\mathbb{E}_{{{\boldsymbol{x}}_i}{\boldsymbol{x}}_{_i}'}}( {{{\tilde C}_1}} )} ] + \rho _1^2{\mathbb{E}_{{{\boldsymbol{x}}_{ - i}}}}[ {{\mathbb{E}_{{{\boldsymbol{x}}_i}{\boldsymbol{x}}_{_i}'}}( {{\boldsymbol{C}}_{1,x}^ \top {{\boldsymbol{\varXi }}_1}{{\boldsymbol{C}}_{1,x'}}} )} ] + \rho _1^2\mu _1^2 + } \\& \rho _1^2{\mathbb{E}_{{{\boldsymbol{x}}_{ - i}}}}[ {{\mathbb{E}_{{{\boldsymbol{x}}_i}{\boldsymbol{x}}_{_i}'}}( {\mu _1{\boldsymbol{\alpha }}_1^ \top {{\boldsymbol{C}}_{1,{\boldsymbol{x}}}} + \mu _1{\boldsymbol{\alpha }}_1^ \top {{\boldsymbol{C}}_{1,{\boldsymbol{x}}'}}} )} ] + 2{\rho _1}{\mu _1}{\mu _2} + {\rho _1}{\mathbb{E}_{{{\boldsymbol{x}}_{ - i}}}}[ {{\mathbb{E}_{{{\boldsymbol{x}}_i}{\boldsymbol{x}}_{_i}'}}( {{\mu _1}{\boldsymbol{\alpha }}_2^ \top {{\boldsymbol{C}}_{2,{\boldsymbol{x}}}} + {\mu _1}{\boldsymbol{\alpha }}_2^ \top {{\boldsymbol{C}}_{2,{\boldsymbol{x}}'}} + {\mu _2}{\boldsymbol{\alpha }}_1^ \top {{\boldsymbol{C}}_{1,{\boldsymbol{x}}}} + {\mu _2}{\boldsymbol{\alpha }}_1^ \top {{\boldsymbol{C}}_{1,{\boldsymbol{x}}'}}} )} ] + \\& {\rho _1}{\mathbb{E}_{{{\boldsymbol{x}}_{ - i}}}}[ {{\mathbb{E}_{{{\boldsymbol{x}}_i}{\boldsymbol{x}}_{_i}'}}( {{\boldsymbol{C}}_{1,{\boldsymbol{x}}}^ \top {\boldsymbol{\alpha }}_1{\boldsymbol{\alpha }}_2^ \top {{\boldsymbol{C}}_{2,{\boldsymbol{x}}'}} + {\boldsymbol{C}}_{1,{\boldsymbol{x}}'}^ \top {\boldsymbol{\alpha }}_1{\boldsymbol{\alpha }}_2^ \top {{\boldsymbol{C}}_{2,{\boldsymbol{x}}}}} )} ] + \mu _2^2 + {\mu _2}{\mathbb{E}_{{{\boldsymbol{x}}_{ - i}}}}[ {{\mathbb{E}_{{{\boldsymbol{x}}_i}{\boldsymbol{x}}_{_i}'}}( {{\boldsymbol{\alpha }}_2^ \top {{\boldsymbol{C}}_{2,{\boldsymbol{x}}}} + {\boldsymbol{\alpha }}_2^ \top {{\boldsymbol{C}}_{2,{\boldsymbol{x}}'}}} )} ] + {\mathbb{E}_{{{\boldsymbol{x}}_{ - i}}}}[ {{\mathbb{E}_{{{\boldsymbol{x}}_i}{\boldsymbol{x}}_{_i}'}}( {{{\tilde C}_2}} )} ] +\\& {\mathbb{E}_{{{\boldsymbol{x}}_{ - i}}}}[ {{\mathbb{E}_{{{\boldsymbol{x}}_i}{\boldsymbol{x}}_{_i}'}}( {{\boldsymbol{C}}_{2,x}^ \top {{\boldsymbol{\varXi }}_2}{{\boldsymbol{C}}_{2,x'}}} )} ] \} - [ {\text{2}}\rho _1^2{\mathbb{E}_{{\boldsymbol{x}}{{\boldsymbol{x}}'}}}( {{{\tilde C}_1}} ) + \rho _1^2{\mathbb{E}_{{\boldsymbol{x}}{{\boldsymbol{x}}'}}}( {{\boldsymbol{C}}_{1,x}^ \top {{\boldsymbol{\varXi }}_1}{{\boldsymbol{C}}_{1,x'}}} ) + \rho _1^2\mu _1^2 + \rho _1^2{\mathbb{E}_{{\boldsymbol{x}}{{\boldsymbol{x}}'}}}( \mu _1{\boldsymbol{\alpha }}_1^ \top ( {{{\boldsymbol{C}}_{1,{\boldsymbol{x}}}} + {{\boldsymbol{C}}_{1,{\boldsymbol{x}}'}}} ) ) + \\& 2{\rho _1}{\mu _1}{\mu _2} + {\rho _1}{\mathbb{E}_{{\boldsymbol{x}}{{\boldsymbol{x}}'}}}( {{\mu _1}{\boldsymbol{\alpha }}_2^ \top ( {{{\boldsymbol{C}}_{2,{\boldsymbol{x}}}} + {{\boldsymbol{C}}_{2,{\boldsymbol{x}}'}}} ) + {\mu _2}{\boldsymbol{\alpha }}_1^ \top ( {{{\boldsymbol{C}}_{1,{\boldsymbol{x}}}} + {{\boldsymbol{C}}_{1,{\boldsymbol{x}}'}}} )} ) + {\rho _1}{\mathbb{E}_{{\boldsymbol{x}}{{\boldsymbol{x}}'}}}( {{\boldsymbol{C}}_{1,{\boldsymbol{x}}}^ \top {\boldsymbol{\alpha }}_1{\boldsymbol{\alpha }}_2^ \top {{\boldsymbol{C}}_{2,{\boldsymbol{x}}'}} + {\boldsymbol{C}}_{1,{\boldsymbol{x}}'}^ \top {\boldsymbol{\alpha }}_1{\boldsymbol{\alpha }}_2^ \top {{\boldsymbol{C}}_{2,{\boldsymbol{x}}}}} ) + \\& {\mu _2^2 + {\mu _2}{\mathbb{E}_{{\boldsymbol{x}}{{\boldsymbol{x}}'}}}( {{\boldsymbol{\alpha }}_2^ \top ( {{{\boldsymbol{C}}_{2,{\boldsymbol{x}}}} + {{\boldsymbol{C}}_{2,{\boldsymbol{x}}'}}} )} ) + {\mathbb{E}_{{\boldsymbol{x}}{{\boldsymbol{x}}'}}}( {{{\tilde C}_2}} ) + {\mathbb{E}_{{\boldsymbol{x}}{{\boldsymbol{x}}'}}}( {{\boldsymbol{C}}_{2,x}^ \top {{\boldsymbol{\varXi }}_2}{{\boldsymbol{C}}_{2,x'}}} )} ] =\\& [ {\rho _1^2( {2{\boldsymbol{I}}_{ - i,1} + {{{\boldsymbol{I'}}}_{ - i,1}}} ) + 2{\rho _1}{\boldsymbol{I}}_{ - i,12} + {\boldsymbol{I}}_{ - i,2} + {{{\boldsymbol{I'}}}_{ - i,2}}} ] - [ {\rho _1^2( {2{\boldsymbol{I}}_1 + {{{\boldsymbol{I'}}}_1}} ) + 2{\rho _1}{\boldsymbol{I}}_{12} + {\boldsymbol{I}}_2 + {{{\boldsymbol{I'}}}_2}} ] \end{split} (32)
    \begin{split} {\mathbb{E}_*}(V) =& {\mathbb{E}_{\boldsymbol{x}}}[ {{\mathbb{E}_*}(y_2^2)} ] - {\mathbb{E}_{{\boldsymbol{xx}}'}}[ {{\mathbb{E}_*}({y_2}y_2')} ] = [ {{\text{2}}\rho _1^2\eta _1^2 + \rho _1^2{\mathbb{E}_{\boldsymbol{x}}}( {{\boldsymbol{C}}_{1,{\boldsymbol{x}}}^ \top {{\boldsymbol{\varXi }}_1}{{\boldsymbol{C}}_{1,{\boldsymbol{x}}}}} ) + \rho _1^2\mu _1^2 + 2\mu _1\rho _1^2{\mathbb{E}_{\boldsymbol{x}}}( {{\boldsymbol{\alpha }}_1^ \top {{\boldsymbol{C}}_{1,{\boldsymbol{x}}}}} ) + 2{\rho _1}{\mu _1}{\mu _2} + } \\& {( {2{\rho _1}{\mu _1} + 2{\mu _2}} ){\mathbb{E}_{\boldsymbol{x}}}( {{\boldsymbol{\alpha }}_2^ \top {{\boldsymbol{C}}_{2,{\boldsymbol{x}}}}} ) + 2{\rho _1}{\mathbb{E}_{\boldsymbol{x}}}( {{\mu _2}{\boldsymbol{\alpha }}_1^ \top {{\boldsymbol{C}}_{1,{\boldsymbol{x}}}} + {\boldsymbol{C}}_{1,{\boldsymbol{x}}}^ \top {\boldsymbol{\alpha }}_1{\boldsymbol{\alpha }}_2^ \top {{\boldsymbol{C}}_{2,{\boldsymbol{x}}}}} ) + \mu _2^2 + \eta _2^2 + {\mathbb{E}_{\boldsymbol{x}}}( {{\boldsymbol{C}}_{2,{\boldsymbol{x}}}^ \top {{\boldsymbol{\varXi }}_2}{{\boldsymbol{C}}_{2,{\boldsymbol{x}}}}} )} ] - \\& [ {{\text{2}}\rho _1^2{\mathbb{E}_{{\boldsymbol{x}}{{\boldsymbol{x}}'}}}( {{{\tilde C}_1}} ) + \rho _1^2{\mathbb{E}_{{\boldsymbol{x}}{{\boldsymbol{x}}'}}}( {{\boldsymbol{C}}_{1,{\boldsymbol{x}}}^ \top {{\boldsymbol{\varXi }}_1}{{\boldsymbol{C}}_{1,{\boldsymbol{x}}}}} ) + \rho _1^2\mu _1^2 + \rho _1^2{\mathbb{E}_{{\boldsymbol{x}}{{\boldsymbol{x}}'}}}( {\mu _1{\boldsymbol{\alpha }}_1^ \top ( {{{\boldsymbol{C}}_{1,{\boldsymbol{x}}}} + {{\boldsymbol{C}}_{1,{\boldsymbol{x}}'}}} )} ) + 2{\rho _1}{\mu _1}{\mu _2} + } {\rho _1}{\mathbb{E}_{{\boldsymbol{x}}{{\boldsymbol{x}}'}}}( {\mu _1}{\boldsymbol{\alpha }}_2^ \top ( {{{\boldsymbol{C}}_{2,{\boldsymbol{x}}}} + {{\boldsymbol{C}}_{2,{\boldsymbol{x}}'}}} ) +\\& {\mu _2}{\boldsymbol{\alpha }}_1^ \top ( {{{\boldsymbol{C}}_{1,{\boldsymbol{x}}}} + {{\boldsymbol{C}}_{1,{\boldsymbol{x}}'}}} ) ) + {\rho _1}{\mathbb{E}_{{\boldsymbol{x}}{{\boldsymbol{x}}'}}}( {{\boldsymbol{C}}_{1,{\boldsymbol{x}}}^ \top {\boldsymbol{\alpha }}_1{\boldsymbol{\alpha }}_2^ \top {{\boldsymbol{C}}_{2,{\boldsymbol{x}}'}} + {\boldsymbol{C}}_{1,{\boldsymbol{x}}'}^ \top {\boldsymbol{\alpha }}_1{\boldsymbol{\alpha }}_2^ \top {{\boldsymbol{C}}_{2,{\boldsymbol{x}}}}} ) + \mu _2^2 + {\mu _2}{\mathbb{E}_{{\boldsymbol{x}}{{\boldsymbol{x}}'}}}( {{\boldsymbol{\alpha }}_2^ \top ( {{{\boldsymbol{C}}_{2,{\boldsymbol{x}}}} + {{\boldsymbol{C}}_{2,{\boldsymbol{x}}'}}} )} ) +\\& {\mathbb{E}_{{\boldsymbol{x}}{{\boldsymbol{x}}'}}}( {{{\tilde C}_2}} ) + {\mathbb{E}_{{\boldsymbol{x}}{{\boldsymbol{x}}'}}}( {{\boldsymbol{C}}_{2,x}^ \top {{\boldsymbol{\varXi }}_2}{{\boldsymbol{C}}_{2,x'}}} ) ] = [ {{\text{2}}\rho _1^2\eta _1^2 + \rho _1^2{\boldsymbol{\tilde I}}_1 + 2{\rho _1}{\boldsymbol{\tilde I}}_{12} + \eta _2^2 + {\boldsymbol{\tilde I}}_2} ] - [ {\rho _1^2( {2{\boldsymbol{I}}_1 + {{{\boldsymbol{I'}}}_1}} ) + 2{\rho _1}{\boldsymbol{I}}_{12} + {\boldsymbol{I}}_2 + {{{\boldsymbol{I'}}}_2}} ] \end{split} (33)

    式(31)~式(33)中 {{\boldsymbol{I}}_{1(2)}}, {{\boldsymbol{I'}}_{1(2)}}, {{\boldsymbol{I}}_{12}}, {{\boldsymbol{I}}_{i,1(2)}}, {{\boldsymbol{I'}}_{i,1(2)}}, {{\boldsymbol{I}}_{i,12}}, {{\boldsymbol{I}}_{ - i,1(2)}}, {{\boldsymbol{I'}}_{ - i,1(2)}}, {{\boldsymbol{I}}_{ - i,12}}, {{\boldsymbol{\tilde I}}_{1(2)}}, {{\boldsymbol{\tilde I}}_{12}} 的推导详见附录,在GC-GPM框架下,全局敏感性指标的高维积分可转化为一维积分,且可解析求出。将得到的 {\mathbb{E}_ * }\left( {{V_i}} \right) {\mathbb{E}_ * }\left( {{V_{ - i}}} \right) 和代入式(24)~式(25),可得到基于GC-GPM的全局敏感性指标解析表达式。

    四参数函数用来验证本文方法的可靠性。函数的高、低精度形式如下[14]

    {y_2}({\boldsymbol{x}}) = \frac{2}{3}\exp \left( {{x_1} + {x_2}} \right) - {x_4}\sin \left( {{x_3}} \right) + {x_3} (34)
    {y_1}({\boldsymbol{x}}) = 1.2\left[ {\frac{2}{3}\exp \left( {{x_1} + {x_2}} \right) - {x_4}\sin \left( {{x_3}} \right) + {x_3}} \right] - 1 (35)

    表1中列出四参数函数中4个不确定性参数的分布。分别采用45个低精度样本点和15个高精度样本点训练得到GC-GPM。在GC-GPM框架下,解析计算4个不确定性参数的一阶敏感性指标Si和全局敏感性指标STi

    表  1  四参数函数不确定性参数的统计特性
    Table  1.  Statistical characteristics of the uncertain parameters of Four-parameter function
    参数概率分布均值
    x1均匀分布 \mathcal{U}\left(0.9,1.1\right)
    x2均匀分布 \mathcal{U}\left(0.8,1.2\right)
    x3正态分布 \mathcal{N}\left( {1,0.10} \right)
    x4正态分布 \mathcal{N}\left( {1,0.15} \right)
    下载: 导出CSV 
    | 显示表格

    GC-GPM方法和MCS方法(3×106个高精度样本)的计算结果对比列于表2,其中GC-GPM方法计算时间为10.9 s,MCS方法计算时长为160.8 s。可看出基于GC-GPM方法的计算结果与MCS方法非常吻合,表明GC-GPM方法的全局敏感性计算精度高;此外,GC-GPM方法的计算时长仅为MCS方法的1/15,表明所提GC-GPM方法具有计算效率高的优势。以上结果表明,GC-GPM方法具有高精度高效率的优势。

    Borehole函数用来验证本文方法的可靠性。该函数描述了从地面穿过两个含水层的钻孔水流,函数的高、低精度形式如下[15]

    {y_2}({\boldsymbol{x}}) = \frac{{2\pi {T_{\rm u}}( {{H_{\rm u}} - {H_l}} )}}{{\ln ( {R/{R_{\rm w}}} )[ {1 + 2L{T_{\rm u}}/( {\ln ( {R/{R_{\rm w}}} )R_{\rm w}^2{K_{\rm w}}} ) + {T_{\rm u}}/{T_l}} ]}} (36)
    {y_1}({\boldsymbol{x}}) = \frac{{5\pi {T_u}( {{H_u} - {H_l}} )}}{{\ln ( {R/{R_w}} )[ {1.5 + 2L{T_u}/( {\ln ( {R/{R_w}} )R_w^2{K_w}} ) + {T_u}/{T_l}} ]}} (37)

    Borehole函数中各参数为:影响半径R=24 052 m,下层含水层的透射率Tl=89.55 m2/a,下含水层电位水头Hl=760 m,上层含水层电位水头Hu=1050 m,上部含水层的透射率Tu=89 355 m2/a,其余3个参数钻孔长度L、钻孔半径Rw、钻孔导水率Kw为不确定性参数,其统计分布特性见表3。分别采用40个低精度样本点和15个高精度样本点训练得到GC-GPM。在GC-GPM框架下,解析计算3个不确定性参数的一阶敏感性指标Si和全局敏感性指标STi

    表  2  GC-GPM和MCS计算结果对比 (四参数函数)
    Table  2.  Comparison of the GC-GPM and MCS (Four-parameter function)
    敏感性指标真实值MCS相对误差/(%)GC-GPM相对误差/(%)
    S10.19140.18851.53680.19542.1007
    S20.76410.75101.71170.75960.5946
    S30.00510.00500.86690.00510.2525
    S40.03670.03762.32340.03640.7751
    ST10.19400.19002.01590.19420.1040
    ST20.76660.75361.70050.75891.0063
    ST30.00520.00520.00910.00530.8207
    ST40.03690.03916.00570.03602.4731
    计算时间/s160.810.9
    下载: 导出CSV 
    | 显示表格
    表  3  Borehole函数不确定性参数的统计特性
    Table  3.  Statistical characteristics of the uncertain parameters of Borehole function
    参数概率分布均值上下限
    L/ m均匀分布1200[1120, 1280]
    Rw/ m均匀分布0.065[0.05, 0.08]
    Kw/(m/a)均匀分布10 000[9900, 11 000]
    下载: 导出CSV 
    | 显示表格

    GC-GPM方法和MCS方法(2×106个高精度样本)的计算结果对比列于表4,其中GC-GPM方法计算时间为25.3 s,MCS方法计算时长为146.1 s。可看出基于GC-GPM方法的计算结果与MCS方法非常吻合,表明GC-GPM方法的全局敏感性计算精度高;此外,GC-GPM方法的计算时长仅为MCS方法的1/6,表明所提GC-GPM方法具有计算效率高的优势。以上结果进一步表明,GC-GPM方法具有高精度高效率的优势。

    表  4  GC-GPM和MCS计算结果对比 (Borehole函数)
    Table  4.  Comparison of the GC-GPM and MCS (Borehole function)
    敏感性指标真实值MCS相对误差/(%)GC-GPM相对误差/(%)
    S10.02070.02022.41550.02080.4831
    S20.96390.96380.01040.96300.0934
    S30.01290.01188.52710.01280.7752
    ST10.02220.02172.25230.02303.6112
    ST20.96640.96710.07240.96640.0101
    ST30.01380.01352.17390.01433.4965
    计算时间/s146.125.3
    下载: 导出CSV 
    | 显示表格

    将本文所提方法应用于再分式板片组合空间网壳结构稳定性的全局敏感性分析。试验模型边长为3.27 m×3.27 m,网壳总高度1.1 m,支座设置在四个角点,通过加劲工字型梁固定于环梁,如图1所示。试验模型几何尺寸见图2。主结构采用双肢板片构件,再分单元构件为单肢板片构件,关于再分式板片组合空间网壳结构模型的更多细节,详见文献[16-17]。

    图  1  再分式板片组合空间网壳结构模型
    Figure  1.  Reticulated shell structure model composed of plate members

    使用ANSYS软件建立再分式板片组合空间网壳结构的有限元模型,如图2(a)所示。单肢板片构件(实心矩形截面)采用BEAM188单元模拟,双肢板片构件(空腹矩形截面)基于BEAM188单元进行改进,采用等效多层梁单元模拟双肢板片构件,更多建模细节详见文献[16]。

    高低精度有限元模型的区分在于装配式板式节点的模拟,高精度有限元模型考虑节点的半刚性性能,对节点建立精细化模型;而低精度有限元模型将节点简单地视为完全刚性节点。

    图  2  试验模型几何尺寸 /mm
    Figure  2.  Geometric dimensions of the experimental model

    在高精度有限元模型中,节点的半刚性性能通过图3所示的等效模型模拟,该模型由刚性节点域和两组非线性弹簧单元组成,其中 {k_v} {k_w} 为节点绕 v 轴和 w 轴的转动刚度。节点1和节点2(节点3和节点4)的平动自由度、绕 u 轴的转动自由度耦合,并通过ANSYS中的弹簧单元COMBIN39约束节点1和节点2(节点3和节点4)绕 v 轴和 w 轴的转动自由度。根据再分单元节点半刚性性能分析,再分单元节点刚度远小于主结构节点刚度,因此在整体结构将再分单元节点刚度简化为铰接。将弯矩转角曲线作为非线性弹簧单元的刚度参数输入到整体结构有限元模型中,模拟半刚性节点的网壳结构力学性能。

    图  3  半刚性节点模型
    Figure  3.  Semi-rigid joint model

    对于低精度有限元模型,将结构节点简化为完全刚性节点(节点1和节点2),装配式螺栓节点与双肢板片构件直接连接,不存在非线性弹簧单元,图4为刚性节点示意图。低精度有限元模型与高精度有限元模型相比减少了半刚性节点模型的建模过程。

    图  4  刚性节点
    Figure  4.  Semi-rigid joint

    再分式板片组合空间网壳结构的力学性能受到材料参数、几何参数等因素的影响。钢板构件弹性模量 E 、钢材密度 \rho 、主结构构件分肢板厚度 {d_1} 和再分单元构件板厚度 {d_2} 视为不确定性参数,其统计特性列于表5

    表  5  空间网格结构不确定性参数的统计特性
    Table  5.  Statistical characteristics of the uncertain parameters of reticulated shell structure.
    参数概率分布均值变异系数
    钢板构件弹性模量E/GPa正态分布2060.05
    钢材密度ρ/(kg·m−3)对数正态分布78500.05
    主结构构件分肢板厚度d1/mm均匀分布2.670.03
    再分单元构件板厚度d2/mm均匀分布3.520.03
    下载: 导出CSV 
    | 显示表格

    对该网壳结构的稳定性进行全局敏感性分析,屈曲模态可用来表征结构稳定性,将前4阶屈曲模态系数作为关注量(前4阶屈曲模态见图5)。基于4.2节建立的高低精度有限元模型建立GC-GPM,在GC-GPM框架内计算各参数的敏感性指标,结果列于表6。为更清晰地展示结果,图6给出了各参数敏感性指标的柱状图。

    图  5  空间网壳结构的屈曲模态
    Figure  5.  Buckling mode shapes of reticulated shell structure.
    表  6  空间网格结构参数的全局敏感性指标
    Table  6.  Global sensitivity index for parameters of reticulated shell structure.
    参数第一阶屈曲
    模态系数f1
    第二阶屈曲
    模态系数f2
    第三阶屈曲
    模态系数f3
    第四阶屈曲
    模态系数f4
    SiSTiSiSTiSiSTiSiSTi
    E0.01620.67050.01620.66840.01620.66870.01630.6677
    ρ0.01300.59640.01280.58920.01280.58890.01270.5837
    d10.07550.89720.07690.89810.07680.89800.07780.8984
    d20.00420.38950.00420.39240.00420.39230.00430.3940
    下载: 导出CSV 
    | 显示表格

    表6图6的敏感性指标结果可知,结构不确定性参数对屈曲模态系数的影响如下:

    1)对于前四阶屈曲模态系数,所有参数的一阶 {S_i} 和总敏感度指标 {S_{Ti}} 相差较大,说明参数间存在显著的相互作用。原因可能是该有限元模型所采用的等效多层梁单元,建模时需要对横向剪切刚度进行修正,而修正值同时受到了弹性模量与构件截面尺寸等设计参数的影响。

    图  6  空间网格结构参数的全局敏感性指标
    Figure  6.  Global sensitivity index for parameters of reticulated shell structure.

    2)前四阶屈曲模态系数受各参数的影响基本一致,主结构构件分肢板厚度 {d_1} 对该屈曲模态系数的影响最大;钢板构件弹性模量 E 的影响次之,然后是钢材密度 \rho ,再分单元构件板厚度 {d_2} 的影响最小(计算前八阶屈曲模态后,发现屈曲模态系数受各参数影响的规律相似,仅展示前四阶结果)。

    3)主结构构件分肢板厚度 {d_1} 高于再分单元构件板厚度 {d_2} 对该试验模型前四阶屈曲模态系数的影响,这是由于再分单元构件主要为主结构构件提供辅助支撑的作用,主结构构件截面尺寸对结构稳定性的影响更大。

    本文提出了基于广义协同高斯过程模型(GC-GCM)的结构全局敏感性分析解析方法,可有效兼顾计算效率与计算精度。在GC-GCM框架里,成功将全局敏感性指标的高维积分转化为一维积分,实现了解析计算。四参数函数和Borehole数学函数用来验证该方法的有效性,GC-GCM方法计算结果与蒙特卡洛方法结果非常吻合,且计算时间少,表明GC-GCM具有高精度高效率的优势。GC-GCM方法应用于一空间网壳结构稳定性的敏感性分析,基于敏感性分析结果可清楚反映各结构参数的敏感性(重要性)大小,发现参数间的耦合作用非常显著。本文所提出的解析方法可用于揭示参数不确定性对结构响应的影响机理,可为工程结构分析设计与优化等工作提供有价值的参考。

    附录:

    { {{\boldsymbol{I}}_{1(2)}}, {{\boldsymbol{I'}}_{1(2)}}, {{\boldsymbol{I}}_{12}}, {{\boldsymbol{I}}_{i,1(2)}}, {{\boldsymbol{I'}}_{i,1(2)}}, {{\boldsymbol{I}}_{i,12}}, {{\boldsymbol{I}}_{ - i,1(2)}}, {{\boldsymbol{I'}}_{ - i,1(2)}}, {{\boldsymbol{I}}_{ - i,12}}, {{\boldsymbol{\tilde I}}_{1(2)}}, {{\boldsymbol{\tilde I}}_{12}} }的表达式:

    {\boldsymbol{I}}_{1(2)}^{} = {\mathbb{E}_{{\boldsymbol{x}}{{\boldsymbol{x}}'}}}( {{{\tilde C}_{1(2)}}} ) = {\mathbb{E}_{{\boldsymbol{x}}{{\boldsymbol{x}}'}}}\left[ {{a_{1(2)}}\prod\limits_{k = 1}^d {{\mathcal{N}_{{x_k}}}( {x_k',l_{1(2),k}^2} )} } \right] = {a_{1(2)}}\prod\limits_{k = 1}^d {{\mathbb{E}_{{x_k}x_k'}}\left[ {{\mathcal{N}_{{x_k}}}( {x_k',l_{1(2),k}^2} )} \right]} = {a_{1(2)}}\prod\limits_{k = 1}^d {{{\tilde I}_{1(2),k}}} (A1)
    \begin{split} & {{{\boldsymbol{I'}}}_{1(2)}} = {\mathbb{E}_{{\boldsymbol{x}}{{\boldsymbol{x}}'}}}( {{\boldsymbol{C}}_{1(2),{\boldsymbol{x}}}^ \top {{\boldsymbol{\varXi }}_{1(2)}}{{\boldsymbol{C}}_{1(2),{\boldsymbol{x}}'}}} ) = {\mathbb{E}_{{\boldsymbol{x}}{{\boldsymbol{x}}'}}}\left[ {a_{1(2)}^2\sum\limits_{p = 1}^{{n_{1(2)}}} {\sum\limits_{q = 1}^{{n_{1(2)}}} {{\varXi _{1(2),pq}}} } \prod\limits_{k = 1}^d {{\mathcal{N}_{{x_k}}}( {x_{1(2),k}^p,l_{1(2),k}^2} ){\mathcal{N}_{x_k'}}( {x_{1(2),k}^q,l_{1(2),k}^2} )} } \right] = \\&\qquad a_{1(2)}^2\sum\limits_{p = 1}^{{n_{1(2)}}} {\sum\limits_{q = 1}^{{n_{1(2)}}} {{\varXi _{1(2),pq}}} } \prod\limits_{k = 1}^d {{\mathbb{E}_{{x_k}x_k'}}\left[ {{\mathcal{N}_{{x_k}}}( {x_{1(2),k}^p,l_{1(2),k}^2} ){\mathcal{N}_{x_k'}}( {x_{1(2),k}^q,l_{1(2),k}^2} )} \right]} = \\&\qquad a_{1(2)}^2\sum\limits_{p = 1}^{{n_{1(2)}}} {\sum\limits_{q = 1}^{{n_{1(2)}}} {{\varXi _{1(2),pq}}} } \prod\limits_{k = 1}^d {{\mathbb{E}_{{x_k}}}\left[ {{\mathcal{N}_{{x_k}}}( {x_{1(2),k}^p,l_{1(2),k}^2} )} \right]} {\mathbb{E}_{x_k'}}\left[ {{\mathcal{N}_{x_k'}}( {x_{1(2),k}^q,l_{1(2),k}^2} )} \right] = a_{1(2)}^2\sum\limits_{p = 1}^{{n_{1(2)}}} {\sum\limits_{q = 1}^{{n_{1(2)}}} {{\varXi _{1(2),pq}}} } \left( {\prod\limits_{k = 1}^d {I_{1(2),k}^pI_{1(2),k}^{'q}} } \right) \end{split} (A2)
    \begin{split} & {\boldsymbol{I}}_{12} = {\mathbb{E}_{{\boldsymbol{x}}{{\boldsymbol{x}}'}}}( {{\boldsymbol{C}}_{1,{\boldsymbol{x}}}^ \top {\boldsymbol{\alpha }}_1{\boldsymbol{\alpha }}_2^ \top {{\boldsymbol{C}}_{2,{\boldsymbol{x}}'}}} ) = {\mathbb{E}_{{\boldsymbol{x}}{{\boldsymbol{x}}'}}}\left[ {a_1a_2\sum\limits_{p = 1}^{{n_1}} {\sum\limits_{q = 1}^{{n_2}} {\alpha _{1,p}\alpha _{2,q}} } \prod\limits_{k = 1}^d {{\mathcal{N}_{x_k}}( {x_{1,k}^p,l_{1,k}^2} ){\mathcal{N}_{x_k'}}( {x_{2,k}^q,l_{2,k}^2} )} } \right] = \\&\qquad a_1a_2\sum\limits_{p = 1}^{{n_1}} {\sum\limits_{q = 1}^{{n_2}} {\alpha _{1,p}\alpha _{2,q}} } \prod\limits_{k = 1}^d {{\mathbb{E}_{{x_k}x_k'}}\left[ {{\mathcal{N}_{x_k}}( {x_{1,k}^p,l_{1,k}^2} ){\mathcal{N}_{x_k'}}( {x_{2,k}^q,l_{2,k}^2} )} \right]} = a_1a_2\sum\limits_{p = 1}^{{n_1}} {\sum\limits_{q = 1}^{{n_2}} {\alpha _{1,p}\alpha _{2,q}} } \left( {\prod\limits_{k = 1}^d {I_{1,k}^pI_{2,k}^{'q}} } \right) \end{split} (A3)
    {\boldsymbol{I}}_{i,1(2)}^{} = {\mathbb{E}_{{{\boldsymbol{x}}_i}}}\left[ {{\mathbb{E}_{{{\boldsymbol{x}}_{ - i}}{\boldsymbol{x}}_{_{ - i}}'}}\left( {{{\tilde C}_{1(2)}}} \right)} \right] = {\mathbb{E}_{{{\boldsymbol{x}}_i}}}\left[ {{\mathbb{E}_{{{\boldsymbol{x}}_{ - i}}{\boldsymbol{x}}_{_{ - i}}'}}\left[ {{a_{1(2)}}\prod\limits_{k = 1}^d {{\mathcal{N}_{{x_k}}}\left( {x_k',l_{1(2),k}^2} \right)} } \right]} \right] = {a_{1(2)}}\frac{1}{{\sqrt {2\pi } {l_{1(2),i}}}}\prod\limits_{k \ne i}^{} {{\mathbb{E}_{{x_k}x_k'}}\left[ {{\mathcal{N}_{{x_k}}}\left( {x_k',l_{1(2),k}^2} \right)} \right]} = {a_{1(2)}}\frac{1}{{\sqrt {2\pi } {l_{1(2),i}}}}\prod\limits_{k \ne i}^{} {{{\tilde I}_{1(2),k}}} (A4)
    \begin{split} & {{{\boldsymbol{I'}}}_{i,1(2)}} = {\mathbb{E}_{{{\boldsymbol{x}}_i}}}[ {{\mathbb{E}_{{{\boldsymbol{x}}_{ - i}}{\boldsymbol{x}}_{_{ - i}}'}}( {{\boldsymbol{C}}_{1,{\boldsymbol{x}}}^ \top {{\boldsymbol{\varXi }}_1}{{\boldsymbol{C}}_{1,{\boldsymbol{x}}'}}} )} ] = {\mathbb{E}_{{{\boldsymbol{x}}_i}}}\left\{ {{\mathbb{E}_{{{\boldsymbol{x}}_{ - i}}{\boldsymbol{x}}_{_{ - i}}'}}\left[ {a_{1(2)}^2\sum\limits_{p = 1}^{{n_{1(2)}}} {\sum\limits_{q = 1}^{{n_{1(2)}}} {{\varXi _{1(2),pq}}} } \prod\limits_{k = 1}^d {{\mathcal{N}_{{x_k}}}( {x_{1(2),k}^p,l_{1(2),k}^2} ){\mathcal{N}_{x_k'}}( {x_{1(2),k}^q,l_{1(2),k}^2} )} } \right]} \right\} =\\[-2pt] &\qquad a_{1(2)}^2\sum\limits_{p = 1}^{{n_{1(2)}}} {\sum\limits_{q = 1}^{{n_{1(2)}}} {{\varXi _{1(2),pq}}} } {\mathbb{E}_{{x_i}}}\left[ {{\mathcal{N}_{x_{1(2),i}^p}}( {x_{1(2),i}^q,2l_{1(2),i}^2} ){\mathcal{N}_{{x_i}}}\left( {\frac{{x_{1(2),i}^p + x_{1(2),i}^q}}{2},\frac{{l_{1(2),i}^2}}{2}} \right)} \right] \left\{ {\prod\limits_{k \ne i} {{\mathbb{E}_{{x_k}x_k'}}[ {{\mathcal{N}_{{x_k}}}( {x_{1(2),k}^p,l_{1(2),k}^2} ){\mathcal{N}_{x_k'}}( {x_{1(2),k}^q,l_{1(2),k}^2} )} ]} } \right\} =\\[-2pt] &\qquad a_{1(2)}^2\sum\limits_{p = 1}^{{n_{1(2)}}} {\sum\limits_{q = 1}^{{n_{1(2)}}} {{\varXi _{1(2),pq}}{\mathcal{N}_{x_{1(2),i}^p}}( {x_{1(2),i}^q,2l_{1(2),i}^2} ){\mathbb{E}_{{x_i}}}\left[ {{\mathcal{N}_{{x_i}}}\left( {\frac{{x_{1(2),i}^p + x_{1(2),i}^q}}{2},\frac{{l_{1(2),i}^2}}{2}} \right)} \right]} } \\[-2pt] &\qquad \left\{ {\prod\limits_{k \ne i} {{\mathbb{E}_{{x_k}x_k'}}[ {{\mathcal{N}_{{x_k}}}( {x_{1(2),k}^p,l_{1(2),k}^2} ){\mathcal{N}_{x_k'}}( {x_{1(2),k}^q,l_{1(2),k}^2} )} ]} } \right\} = a_{1(2)}^2\sum\limits_{p = 1}^{{n_{1(2)}}} {\sum\limits_{q = 1}^{{n_{1(2)}}} {{\varXi _{1(2),pq}}\left( {\prod\limits_{k \ne i} {I_{1(2),k}^pI_{1(2),k}^{'q}} } \right){\mathcal{N}_{x_{1,i}^p}}( {x_{1(2),i}^q,2l_{1(2),i}^2} )I_{1(2),i}^{pq}} } \end{split} (A5)
    \begin{split} & {\boldsymbol{I}}_{i,12} = {\mathbb{E}_{{{\boldsymbol{x}}_i}}}\left[ {{\mathbb{E}_{{{\boldsymbol{x}}_{ - i}}{\boldsymbol{x}}_{_{ - i}}'}}\left( {{\boldsymbol{C}}_{1,{\boldsymbol{x}}}^ \top {\boldsymbol{\alpha }}_1{\boldsymbol{\alpha }}_2^ \top {{\boldsymbol{C}}_{2,{\boldsymbol{x}}'}}} \right)} \right] = {\mathbb{E}_{{{\boldsymbol{x}}_i}}}\left\{ {{\mathbb{E}_{{{\boldsymbol{x}}_{ - i}}{\boldsymbol{x}}_{_{ - i}}'}}\left[ {a_1a_2\sum\limits_{p = 1}^{{n_1}} {\sum\limits_{q = 1}^{{n_2}} {\alpha _{1,p}\alpha _{2,q}} } \prod\limits_{k \ne i} {{\mathcal{N}_{x_k}}\left( {x_{1,k}^p,l_{1,k}^2} \right){\mathcal{N}_{x_k'}}\left( {x_{2,k}^q,l_{2,k}^2} \right)} } \right]} \right\} = \\[-2pt]&\qquad a_1a_2\sum\limits_{p = 1}^{{n_1}} {\sum\limits_{q = 1}^{{n_2}} {\alpha _{1,p}\alpha _{2,q}} } {\mathcal{N}_{x_{1,i}^p}}\left( {x_{2,i}^q,l_{1,i}^2 + l_{2,i}^2} \right){\mathbb{E}_{{x_i}}}\left[ {{\mathcal{N}_{x_i}}\left( {\frac{{x_{1,i}^pl_{2,i}^2 + x_{2,i}^ql_{1,i}^2}}{{l_{1,i}^2 + l_{2,i}^2}},\frac{{l_{1,i}^2l_{2,i}^2}}{{l_{1,i}^2 + l_{2,i}^2}}} \right)} \right] \left\{ {\prod\limits_{k \ne i} {{\mathbb{E}_{{x_k}x_k'}}\left[ {{\mathcal{N}_{x_k}}\left( {x_{1,k}^p,l_{1,k}^2} \right){\mathcal{N}_{x_k'}}\left( {x_{2,k}^q,l_{2,k}^2} \right)} \right]} } \right\} = \\[-2pt]&\qquad a_1a_2\sum\limits_{p = 1}^{{n_1}} {\sum\limits_{q = 1}^{{n_2}} {\alpha _{1,p}\alpha _{2,q}} } {\mathcal{N}_{x_{1,i}^p}}\left( {x_{2,i}^q,l_{1,i}^2 + l_{2,i}^2} \right)I_{12,i}^{pq}\left( {\prod\limits_{k \ne i} {I_{1,k}^pI_{2,k}^{'q}} } \right) \end{split} (A6)
    {\boldsymbol{I}}_{ - i,1(2)}^{} = {\mathbb{E}_{{{\boldsymbol{x}}_{ - i}}}}\left[ {{\mathbb{E}_{{{\boldsymbol{x}}_i}{\boldsymbol{x}}_{_i}'}}\left( {{{\tilde C}_{1(2)}}} \right)} \right] = {\mathbb{E}_{{{\boldsymbol{x}}_{ - i}}}}\left[ {{\mathbb{E}_{{{\boldsymbol{x}}_i}{\boldsymbol{x}}_{_i}'}}\left[ {{a_{1(2)}}\prod\limits_{k = 1}^d {{\mathcal{N}_{{x_k}}}\left( {x_k',l_{1(2),k}^2} \right)} } \right]} \right] = {a_{1(2)}}{\mathbb{E}_{{x_i}x_i'}}\left[ {{\mathcal{N}_{{x_i}}}\left( {x_i',l_{1(2),i}^2} \right)} \right]\left( {\prod\limits_{k \ne i}^{} {\frac{1}{{\sqrt {2\pi } {l_{1(2),k}}}}} } \right) = {a_{1(2)}}{{\tilde I}_{1(2),i}}\left( {\prod\limits_{k \ne i}^{} {\frac{1}{{\sqrt {2\pi } {l_{1(2),k}}}}} } \right) (A7)
    \begin{split} & {{{\boldsymbol{I'}}}_{ - i,1(2)}} = {\mathbb{E}_{{{\boldsymbol{x}}_{ - i}}}}\left[ {{\mathbb{E}_{{{\boldsymbol{x}}_i}{\boldsymbol{x}}_{i}'}}\left( {{\boldsymbol{C}}_{1(2),{\boldsymbol{x}}}^ \top {{\boldsymbol{\varXi }}_{1(2)}}{{\boldsymbol{C}}_{1(2),{\boldsymbol{x}}'}}} \right)} \right] = {\mathbb{E}_{{{\boldsymbol{x}}_{ - i}}}}\left[ {{\mathbb{E}_{{{\boldsymbol{x}}_i}{\boldsymbol{x}}_{i}'}}\left[ {a_{1(2)}^2\sum\limits_{p = 1}^{{n_{1(2)}}} {\sum\limits_{q = 1}^{{n_{1(2)}}} {{\varXi _{1(2),pq}}} } \prod\limits_{k = 1}^d {{\mathcal{N}_{{x_k}}}\left( {x_{1(2),k}^p,l_{1(2),k}^2} \right){\mathcal{N}_{x_k'}}\left( {x_{1(2),k}^q,l_{1(2),k}^2} \right)} } \right]} \right] = \\[-2pt]&\qquad a_{1(2)}^2\sum\limits_{p = 1}^{{n_{1(2)}}} {\sum\limits_{q = 1}^{{n_{1(2)}}} {{\varXi _{1(2),pq}}} } {\mathbb{E}_{{x_i}x_i'}}\left[ {{\mathcal{N}_{{x_i}}}\left( {x_{1(2),i}^p,l_{1(2),i}^2} \right){\mathcal{N}_{x_i'}}\left( {x_{1(2),i}^q,l_{1(2),i}^2} \right)} \right] \left\{ {\prod\limits_{k \ne i}^{} {{\mathbb{E}_{{x_k}}}\left[ {{\mathcal{N}_{x_{1(2),k}^p}}\left( {x_{1(2),k}^q,2l_{1(2),k}^2} \right){\mathcal{N}_{{x_k}}}\left( {\frac{{x_{1(2),k}^p + x_{1(2),k}^q}}{2},\frac{{l_{1(2),k}^2}}{2}} \right)} \right]} } \right\} = \\[-2pt]&\qquad a_{1(2)}^2\sum\limits_{p = 1}^{{n_{1(2)}}} {\sum\limits_{q = 1}^{{n_{1(2)}}} {{\varXi _{1(2),pq}}} } {\mathbb{E}_{{x_i}x_i'}}\left[ {{\mathcal{N}_{{x_i}}}\left( {x_{1(2),i}^p,l_{1(2),i}^2} \right){\mathcal{N}_{x_i'}}\left( {x_{1(2),i}^q,l_{1(2),i}^2} \right)} \right] \left\{ {\prod\limits_{k \ne i}^{} {{\mathcal{N}_{x_{1(2),k}^p}}\left( {x_{1(2),k}^q,2l_{1(2),k}^2} \right){\mathbb{E}_{{x_k}}}\left[ {{\mathcal{N}_{{x_k}}}\left( {\frac{{x_{1(2),k}^p + x_{1(2),k}^q}}{2},\frac{{l_{1(2),k}^2}}{2}} \right)} \right]} } \right\} = \\[-2pt]&\qquad a_{1(2)}^2\sum\limits_{p = 1}^{{n_{1(2)}}} {\sum\limits_{q = 1}^{{n_{1(2)}}} {{\varXi _{1(2),pq}}I_{1(2),i}^pI_{1(2),i}^{'q}\prod\limits_{k \ne i}^{} {{\mathcal{N}_{x_{1(2),k}^p}}\left( {x_{1(2),k}^q,2l_{1(2),k}^2} \right)I_{1(2),k}^{pq}} } } \end{split} (A8)
    \begin{split} & {\boldsymbol{I}}_{ - i,12} = {\mathbb{E}_{{{\boldsymbol{x}}_{ - i}}}}\left[ {{\mathbb{E}_{{{\boldsymbol{x}}_i}{\boldsymbol{x}}_{_i}'}}\left( {{\boldsymbol{C}}_{1,{\boldsymbol{x}}}^ \top {\boldsymbol{\alpha }}_1 {\boldsymbol{\alpha }}_2^ \top {{\boldsymbol{C}}_{2,{\boldsymbol{x}}'}}} \right)} \right] = {\mathbb{E}_{{{\boldsymbol{x}}_{ - i}}}}\left\{ {{\mathbb{E}_{{{\boldsymbol{x}}_i}{\boldsymbol{x}}_{_i}'}}\left[ {a_1 a_2 \sum\limits_{p = 1}^{{n_1}} {\sum\limits_{q = 1}^{{n_2}} {\alpha _{1,p} \alpha _{2,q} {\mathcal{N}_{x_i }}\left( {x_{1,i}^p,l_{1,i}^2} \right){\mathcal{N}_{x_i'}}\left( {x_{2,i}^q,l_{2,i}^2} \right)} } } \right]} \right\} =\\[-2pt]&\qquad a_1 a_2 \sum\limits_{p = 1}^{{n_1}} {\sum\limits_{q = 1}^{{n_2}} {\alpha _{1,p} \alpha _{2,q} } {\mathbb{E}_{{x_i}x_i'}}\left[ {{\mathcal{N}_{x_i }}\left( {x_{1,i}^p,l_{1,i}^2} \right){\mathcal{N}_{x_i'}}\left( {x_{2,i}^q,l_{2,i}^2} \right)} \right]} \left\{ {\prod\limits_{k \ne i}^d {{\mathcal{N}_{x_{1,k}^p}}\left( {x_{2,k}^q,l_{1,k}^2 + l_{2,k}^2} \right){\mathbb{E}_{{x_k}}}\left[ {{\mathcal{N}_{x_k }}\left( {\frac{{x_{1,k}^pl_{2,k}^2 + x_{2,k}^ql_{1,k}^2}}{{l_{1,k}^2 + l_{2,k}^2}},\frac{{l_{1,k}^2l_{2,k}^2}}{{l_{1,k}^2 + l_{2,k}^2}}} \right)} \right]} } \right\} = \\[-2pt]&\qquad a_1 a_2 \sum\limits_{p = 1}^{{n_1}} {\sum\limits_{q = 1}^{{n_2}} {\alpha _{1,p} \alpha _{2,q} I_{1,i}^pI_{2,i}^{'q}} } \left( {\prod\limits_{k \ne i} {{\mathcal{N}_{x_{1,k}^p}}\left( {x_{2,k}^q,l_{1,k}^2 + l_{2,k}^2} \right)I_{12,k}^{pq}} } \right) \end{split} (A9)
    \begin{split} & {{{\boldsymbol{\tilde I}}}_{1(2)}} = {\mathbb{E}_{\boldsymbol{x}}}\left( {{\boldsymbol{C}}_{1(2),{\boldsymbol{x}}}^ \top {{\boldsymbol{\varXi }}_{1(2)}}{{\boldsymbol{C}}_{1(2),{\boldsymbol{x}}}}} \right) = {\mathbb{E}_{\boldsymbol{x}}}\left[ {a_{1(2)}^2\sum\limits_{p = 1}^{{n_{1(2)}}} {\sum\limits_{q = 1}^{{n_{1(2)}}} {{\varXi _{1(2),pq}}} } \prod\limits_{k = 1}^d {{\mathcal{N}_{{x_k}}}\left( {x_{1(2),k}^p,l_{1(2),k}^2} \right){\mathcal{N}_{x_k^{}}}\left( {x_{1(2),k}^q,l_{1(2),k}^2} \right)} } \right] = \\&\qquad a_{1(2)}^2\sum\limits_{p = 1}^{{n_{1(2)}}} {\sum\limits_{j = 1}^{{n_{1(2)}}} {{\varXi _{1(2),pq}}} } \prod\limits_{k = 1}^d {{\mathbb{E}_{{x_k}}}\left[ {{\mathcal{N}_{{x_k}}}\left( {x_{1(2),k}^p,l_{1(2),k}^2} \right){\mathcal{N}_{x_k^{}}}\left( {x_{1(2),k}^q,l_{1(2),k}^2} \right)} \right]} = \\&\qquad a_{1(2)}^2\sum\limits_{p = 1}^{{n_{1(2)}}} {\sum\limits_{q = 1}^{{n_{1(2)}}} {{\varXi _{1(2),pq}}} } \prod\limits_{k = 1}^d {{\mathbb{E}_{{x_k}}}\left[ {{\mathcal{N}_{x_{1(2),k}^p}}\left( {x_{1(2),k}^q,2l_{1(2),k}^2} \right){\mathcal{N}_{{x_k}}}\left( {\frac{{x_{1(2),k}^p + x_{1(2),k}^q}}{2},\frac{{l_{1(2),k}^2}}{2}} \right)} \right]} =\\&\qquad a_{1(2)}^2\sum\limits_{p = 1}^{{n_{1(2)}}} {\sum\limits_{q = 1}^{{n_{1(2)}}} {{\varXi _{1(2),pq}}} } \prod\limits_{k = 1}^d {{\mathcal{N}_{x_{1(2),k}^p}}\left( {x_{1(2),k}^q,2l_{1(2),k}^2} \right){\mathbb{E}_{{x_k}}}\left[ {{\mathcal{N}_{{x_k}}}\left( {\frac{{x_{1(2),k}^p + x_{1(2),k}^q}}{2},\frac{{l_{1(2),k}^2}}{2}} \right)} \right]} = a_{1(2)}^2\sum\limits_{p = 1}^{{n_{1(2)}}} {\sum\limits_{q = 1}^{{n_{1(2)}}} {{\varXi _{1(2),pq}}\prod\limits_{k = 1}^d {{\mathcal{N}_{x_{1(2),k}^p}}\left( {x_{1(2),k}^q,2l_{1(2),k}^2} \right)I_{1(2),k}^{pq}} } } \end{split} (A10)
    \begin{split} & {{{\boldsymbol{\tilde I}}}_{12}} = {\mathbb{E}_{\boldsymbol{x}}}\left( {{\boldsymbol{C}}_{1,{\boldsymbol{x}}}^ \top {\boldsymbol{\alpha }}_1^{}{\boldsymbol{\alpha }}_2^ \top {{\boldsymbol{C}}_{2,{\boldsymbol{x}}}}} \right) = {\mathbb{E}_{\boldsymbol{x}}}\left[ {a_1^{}a_2^{}\sum\limits_{p = 1}^{{n_1}} {\sum\limits_{q = 1}^{{n_2}} {\alpha _{1,p}^{}\alpha _{2,q}^{}} } \prod\limits_{k = 1}^d {{\mathcal{N}_{{x_k}}}\left( {x_{1,k}^p,l_{1,k}^2} \right){\mathcal{N}_{{x_k}}}\left( {x_{2,k}^q,l_{2,k}^2} \right)} } \right] = \\&\qquad a_1^{}a_2^{}\sum\limits_{p = 1}^{{n_1}} {\sum\limits_{q = 1}^{{n_2}} {\alpha _{1,p}^{}\alpha _{2,q}^{}} } \prod\limits_{k = 1}^d {{\mathbb{E}_{{x_k}}}\left[ {{\mathcal{N}_{{x_k}}}\left( {x_{1,k}^p,l_{1,k}^2} \right){\mathcal{N}_{{x_k}}}\left( {x_{2,k}^q,l_{2,k}^2} \right)} \right]} = \\&\qquad a_1^{}a_2^{}\sum\limits_{p = 1}^{{n_1}} {\sum\limits_{q = 1}^{{n_2}} {\alpha _{1,p}^{}\alpha _{2,q}^{}} } \prod\limits_{k = 1}^d {{\mathbb{E}_{{x_k}}}\left[ {{\mathcal{N}_{x_{1,k}^p}}\left( {x_{2,k}^q,l_{1,k}^2 + l_{2,k}^2} \right){\mathcal{N}_{x_k^{}}}\left( {\frac{{x_{1,k}^pl_{2,k}^2 + x_{2,k}^ql_{1,k}^2}}{{l_{1,k}^2 + l_{2,k}^2}},\frac{{l_{1,k}^2l_{2,k}^2}}{{l_{1,k}^2 + l_{2,k}^2}}} \right)} \right]} = \\&\qquad a_1^{}a_2^{}\sum\limits_{p = 1}^{{n_1}} {\sum\limits_{q = 1}^{{n_2}} {\alpha _{1,p}^{}\alpha _{2,q}^{}} } \prod\limits_{k = 1}^d {{\mathcal{N}_{x_{1,k}^p}}\left( {x_{2,k}^q,l_{1,k}^2 + l_{2,k}^2} \right){\mathbb{E}_{{x_k}}}\left[ {{\mathcal{N}_{x_k^{}}}\left( {\frac{{x_{1,k}^pl_{2,k}^2 + x_{2,k}^ql_{1,k}^2}}{{l_{1,k}^2 + l_{2,k}^2}},\frac{{l_{1,k}^2l_{2,k}^2}}{{l_{1,k}^2 + l_{2,k}^2}}} \right)} \right]} = a_1^{}a_2^{}\sum\limits_{p = 1}^{{n_1}} {\sum\limits_{q = 1}^{{n_2}} {\alpha _{1,p}^{}\alpha _{2,q}^{}} } \prod\limits_{k = 1}^d {{\mathcal{N}_{x_{1,k}^p}}\left( {x_{2,k}^q,l_{1,k}^2 + l_{2,k}^2} \right)I_{12,k}^{pq}} \end{split} (A11)

    式(A1)~式(A11)的一维积分 I_{1(2),k(i)}^{p(q)} I_{1(2),k(i)}^{pq} 和二维积分 {\tilde I_{1(2),k(i)}} 可解析计算出,具体方法详见文献[12]。

  • 图  1   再分式板片组合空间网壳结构模型

    Figure  1.   Reticulated shell structure model composed of plate members

    图  2   试验模型几何尺寸 /mm

    Figure  2.   Geometric dimensions of the experimental model

    图  3   半刚性节点模型

    Figure  3.   Semi-rigid joint model

    图  4   刚性节点

    Figure  4.   Semi-rigid joint

    图  5   空间网壳结构的屈曲模态

    Figure  5.   Buckling mode shapes of reticulated shell structure.

    图  6   空间网格结构参数的全局敏感性指标

    Figure  6.   Global sensitivity index for parameters of reticulated shell structure.

    表  1   四参数函数不确定性参数的统计特性

    Table  1   Statistical characteristics of the uncertain parameters of Four-parameter function

    参数概率分布均值
    x1均匀分布 \mathcal{U}\left(0.9,1.1\right)
    x2均匀分布 \mathcal{U}\left(0.8,1.2\right)
    x3正态分布 \mathcal{N}\left( {1,0.10} \right)
    x4正态分布 \mathcal{N}\left( {1,0.15} \right)
    下载: 导出CSV

    表  2   GC-GPM和MCS计算结果对比 (四参数函数)

    Table  2   Comparison of the GC-GPM and MCS (Four-parameter function)

    敏感性指标真实值MCS相对误差/(%)GC-GPM相对误差/(%)
    S10.19140.18851.53680.19542.1007
    S20.76410.75101.71170.75960.5946
    S30.00510.00500.86690.00510.2525
    S40.03670.03762.32340.03640.7751
    ST10.19400.19002.01590.19420.1040
    ST20.76660.75361.70050.75891.0063
    ST30.00520.00520.00910.00530.8207
    ST40.03690.03916.00570.03602.4731
    计算时间/s160.810.9
    下载: 导出CSV

    表  3   Borehole函数不确定性参数的统计特性

    Table  3   Statistical characteristics of the uncertain parameters of Borehole function

    参数概率分布均值上下限
    L/ m均匀分布1200[1120, 1280]
    Rw/ m均匀分布0.065[0.05, 0.08]
    Kw/(m/a)均匀分布10 000[9900, 11 000]
    下载: 导出CSV

    表  4   GC-GPM和MCS计算结果对比 (Borehole函数)

    Table  4   Comparison of the GC-GPM and MCS (Borehole function)

    敏感性指标真实值MCS相对误差/(%)GC-GPM相对误差/(%)
    S10.02070.02022.41550.02080.4831
    S20.96390.96380.01040.96300.0934
    S30.01290.01188.52710.01280.7752
    ST10.02220.02172.25230.02303.6112
    ST20.96640.96710.07240.96640.0101
    ST30.01380.01352.17390.01433.4965
    计算时间/s146.125.3
    下载: 导出CSV

    表  5   空间网格结构不确定性参数的统计特性

    Table  5   Statistical characteristics of the uncertain parameters of reticulated shell structure.

    参数概率分布均值变异系数
    钢板构件弹性模量E/GPa正态分布2060.05
    钢材密度ρ/(kg·m−3)对数正态分布78500.05
    主结构构件分肢板厚度d1/mm均匀分布2.670.03
    再分单元构件板厚度d2/mm均匀分布3.520.03
    下载: 导出CSV

    表  6   空间网格结构参数的全局敏感性指标

    Table  6   Global sensitivity index for parameters of reticulated shell structure.

    参数第一阶屈曲
    模态系数f1
    第二阶屈曲
    模态系数f2
    第三阶屈曲
    模态系数f3
    第四阶屈曲
    模态系数f4
    SiSTiSiSTiSiSTiSiSTi
    E0.01620.67050.01620.66840.01620.66870.01630.6677
    ρ0.01300.59640.01280.58920.01280.58890.01270.5837
    d10.07550.89720.07690.89810.07680.89800.07780.8984
    d20.00420.38950.00420.39240.00420.39230.00430.3940
    下载: 导出CSV
  • [1] 翁梦秀, 雷鹰. 考虑不确定性的结构损伤概率分析[J]. 工程力学, 2016, 33(增刊 1): 29 − 32. doi: 10.6052/j.issn.1000-4750.2015.05.S004

    WENG Mengxiu, LEI Ying. Probability analysis of structure damage identification including system uncertainty [J]. Engineering Mechanics, 2016, 33(Suppl 1): 29 − 32. (in Chinese) doi: 10.6052/j.issn.1000-4750.2015.05.S004

    [2] 万志强, 陈建兵. 数据稀缺与更新条件下基于概率密度演化-测度变换的认知不确定性量化分析[J]. 工程力学, 2020, 37(1): 34 − 42. doi: 10.6052/j.issn.1000-4750.2019.02.0047

    WAN Zhiqiang, CHEN Jianbing. Quantification of epistemic uncertainty due to data sparsity and updating based on the framework via synthesizing probability density evolution method and change of probability measure [J]. Engineering Mechanics, 2020, 37(1): 34 − 42. (in Chinese) doi: 10.6052/j.issn.1000-4750.2019.02.0047

    [3] 谷慧, 李全旺, 侯冠杰. 碳化环境下混凝土结构耐久性模型的更新方法[J]. 工程力学, 2021, 38(5): 113 − 121. doi: 10.6052/j.issn.1000-4750.2020.06.0361

    GU Hui, LI Quanwang, HOU Guanjie. Updating method for durability models of concrete structures in carbonation environment [J]. Engineering Mechanics, 2021, 38(5): 113 − 121. (in Chinese) doi: 10.6052/j.issn.1000-4750.2020.06.0361

    [4] 韩旭, 向活跃, 李永乐. 考虑参数不确定性的列车-桥梁垂向耦合振动的PC-ARMAX代理模型研究[J]. 工程力学, 2021, 38(11): 180 − 188. doi: 10.6052/j.issn.1000-4750.2020.11.0812

    HAN Xu, XIANG Huoyue, LI Yongle. Coupled vibration of vertical random vehicle-bridge system considering parameter uncertainty based on PC-ARMAX model [J]. Engineering Mechanics, 2021, 38(11): 180 − 188. (in Chinese) doi: 10.6052/j.issn.1000-4750.2020.11.0812

    [5]

    PRADLWARTER H J, SCHUËLLER G I. On advanced Monte Carlo simulation procedures in stochastic structural dynamics [J]. International Journal of Non-Linear Mechanics, 1997, 32(4): 735 − 744. doi: 10.1016/S0020-7462(96)00091-1

    [6]

    WAN H P, REN W X. Parameter selection in finite-element-model updating by global sensitivity analysis using Gaussian process metamodel [J]. Journal of Structural Engineering, 2015, 141(6): 4014164. doi: 10.1061/(ASCE)ST.1943-541X.0001108

    [7] 罗琪, 何敏娟, 李征. 基于高斯过程的钢-木混合结构刚度比全局敏感性分析[J]. 土木工程学报, 2021, 54(8): 56 − 66. doi: 10.15951/j.tmgcxb.2021.08.007

    LUO Qi, HE Minjuan, LI Zheng. Global sensitivity analysis of wall-to-frame stiffness ratio of timber-steel hybrid structure based on Gaussian-process [J]. China civil engineering journal, 2021, 54(8): 56 − 66. (in Chinese) doi: 10.15951/j.tmgcxb.2021.08.007

    [8]

    LIU F C, WEI P F, TANG C H, et al. Global sensitivity analysis for multivariate outputs based on multiple response Gaussian process model [J]. Reliability Engineering & System Safety, 2019, 189: 287 − 298.

    [9] 万华平, 张梓楠, 葛荟斌, 等. 基于广义协同高斯过程模型的结构不确定性量化解析方法[J]. 工程力学, 2023, 40(3): 107 − 116. doi: 10.6052/j.issn.1000-4750.2021.09.0700

    WAN Huaping, ZHANG Zinan, GE Huibin, et al. Analytical approach for structural uncertainty quantification based on generalized co-Gaussian process model [J]. Engineering Mechanics, 2023, 40(3): 107 − 116. (in Chinese) doi: 10.6052/j.issn.1000-4750.2021.09.0700

    [10]

    WAN H P, ZHANG Z N, LUO Y Z, et al. Analytical uncertainty quantification approach based on adaptive generalized co-Gaussian process model [J]. International Journal for Numerical Methods in Engineering, 2022, 123(24): 6032 − 6051. doi: 10.1002/nme.7102

    [11]

    SOBOL I M. Sensitivity estimates for nonlinear mathematical models [J]. Mathematical Modelling and Computational Experiments, 1993, 1(4): 407 − 414.

    [12]

    WAN H P, TODD M D, REN W X. Statistical framework for sensitivity analysis of structural dynamic characteristics [J]. Journal of Engineering Mechanics, 2017, 143(9): 4017093. doi: 10.1061/(ASCE)EM.1943-7889.0001314

    [13]

    OAKLEY J E, O'HAGAN A. Probabilistic sensitivity analysis of complex models: A Bayesian approach [J]. Journal of the Royal Statistical Society:Series B (Statistical Methodology), 2004, 66(3): 751 − 769. doi: 10.1111/j.1467-9868.2004.05304.x

    [14]

    LI X M, WANG X, XIONG S F. A sequential design strategy for integrating low-accuracy and high-accuracy computer experiments [J]. Communications in Statistics-Simulation and Computation, 2023, 52(3): 817 − 824. doi: 10.1080/03610918.2020.1870692

    [15]

    XIONG S F, QIAN P Z G, WU C F J. Sequential design and analysis of high-accuracy and low-accuracy computer codes [J]. Technometrics, 2013, 55(1): 37 − 46. doi: 10.1080/00401706.2012.723572

    [16]

    GE H B, WAN H P, ZHENG Y F, et al. Experimental and numerical study on stability behavior of reticulated shell composed of plate members [J]. Journal of Constructional Steel Research, 2020, 171: 106102. doi: 10.1016/j.jcsr.2020.106102

    [17]

    GE H B, WAN H P, LUO Y Z. Experimental investigation into flexural buckling of double-limb built-up plate members under compression [J]. Journal of Constructional Steel Research, 2021, 179: 106516. doi: 10.1016/j.jcsr.2020.106516

图(6)  /  表(6)
计量
  • 文章访问数:  158
  • HTML全文浏览量:  14
  • PDF下载量:  39
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-02-08
  • 修回日期:  2023-05-11
  • 网络出版日期:  2023-06-01

目录

/

返回文章
返回