留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

PVC-CFRP管混凝土柱-钢筋混凝土环梁T型节点拟静力试验与弯矩-曲率恢复力模型研究

于峰 方圆 李子龙 秦尹 陈颖

于峰, 方圆, 李子龙, 秦尹, 陈颖. PVC-CFRP管混凝土柱-钢筋混凝土环梁T型节点拟静力试验与弯矩-曲率恢复力模型研究[J]. 工程力学, 2023, 40(6): 158-171. doi: 10.6052/j.issn.1000-4750.2021.11.0892
引用本文: 于峰, 方圆, 李子龙, 秦尹, 陈颖. PVC-CFRP管混凝土柱-钢筋混凝土环梁T型节点拟静力试验与弯矩-曲率恢复力模型研究[J]. 工程力学, 2023, 40(6): 158-171. doi: 10.6052/j.issn.1000-4750.2021.11.0892
YU Feng, FANG Yuan, LI Zi-long, QIN Yin, CHEN Ying. PSEUDO-STATIC TEST AND MOMENT-CURVATURE HYSTERTIC MODEL OF PVC-CFRP CONFINED COLUMN-RC RING BEAM EXTERIOR JOINT[J]. Engineering Mechanics, 2023, 40(6): 158-171. doi: 10.6052/j.issn.1000-4750.2021.11.0892
Citation: YU Feng, FANG Yuan, LI Zi-long, QIN Yin, CHEN Ying. PSEUDO-STATIC TEST AND MOMENT-CURVATURE HYSTERTIC MODEL OF PVC-CFRP CONFINED COLUMN-RC RING BEAM EXTERIOR JOINT[J]. Engineering Mechanics, 2023, 40(6): 158-171. doi: 10.6052/j.issn.1000-4750.2021.11.0892

PVC-CFRP管混凝土柱-钢筋混凝土环梁T型节点拟静力试验与弯矩-曲率恢复力模型研究

doi: 10.6052/j.issn.1000-4750.2021.11.0892
基金项目: 国家自然科学基金项目(51878002,51578001,52078001);安徽省杰出青年基金项目(2008085J29);安徽省高校自然科学研究重点项目(KJ2020A0234,KJ2020A0261);安徽省协同创新项目(GXXT-2019-005)
详细信息
    作者简介:

    方 圆(1986−),男,安徽安庆人,讲师,博士生,从事新型组合结构、纤维增强复合材料的应用研究 (E-mail: fyuan86@126.com)

    李子龙(1995−),男,安徽马鞍山人,硕士,从事新型组合结构研究 (E-mail: 708911028@qq.com)

    秦 尹(1999−),女,安徽淮南人,博士生,从事新型组合结构、纤维增强复合材料的应用研究 (E-mail: 1002430707@qq.com)

    陈 颖(1998−),男,安徽安庆人,硕士生,从事新型组合结构研究 (E-mail: 3109933670@qq.com)

    通讯作者:

    于 峰(1980−),男,安徽宿州人,教授,博士,主要从事新型组合结构、纤维增强复合材料的应用研究(E-mail: yufeng2007@126.com)

  • 中图分类号: TU398+.9

PSEUDO-STATIC TEST AND MOMENT-CURVATURE HYSTERTIC MODEL OF PVC-CFRP CONFINED COLUMN-RC RING BEAM EXTERIOR JOINT

  • 摘要: 开展11根PVC-CFRP管钢筋混凝土柱-钢筋混凝土环梁T型节点低周反复加载试验,分析环梁尺寸、环筋配筋率、CFRP条带间距、梁纵筋配筋率、轴压比等因素对其破坏形态、滞回性能、骨架曲线等影响。结果表明:节点破坏经历初裂、通裂、极限和破坏四个阶段,节点的弯矩-曲率滞回曲线包括弹性段、弹塑性段和平稳段,节点滞回环饱满,显示出良好的抗震性能。基于软化混凝土本构关系模型,考虑各因素对骨架曲线特征点的影响,提出骨架曲线特征点简化计算公式。基于退化三线型恢复力模型,给出卸载刚度计算公式,提出节点滞回规则,建立预测精度较高的环梁节点弯矩-曲率恢复力模型。
  • 图  1  试件尺寸和配筋[24]

    Figure  1.  Size and reinforcement of specimens[24]

    图  2  试验加载装置及测试仪器布置[24]

    Figure  2.  Test loading device and measurement instrument layout[24]

    图  3  试件位移计布置与混凝土、CFRP条带应变片布置[24]

    Figure  3.  Displacement meter arrangement of specimen and strain gauge arrangement of concrete and CFRP strips[24]

    图  4  环形钢筋及其箍筋应变片布置[24]

    Figure  4.  Strain gauge arrangement of ring reinforcement and stirrups[24]

    图  5  柱与梁的钢筋应变片布置[24]

    Figure  5.  Reinforcement strain gauge arrangement of columns and beams[24]

    图  6  环梁节点典型破坏形态[24]

    Figure  6.  Typical failure modes of the ring beam joints[24]

    图  7  环梁节点弯矩-曲率滞回曲线

    Figure  7.  Moment-curvature hysteretic curves of ring beam joints

    图  8  各因素对弯矩-曲率骨架曲线的影响

    Figure  8.  Influence of various factors on moment-curvature skeleton curves

    图  9  试件规格化骨架曲线

    Figure  9.  Normalized skeleton curves of specimens

    图  10  环梁节点弯矩-曲率骨架曲线计算值和试验值比较

    Figure  10.  Comparison between calculated and experimental results of moment-curvature skeleton curve of ring beam joints

    图  11  环梁节点弯矩-曲率关系滞回规则

    Figure  11.  Hysteretic rule of moment-curvature relationship for the ring beam joints

    图  12  环梁节点恢复力模型计算值和试验值对比

    Figure  12.  Comparison between the calculated and experimental values of restoring force model for ring beam joints

    表  1  环梁节点试验参数

    Table  1.   Experimental parameters of ring beam joints

    试件编号环梁尺寸b×h /mmCFRP条带层数$ {n_{\text{f}}} $/间距$s_{\text{f} }'$/mm环筋配筋率$ {\rho _{\text{r}}} $梁纵筋配筋率$ {\rho _{\text{b} }} $/(%)轴压比n
    S1100×3402/401.51%(410/48)2.17(420)0.2
    S2100×3402/401.27%(48/48)2.17(420)0.2
    S3100×3402/400.98%(48/46.5)2.17(420)0.2
    S4100×3402/200.98%(48/46.5)2.17(420)0.2
    S5100×3402/600.98%(48/46.5)2.17(420)0.2
    S6100×3402/401.51%(410/48)1.76(318)0.2
    S7125×3402/401.05%(410/46.5)2.17(420)0.2
    S875×3402/401.04%(46.5/46.5)2.17(420)0.2
    S9100×3402/401.51%(410/48)1.39(316)0.2
    S10100×3400.98%(48/46.5)2.17(420)0.2
    S11100×3402/400.98%(48/46.5)2.17(420)0.4
    注:1)环筋配筋率${\rho _{{ {\rm{r} } } } } = { { {A_{ {\text{rs} } } } } / {bh} }$,其中:$ {A_{{\text{rs}}}} $为环梁环形钢筋的总面积;$ b $和$ h $分别为环梁截面宽度和高度;2)梁纵筋配筋率${\rho _{\text{b} } } = { { {A_{ {\text{bs} } } }}/ { {b_{\text{b} } }{h_{\rm{b}}} } }$,其中:$ {A_{{\text{bs}}}} $为纵向受拉钢筋的截面面积;$ b_{\text{b}}^{} $和$ {h_{\text{b}}} $分别为梁截面宽度和高度;3)柱体积配箍率$ {\rho _{{\text{vc}}}} = {{4{A_{{\text{svc}}}}} / {{s_{\text{c}}}{d_{\text{c}}}}} $,其中:$ {A_{{\text{svc}}}} $、$ {s_{\text{c}}} $和$ {d_{\text{c}}} $分别为箍筋截面积、间距和所围成圆直径;4)—表示PVC管表面不缠绕CFRP条带。
    下载: 导出CSV

    表  2  钢筋的基本性能

    Table  2.   Basic mechanical properties of reinforcement

    钢筋种类和直径/mm屈服强度/MPa极限强度/MPa弹性模量/GPa
    HPB300/6323542197
    HPB300/8308426201
    HPB300/10313432197
    HRB400/16451620195
    HRB400/18465633195
    HRB400/20446611199
    下载: 导出CSV

    表  3  环梁节点屈服弯矩和曲率试验值与计算值比较

    Table  3.   Comparison of experimental and calculated yield moment and curvature of ring beam joints

    试件编号$屈服弯矩试验值M_{\rm{y} }^{\rm{t } }/{\rm{kN} }$$ 屈服曲率试验值\phi_{\rm{y} }^{\rm{t} } /{\rm{mm} } $$屈服弯矩计算值M_{\rm{y} }^{\rm{c} } /{\rm{kN} }$$ 屈服曲率计算值\phi_{\rm{y} }^{\rm{c} } /{\rm{mm} } $$ M_{\rm{y}}^{\rm{t}}/M_{\rm{y}}^{\rm{c}} $$\phi_{\rm{y}}^{\rm{t}}/\phi_{\rm{y}}^{\rm{c}} $
    式(3)式(6)式(5)式(7)式(3)式(6)式(5)式(7)
    S1 57.5 0.014 110.5 50.0 0.008 0.013 0.520 1.150 1.750 1.077
    S2 45.8 0.015 110.5 50.0 0.008 0.013 0.414 0.916 1.875 1.154
    S3 51.4 0.013 110.5 50.0 0.008 0.013 0.465 1.028 1.625 1.000
    S4 47.7 0.015 110.5 50.0 0.008 0.013 0.432 0.954 1.875 1.154
    S5 40.5 0.013 110.5 50.0 0.008 0.013 0.367 0.810 1.625 1.000
    S6 53.5 0.013 90.6 49.4 0.007 0.014 0.591 1.083 1.857 0.929
    S7 49.0 0.014 110.5 50.0 0.008 0.013 0.443 0.980 1.750 1.077
    S8 44.6 0.012 110.5 50.0 0.008 0.013 0.404 0.892 1.500 0.923
    S9 50.5 0.016 72.5 45.5 0.007 0.015 0.697 1.110 2.286 1.067
    S10 49.9 0.012 110.5 50.0 0.008 0.013 0.452 0.998 1.500 0.923
    S11 53.6 0.014 110.5 50.0 0.008 0.013 0.485 1.072 1.750 1.077
    均值 0.479 0.999 1.763 1.035
    下载: 导出CSV

    表  4  不同曲率幅值下的卸载刚度

    Table  4.   Unloading stiffness under different curvature amplitudes

    试件编号 曲率/屈服曲率卸载刚度/屈服曲率各级曲率卸载刚度
    S1 $ \phi /{\phi _{\text{y}}} $ 0.83 0.93 1.04 1.14 1.25 1.87 2.49 2.90 3.11 3.73 4.35 4.97
    $ k_{\text{u}}'/k_{\text{0}}' $ 5.73 5.48 5.30 4.69 3.87 4.12 3.30 2.86 2.25 1.40 1.13 0.83
    S2 $ \phi /{\phi _{\text{y}}} $ 0.42 0.52 0.63 0.73 0.84 1.25 1.67 2.09 2.50 2.92 3.34 3.76
    $ k_{\text{u}}'/k_{\text{0}}' $ 1.77 1.76 1.74 1.72 1.69 1.56 1.29 1.12 0.98 0.90 0.80 0.77
    $ \phi /{\phi _{\text{y}}} $ 4.17 4.59
    $ k_{\text{u}}'/k_{\text{0}}' $ 0.77 0.75
    S3 $ \phi /{\phi _{\text{y}}} $ 0.69 0.81 0.92 1.27 1.58 2.30 2.87 3.45 3.59 4.11 4.61 5.13
    $ k_{\text{u}}'/k_{\text{0}}' $ 1.80 1.77 1.75 1.50 1.41 0.88 0.73 0.61 0.64 0.56 0.54 0.51
    S4 $ \phi /{\phi _{\text{y}}} $ 0.13 0.25 0.38 0.50 0.63 0.76 0.88 1.01 1.51 2.01 2.52 3.02
    $ k_{\text{u}}'/k_{\text{0}}' $ 8.63 8.44 8.42 8.29 4.52 5.15 5.72 7.43 2.40 1.73 1.53 1.34
    $ \phi /{\phi _{\text{y}}} $ 3.53 4.03 4.54
    $ k_{\text{u}}'/k_{\text{0}}' $ 1.21 1.18 0.99
    S5 $ \phi /{\phi _{\text{y}}} $ 0.74 0.85 0.84 1.26 1.69 2.11 2.53 2.95 3.80 4.21 4.64
    $ k_{\text{u}}'/k_{\text{0}}' $ 8.84 8.52 8.16 6.92 4.20 2.20 1.68 1.36 1.10 1.08 1.00
    S6 $ \phi /{\phi _{\text{y}}} $ 0.72 0.84 0.97 1.44 1.92 2.41 2.89 3.37 3.85 4.33 4.82
    $ k_{\text{u}}'/k_{\text{0}}' $ 3.11 3.05 2.85 1.59 1.17 0.98 0.83 0.73 0.66 0.67 0.59
    S7 $ \phi /{\phi _{\text{y}}} $ 0.61 0.72 0.82 1.23 1.63 2.05 2.45 2.86 3.27 3.68 4.08 4.49
    $ k_{\text{u}}'/k_{\text{0}}' $ 3.65 3.58 3.27 1.70 1.27 1.09 0.90 0.80 0.77 0.72 0.68 0.65
    $ \phi /{\phi _{\text{y}}} $ 4.91
    $ k_{\text{u}}'/k_{\text{0}}' $ 0.63
    S8 $ \phi /{\phi _{\text{y}}} $ 0.89 1.00 1.11 1.67 2.23 2.78 3.34 3.89
    $ k_{\text{u}}'/k_{\text{0}}' $ 2.19 2.14 2.11 1.29 1.01 0.88 0.79 0.70
    S9 $ \phi /{\phi _{\text{y}}} $ 0.10 0.39 0.49 0.59 0.69 0.78 0.88 0.98 1.18 1.76 2.35 2.93
    $ k_{\text{u}}'/k_{\text{0}}' $ 3.02 2.85 2.54 2.16 2.13 2.09 2.00 1.96 1.92 1.84 1.72 1.65
    $ \phi /{\phi _{\text{y}}} $ 3.52 4.69 5.28
    $ k_{\text{u}}'/k_{\text{0}}' $ 1.61 0.94 0.76
    S10 $ \phi /{\phi _{\text{y}}} $ 0.94 1.06 1.18 1.30 1.41 2.12 2.82 3.52 4.23 4.94 5.64
    $ k_{\text{u}}'/k_{\text{0}}' $ 2.51 2.49 2.48 2.47 2.18 1.31 1.02 0.83 0.75 0.72 0.62
    S11 $ \phi /{\phi _{\text{y}}} $ 0.66 0.77 0.88 0.99 1.10 1.65 2.20 2.75 3.30 0.66
    $ k_{\text{u}}'/k_{\text{0}}' $ 1.52 1.53 1.48 1.43 1.36 1.26 0.95 0.89 0.75 1.52
    下载: 导出CSV
  • [1] SAAFI M. Development and behavior of a new hybrid column in infrastructure systems [D]. Huntsville, Texas: Doctoral dissertation of the University of Alabama, 2001.
    [2] 于峰, 牛荻涛. PVC-CFRP管钢筋混凝土轴压短柱试验研究[J]. 建筑结构学报, 2013, 34(6): 129 − 136.

    YU Feng, NIU Ditao. Experimental study on PVC-CFRP confined reinforced concrete short column under axial compression [J]. Journal of Building Structures, 2013, 34(6): 129 − 136. (in Chinese)
    [3] FAKHARIFAR M, CHEN G D. Compressive behavior of FRP-confined concrete-filled PVC tubular columns [J]. Composite Structures, 2016, 141(5): 91 − 109.
    [4] 麻胜兰, 姜绍飞. CFRP-PVC管混凝土轴压中长柱承载力研究[J]. 土木工程学报, 2014, 47(1): 99 − 106.

    MA Shenglan, JIANG Shaofei. Study on behavior of concrete-filled CFRP-PVC tubular slender columns under axial compression [J]. China Civil Engineering Journal, 2014, 47(1): 99 − 106. (in Chinese)
    [5] FAKHARIFAR M, CHEN G D. FRP-confined concrete filled PVC tubes: A new design concept for ductile column construction in seismic regions [J]. Construction and Building Materials, 2017, 130(1): 1 − 10.
    [6] 于峰, 徐国士, 程安春. 低周反复荷载作用下PVC-CFRP管钢筋混凝土柱受剪承载力分析[J]. 建筑结构学报, 2016, 37(11): 106 − 112.

    YU Feng, XU Guoshi, CHENG Anchun. Analysis on shear bearing capacity of PVC-CFRP confined reinforced concrete column under cyclic reversed loading [J]. Journal of Building Structures, 2016, 37(11): 106 − 112. (in Chinese)
    [7] MA S L, LIN Q, JIANG S F. Experimental study on flexural behavior of circular concrete-filled FRP-PVC tubular members [J]. Journal of Shenyang Jianzhu University (Natural Science), 2012, 28(6): 988 − 996.
    [8] TOUTANJI H, SAAFI M. Durability studies on concrete columns encased in PVC-FRP composite tubes [J]. Composite Structures, 2001, 54(1): 27 − 35. doi: 10.1016/S0263-8223(01)00067-8
    [9] 于峰, 牛荻涛. 碱环境下PVC-CFRP管混凝土柱轴压性能试验研究[J]. 应用基础与工程科学学报, 2016, 24(3): 573 − 580.

    YU Feng, NIU Ditao. Experimental Study on Axial Behavior of PVC-CFRP Confined Concrete Column under Alkaline Environment [J]. Journal of Basic Science and Technology, 2016, 24(3): 573 − 580. (in Chinese)
    [10] 唐九如. 钢筋混凝土框架节点抗震[M]. 南京: 东南大学出版社, 1989.

    TANG Jiuru. Seismic resistance of reinforced concrete frame joints [M]. Nanjing: Southeast University Press, 1989. (in Chinese)
    [11] 李补拴, 路瑶, 赵根田, 等. PEC柱-异形钢梁框架中节点抗震性能试验研究[J]. 工程力学, 2020, 37(1): 126 − 134. doi: 10.6052/j.issn.1000-4750.2019.02.0046

    LI Bushuan, LU Yao, ZHAO Gentian, et al. Experimental study on seismic performance of PEC column-special shaped steel beam inner-frame joints [J]. Engineering Mechanics, 2020, 37(1): 126 − 134. (in Chinese) doi: 10.6052/j.issn.1000-4750.2019.02.0046
    [12] LIANG X W, WANG Y J, TAO Y, et al. Seismic performance of fiber-reinforced concrete interior beam-column joints [J]. Engineering Structures, 2016, 126(11): 432 − 445.
    [13] 杜永峰, 李虎, 韩博, 等. 钢-混凝土组合节点连接PC柱抗震性能影响参数分析[J]. 工程力学, 2020, 37(6): 110 − 121, 154. doi: 10.6052/j.issn.1000-4750.2019.09.0530

    DU Yongfeng, LI Hu, HAN Bo, et al. Analysis of influential factors on the seismic behavior of PC columns connected by steel-concrete composite joints [J]. Engineering Mechanics, 2020, 37(6): 110 − 121, 154. (in Chinese) doi: 10.6052/j.issn.1000-4750.2019.09.0530
    [14] SAHA P, MEESARAGANDA L V. Experimental investigation of reinforced SCC beam-column joint with rectangular spiral reinforcement under cyclic loading [J]. Construction and Building Materials, 2019, 201(3): 171 − 185.
    [15] 马福栋, 邓明科, 杨勇. 超高性能混凝土装配整体式框架梁柱节点抗震性能研究[J]. 工程力学, 2021, 38(10): 90 − 102. doi: 10.6052/j.issn.1000-4750.2020.09.0682

    MA Fudong, DENG Mingke, YANG Yong. Seismic experimental study on a UHPC precast monolithic concrete beam-column connection [J]. Engineering Mechanics, 2021, 38(10): 90 − 102. (in Chinese) doi: 10.6052/j.issn.1000-4750.2020.09.0682
    [16] NIE J G, BAI Y, CAI C S. New connection system for confined concrete columns and beams. II: Theoretical Modeling [J]. Journal of Structural Engineering, 2008, 134(12): 1787 − 1799. doi: 10.1061/(ASCE)0733-9445(2008)134:12(1787)
    [17] 付波, 王彦超, 童根树. 矩形钢管混凝土柱-H形钢梁外顶板式节点抗震性能试验研究[J]. 工程力学, 2020, 37(7): 125 − 137. doi: 10.6052/j.issn.1000-4750.2019.08.0474

    FU Bo, WANG Yanchao, TONG Genshu. Experimental study on the seismic behavior of CFST rectangular column to H-section steel beam connections with external stiffeners [J]. Engineering Mechanics, 2020, 37(7): 125 − 137. (in Chinese) doi: 10.6052/j.issn.1000-4750.2019.08.0474
    [18] 汤序霖, 陈庆军, 蔡健, 等. 钢筋网约束矩形钢管混凝土柱-混凝土梁节点的核心区受压极限承载力研究[J]. 工程力学, 2016, 33(7): 167 − 175, 183. doi: 10.6052/j.issn.1000-4750.2014.12.1052

    TANG Xulin, CHEN Qingjun, CAI Jian, et al. Bearing capacity of concrete-filled rectangular steel tube column-beam joints confined by steel meshes in joint zone [J]. Engineering Mechanics, 2016, 33(7): 167 − 175, 183. (in Chinese) doi: 10.6052/j.issn.1000-4750.2014.12.1052
    [19] HAZEM M R, MAHA M H, MOHAMED A M, et al. Finite element analysis of circular concrete filled tube connections [J]. Journal of Constructional Steel Research, 2016, 120(4): 33 − 44.
    [20] 李杨, 李延涛, 邢万里, 等. 钢管混凝土柱-双面组合作用梁框架节点抗震性能试验研究[J]. 工程力学, 2020, 37(7): 99 − 109. doi: 10.6052/j.issn.1000-4750.2019.08.0427

    LI Yang, LI Yantao, XING Wanli, et al. Experimental study on seismic behavior of frame joints with concrete-filled steel tubular column and double-sided composite beam [J]. Engineering Mechanics, 2020, 37(7): 99 − 109. (in Chinese) doi: 10.6052/j.issn.1000-4750.2019.08.0427
    [21] 刘奇奇. PVC-FRP管混凝土柱-钢筋混凝土梁节点连接方式研究 [D]. 马鞍山: 安徽工业大学, 2018.

    LIU Qiqi. Study on joint connection of PVC-FRP confined concrete column and reinforced concrete beam [D]. Ma’anshan: Anhui University of Technology, 2018. (in Chinese)
    [22] YU F, LI D A, NIU D T, et al. A model for ultimate bearing capacity of PVC-CFRP confined concrete column with reinforced concrete beam joint under axial compression [J]. Construction and Building Materials, 2019, 214(7): 668 − 676.
    [23] YU F, ZHANG N N, NIU D T, et al. Strain analysis of PVC-CFRP confined concrete column with ring beam joint under axial compression [J]. Composite Structures, 2019, 224(9): 111012.
    [24] 李子龙. PVC-CFRP管混凝土柱-钢筋混凝土环梁T型节点抗震性能研究[D]. 马鞍山: 安徽工业大学, 2020.

    LI Zilong. Study on seismic behavior of PVC-CFRP confined concrete column-reinforced concrete ring beam T-joint [D]. Ma’anshan: Anhui University of Technology, 2020. (in Chinese)
    [25] GB/T 50081−2002, 普通混凝土力学性能试验方法标准[S]. 北京: 中国建筑工业出版社, 2002.

    GB/T 50081−2002, Standard for test method of mechanical properties on ordinary concrete [S]. Beijing: Chinese Architecture and Building Press, 2002. (in Chinese)
    [26] GB/T 3354−2014, 定向纤维增强聚合物基复合材料拉伸性能试验方法[S]. 北京: 中国建筑工业出版社, 2014.

    GB/T 3354−2014, Test method for tensile properties of orientation fiber reinforced polymer matrix composite materials [S]. Beijing: Chinese Architecture and Building Press, 2014. (in Chinese)
    [27] GB/T 8804.1−2003, 热塑性塑料管材拉伸性能测定[S]. 北京: 中国建筑工业出版社, 2003.

    GB/T 8804.1−2003, Thermoplastic pipes-Determination of tensile properties-Part 1: General test method [S]. Beijing: Chinese Architecture and Building Press, 2003. (in Chinese)
    [28] GB/T 228.1−2010, 金属材料拉伸试验室温试验方法[S]. 北京: 中国建筑工业出版社, 2002.

    GB/T 228.1−2010, Metallic materials-Tensile testing-part 1: Method of test at room temperature [S]. Beijing: Chinese Architecture and Building Press, 2010. (in Chinese)
    [29] ZHANG L X B, HSU T T C. Behavior and analysis of 100 MPa concrete membrane elements [J]. Journal of Structural Engineering, ASCE, 1998, 124(1): 24 − 34. doi: 10.1061/(ASCE)0733-9445(1998)124:1(24)
    [30] FOSTER S J, GILBERT R I. Design of nonflexural members with normal and high-strength concretes [J]. ACI Structural Journal, 1996, 96(1): 3 − 10.
    [31] PANAGIOTAKOS T B, FARDIS M N. Deformations of reinforced concrete members at yielding and ultimate [J]. ACI Structural Journal, 2001, 98(2): 135 − 148.
  • 加载中
图(13) / 表(4)
计量
  • 文章访问数:  376
  • HTML全文浏览量:  114
  • PDF下载量:  33
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-11-14
  • 修回日期:  2022-03-08
  • 网络出版日期:  2022-04-23
  • 刊出日期:  2023-06-25

目录

    /

    返回文章
    返回