留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高阶剪切变形板理论下FG-GRC板的屈曲和弯曲分析

王壮壮 马连生

王壮壮, 马连生. 高阶剪切变形板理论下FG-GRC板的屈曲和弯曲分析[J]. 工程力学, 2023, 40(6): 9-18. doi: 10.6052/j.issn.1000-4750.2021.11.0890
引用本文: 王壮壮, 马连生. 高阶剪切变形板理论下FG-GRC板的屈曲和弯曲分析[J]. 工程力学, 2023, 40(6): 9-18. doi: 10.6052/j.issn.1000-4750.2021.11.0890
WANG Zhuang-zhuang, MA Lian-sheng. BUCKLING AND BENDING ANALYSIS OF FG-GRC PLATES USING HIGH-ORDER SHEAR DEFORMATION PLATE THEORIES[J]. Engineering Mechanics, 2023, 40(6): 9-18. doi: 10.6052/j.issn.1000-4750.2021.11.0890
Citation: WANG Zhuang-zhuang, MA Lian-sheng. BUCKLING AND BENDING ANALYSIS OF FG-GRC PLATES USING HIGH-ORDER SHEAR DEFORMATION PLATE THEORIES[J]. Engineering Mechanics, 2023, 40(6): 9-18. doi: 10.6052/j.issn.1000-4750.2021.11.0890

高阶剪切变形板理论下FG-GRC板的屈曲和弯曲分析

doi: 10.6052/j.issn.1000-4750.2021.11.0890
基金项目: 国家自然科学基金项目(11862012,12062010);山东省自然科学基金项目(ZR2020KA006)
详细信息
    作者简介:

    王壮壮(1996−),男,甘肃天水人,硕士生,主要从事功能梯度材料力学行为研究(E-mail: Wang_ZhuangZ@126.com)

    通讯作者:

    马连生(1963−),男,山东临朐人,教授,博士,博导,主要从事新型材料结构力学行为研究(E-mail: lsma@lut.cn)

  • 中图分类号: TB34

BUCKLING AND BENDING ANALYSIS OF FG-GRC PLATES USING HIGH-ORDER SHEAR DEFORMATION PLATE THEORIES

  • 摘要: 基于三阶剪切变形板理论(TSDPT)和正弦剪切变形板理论(SSDPT),研究了功能梯度石墨烯增强复合材料(FG-GRC)板的屈曲和弯曲行为,并通过与一阶剪切变形板理论(FSDPT)计算结果的比较,分析了TSDPT、SSDPT与FSDPT在FG-GRC板屈曲和弯曲力学行为研究过程中的差异。材料的有效杨氏模量通过修正的Halpin-Tsai微观力学模型估算,有效泊松比通过混合律确定。利用最小势能原理推导出了包含五个未知量的控制方程,并获得了简支FG-GRC矩形板弯曲挠度和临界屈曲载荷Navier形式的解析解。数值结果表明:与TSDPT和SSDPT相比,FSDPT明显高估了FG-X型FG-GRC板的临界屈曲载荷而明显低估了其弯曲挠度,且略微低估了FG-O型FG-GRC板的临界屈曲载荷而略微高估了其弯曲挠度,而UD型和FG-A型FG-GRC板在三种理论下的计算结果几乎完全一致;TSDPT和SSDPT在计算FG-GRC板的弯曲挠度和临界屈曲载荷时结果十分相近;当板的总层数NL小于10层~15层时,弯曲载荷比率和临界屈曲载荷比率的变化非常显著,当总层数NL超过10层~15层时,弯曲载荷比率和临界屈曲载荷比率的变化趋于平缓;由于石墨烯纳米片(GPLs)极高的弹性模量,FG-GRC板中GPLs的重量分数fG与板抵抗弯曲和屈曲的能力正相关。
  • 图  1  NL=6时石墨烯增强功能梯度(FG-GRC)板的示意图

    Figure  1.  Schematic of a functionally graded graphene reinforced composite (FG-GRC) plate when NL=6

    图  2  GPLs的四种分布模式

    Figure  2.  Four distribution modes of GPLs

    图  3  板理论采用的剪切函数ψ(z)

    Figure  3.  The shear shape functions employed in plate theories

    图  4  总层数NL对FG-GRC板Rw的影响

    Figure  4.  Effect of total number of layers NL on Rw of FG-GRC plates

    图  5  总层数NL对FG-GRC板RN的影响

    Figure  5.  Effect of total number of layers NL on RN of FG-GRC plates

    表  1  不同参数下Al/(ZrO2)-1功能梯度方板无量纲中心挠度的计算结果(n=0.5)

    Table  1.   Calculation of dimensionless central deflection of Al/(ZrO2)-1 functionally graded square plates with different parameters (n=0.5)

    板理论总层数R=S=1R=S=10R=S=20
    FSDPT[9]NL=100.24080.23190.2318
    NL=200.24130.23230.2323
    NL=300.24140.232402324
    TSDPTNL=100.24020.23130.2312
    NL=200.24070.23180.2317
    NL=300.24080.23190.2318
    SSDPTNL=100.24010.23120.2312
    NL=200.24060.23170.2317
    NL=300.24070.23180.2318
    下载: 导出CSV

    表  2  Al/(ZrO2)-1功能梯度方板在均布载荷下的无量纲中心挠度 (a/h=5,NL=10,R=S=10)

    Table  2.   Dimensionless central deflection of Al/(ZrO2)-1 functionally graded square plate under uniform load (a/h=5,NL=10,R=S=10)

    板理论n
    00.512
    文献[23]0.17030.22320.25220.2827
    文献[24]0.17220.24030.28110.3221
    FSDPT[9]0.17170.23190.27160.3121
    TSDPT0.17160.23130.27150.3140
    SSDPT0.17160.23120.27150.3140
    下载: 导出CSV

    表  3  不同GPLs重量分数下FG-GRC板的无量纲中心挠度和Rw

    Table  3.   The dimensionless central deflection and Rw for different weight fractions of GPLs in FG-GRC plates

    分布模式板理论fG=0fG=0.5%fG=1.0%
    UDFSDPT0.45490.1708(37.55%)0.1052(23.13%)
    TSDPT0.45490.1708(37.55%)0.1052(23.13%)
    SSDPT0.45490.1708(37.55%)0.1052(23.13%)
    FG-OFSDPT0.45490.2247(49.40%)0.1495(32.86%)
    TSDPT0.45490.2237(49.18%)0.1487(32.69%)
    SSDPT0.45490.2236(49.15%)0.1487(32.69%)
    FG-XFSDPT0.45490.1385(30.45%)0.0818(17.98%)
    TSDPT0.45490.1402(30.82%)0.0832(18.29%)
    SSDPT0.45490.1404(30.86%)0.0833(18.31%)
    FG-AFSDPT0.45490.1899(41.75%)0.1242(27.30%)
    TSDPT0.45490.1899(41.75%)0.1241(27.28%)
    SSDPT0.45490.1899(41.75%)0.1241(27.28%)
    注:表中括号内的值为Rw
    下载: 导出CSV

    表  4  简支各向同性板在单轴压缩和双轴压缩下的无量纲临界屈曲载荷

    Table  4.   Dimensionless critical buckling loads of simply supported isotropic plates in uniaxial compression and biaxial compression

    板理论单轴压缩(γ1=−1,γ2=0)双轴压缩(γ1=−1,γ2=−1)
    a/h=5a/h=10a/h=5a/h=10
    文献[10]2.95133.42241.47561.7112
    FSDPT[9]2.94983.42221.47491.7111
    TSDPT2.95123.42241.47561.7112
    SSDPT2.95243.42261.47621.7113
    下载: 导出CSV

    表  5  FG-GRC板单轴压缩时的无量纲临界屈曲载荷和RN

    Table  5.   Dimensionless critical buckling load and RN for FG-GRC plate in uniaxial compression

    分布模式板理论fG
    00.2%0.4%0.6%0.8%1.0%1.2%
    UD FSDPT[9] 0.0035 0.0058 0.0082 0.0105 0.0128 0.0152 0.0175
    (165.7%) (234.3%) (300.0%) (365.7%) (434.3%) (500.0%)
    TSDPT 0.0035 0.0058 0.0082 0.0105 0.0128 0.0152 0.0175
    (165.7%) (234.3%) (300.0%) (365.7%) (434.3%) (500.0%)
    SSDPT 0.0035 0.0058 0.0082 0.0105 0.0128 0.0152 0.0175
    (165.7%) (234.3%) (300.0%) (365.7%) (434.3%) (500.0%)
    FG-O FSDPT[9] 0.0035 0.0050 0.0064 0.0078 0.0093 0.0107 0.0121
    (142.9%) (182.9%) (222.9%) (265.7%) (305.7%) (345.7%)
    TSDPT 0.0035 0.0050 0.0064 0.0079 0.0093 0.0108 0.0122
    (142.9%) (182.9%) (225.7%) (265.7%) (308.6%) (348.6%)
    SSDPT 0.0035 0.0050 0.0064 0.0079 0.0093 0.0108 0.0122
    (142.9%) (182.9%) (225.7%) (265.7%) (308.6%) (348.6%)
    FG-X FSDPT[9] 0.0035 0.0067 0.0099 0.0131 0.0163 0.0195 0.0227
    (191.4%) (282.9%) (374.3%) (465.7%) (557.1%) (648.6%)
    TSDPT 0.0035 0.0067 0.0098 0.0129 0.0160 0.0191 0.0222
    (191.4%) (280.0%) (368.6%) (457.1%) (545.7%) (634.3%)
    SSDPT 0.0035 0.0067 0.0098 0.0129 0.0160 0.0191 0.0222
    (191.4%) (280.0%) (368.6%) (457.1%) (545.7%) (634.3%)
    注:表中括号内的值为RN
    下载: 导出CSV

    表  6  FG-GRC板双轴压缩时的无量纲临界屈曲载荷和RN

    Table  6.   Dimensionless critical buckling load and RN for FG-GRC plate in biaxial compression

    分布模式板理论fG
    00.2%0.4%0.6%0.8%1.0%1.2%
    UD FSDPT[9] 0.0018 0.0029 0.0041 0.0053 0.0064 0.0076 0.0088
    (161.1%) (227.8%) (294.4%) (355.6%) (422.2%) (488.9%)
    TSDPT 0.0018 0.0029 0.0041 0.0053 0.0064 0.0076 0.0088
    (161.1%) (227.8%) (294.4%) (355.6%) (422.2%) (488.9%)
    SSDPT 0.0018 0.0029 0.0041 0.0053 0.0064 0.0076 0.0088
    (161.1%) (227.8%) (294.4%) (355.6%) (422.2%) (488.9%)
    FG-O FSDPT[9] 0.0018 0.0025 0.0032 0.0039 0.0046 0.0053 0.0061
    (138.9%) (177.8%) (216.7%) (255.6%) (294.4%) (338.9%)
    TSDPT 0.0018 0.0025 0.0032 0.0039 0.0047 0.0054 0.0061
    (138.9%) (177.8%) (216.7%) (261.1%) (300.0%) (338.9%)
    SSDPT 0.0018 0.0025 0.0032 0.0039 0.0047 0.0054 0.0061
    (138.9%) (177.8%) (216.7%) (261.1%) (300.0%) (338.9%)
    FG-X FSDPT[9] 0.0018 0.0034 0.0050 0.0066 0.0082 0.0097 0.0113
    (188.9%) (277.8%) (366.7%) (455.6%) (538.9%) (627.8%)
    TSDPT 0.0018 0.0033 0.0049 0.0065 0.0080 0.0096 0.0111
    (183.3%) (272.2%) (361.1%) (444.4%) (533.3%) (616.7%)
    SSDPT 0.0018 0.0033 0.0049 0.0065 0.0080 0.0096 0.0111
    (183.3%) (272.2%) (361.1%) (444.4%) (533.3%) (616.7%)
    注:表中括号内的值为RN
    下载: 导出CSV
  • [1] SONG M, KITIPORNCHAI S, YANG J. Free and forced vibrations of functionally graded polymer composite plates reinforced with graphene nanoplatelets [J]. Composite Structures, 2017, 159: 579 − 588. doi: 10.1016/j.compstruct.2016.09.070
    [2] YANG B, YANG J, KITIPORNCHAI S. Thermoelastic analysis of functionally graded graphene reinforced rectangular plates based on 3D elasticity [J]. Meccanica, 2017, 52(10): 2275 − 2292. doi: 10.1007/s11012-016-0579-8
    [3] YAGHOOBI H, TAHERI F. Characterization of the vibration, stability and static responses of graphene-reinforced sandwich plates under mechanical and thermal loadings using the refined shear deformation plate theory [J]. Journal of Sandwich Structures & Materials, 2022, 24(1): 35 − 65.
    [4] WANG Z, MA L. Effect of Thickness Stretching on Bending and Free Vibration Behaviors of Functionally Graded Graphene Reinforced Composite Plates [J]. Applied Sciences, 2021, 11(23): 11362. doi: 10.3390/app112311362
    [5] WANG M, XU Y G, QIAO P, et al. Buckling and free vibration analysis of shear deformable graphene-reinforced composite laminated plates [J]. Composite Structures, 2022, 280: 114854. doi: 10.1016/j.compstruct.2021.114854
    [6] LU L, WANG S, LI M, et al. Free vibration and dynamic stability of functionally graded composite microtubes reinforced with graphene platelets [J]. Composite Structures, 2021, 272: 114231. doi: 10.1016/j.compstruct.2021.114231
    [7] AL-FURJAN M S H, HABIBI M, GHABUSSI A, et al. Non-polynomial framework for stress and strain response of the FG-GPLRC disk using three-dimensional refined higher-order theory [J]. Engineering Structures, 2021, 228: 111496. doi: 10.1016/j.engstruct.2020.111496
    [8] PHUNG-VAN P, LIEU Q X, FERREIRA A J M, et al. A refined nonlocal isogeometric model for multilayer functionally graded graphene platelet-reinforced composite nanoplates [J]. Thin-Walled Structures, 2021, 164: 107862. doi: 10.1016/j.tws.2021.107862
    [9] SONG M, YANG J, KITIPORNCHAI S. Bending and buckling analyses of functionally graded polymer composite plates reinforced with graphene nanoplatelets [J]. Composites Part B:Engineering, 2018, 134: 106 − 113. doi: 10.1016/j.compositesb.2017.09.043
    [10] THAI C H, FERREIRA A, TRAN T D, et al. Free vibration, buckling and bending analyses of multilayer functionally graded graphene nanoplatelets reinforced composite plates using the NURBS formulation [J]. Composite Structures, 2019, 220: 749 − 759. doi: 10.1016/j.compstruct.2019.03.100
    [11] SONG M, YANG J, KITIPORNCHAI S, et al. Buckling and postbuckling of biaxially compressed functionally graded multilayer graphene nanoplatelet-reinforced polymer composite plates [J]. International Journal of Mechanical Sciences, 2017, 131: 345 − 355. doi: 10.1016/j.ijmecsci.2017.07.017
    [12] ZHAO Z, FENG C, WANG Y, et al. Bending and vibration analysis of functionally graded trapezoidal nanocomposite plates reinforced with graphene nanoplatelets (GPLs) [J]. Composite Structures, 2017, 180: 799 − 808. doi: 10.1016/j.compstruct.2017.08.044
    [13] YANG B, KITIPORNCHAI S, YANG Y, et al. 3D thermo-mechanical bending solution of functionally graded graphene reinforced circular and annular plates [J]. Applied Mathematical Modelling, 2017, 49: 69 − 86. doi: 10.1016/j.apm.2017.04.044
    [14] YANG B, MEI J, CHEN D, et al. 3D thermo-mechanical solution of transversely isotropic and functionally graded graphene reinforced elliptical plates [J]. Composite Structures, 2018, 184: 1040 − 1048. doi: 10.1016/j.compstruct.2017.09.086
    [15] 牛牧华, 马连生. 基于物理中面FGM梁的非线性力学行为[J]. 工程力学, 2011, 28(6): 219 − 225.

    NIU Muhua, MA Liansheng. Nonlinear mechanical behaviors of FGM beams based on the physical neutral surface [J]. Engineering Mechanics, 2011, 28(6): 219 − 225. (in Chinese)
    [16] 马连生, 顾春龙. 剪切可变形梁热过屈曲解析解[J]. 工程力学, 2012, 29(2): 172 − 176.

    MA Liansheng, GU Chunlong. Exact solutions for thermal post-buckling of shear deformable beams [J]. Engineering Mechanics, 2012, 29(2): 172 − 176. (in Chinese)
    [17] 邓先琪, 苏成, 马海涛. 功能梯度梁静力与动力分析的格林函数法[J]. 工程力学, 2020, 37(9): 248 − 256. doi: 10.6052/j.issn.1000-4750.2019.10.0615

    DENG Xianqi, SU Cheng, MA Haitao. Green’s function method for static and dynamic analysis of functionally graded beams [J]. Engineering Mechanics, 2020, 37(9): 248 − 256. (in Chinese) doi: 10.6052/j.issn.1000-4750.2019.10.0615
    [18] 赵伟东, 高士武, 黄永玉. 热环境中的功能梯度扁球壳非线性稳定性分析[J]. 工程力学, 2020, 37(8): 202 − 212. doi: 10.6052/j.issn.1000-4750.2019.09.0541

    ZHAO Weidong, GAO Shiwu, HUANG Yongyu. Nonlinear stability analysis of functionally graded shallow spherical shells in thermal environments [J]. Engineering Mechanics, 2020, 37(8): 202 − 212. (in Chinese) doi: 10.6052/j.issn.1000-4750.2019.09.0541
    [19] 刘涛, 汪超, 刘庆运, 等. 基于等几何方法的压电功能梯度板动力学及主动振动控制分析[J]. 工程力学, 2020, 37(12): 228 − 242. doi: 10.6052/j.issn.1000-4750.2020.04.0266

    LIU Tao, WANG Chao, LIU Qingyun, et al. Analysis for dynamic and active vibration control of piezoelectric functionally graded plates based on isogeometric method [J]. Engineering Mechanics, 2020, 37(12): 228 − 242. (in Chinese) doi: 10.6052/j.issn.1000-4750.2020.04.0266
    [20] REDDY J N. Analysis of functionally graded plates [J]. International Journal for Numerical Methods in Engineering, 2000, 47: 663 − 684.
    [21] TOURATIER M. An efficient standard plate theory [J]. International Journal of Engineering Science, 1991, 29(8): 901 − 916. doi: 10.1016/0020-7225(91)90165-Y
    [22] ZHAO S, ZHAO Z, YANG Z, et al. Functionally graded graphene reinforced composite structures: A review [J]. Engineering Structures, 2020, 210: 110339.
    [23] NGUYEN-XUAN H, TRAN L V, NGUYEN-THOI T, et al. Analysis of functionally graded plates using an edge-based smoothed finite element method [J]. Composite Structures, 2011, 93(11): 3019 − 3039. doi: 10.1016/j.compstruct.2011.04.028
    [24] LEE Y Y, ZHAO X, LIEW K M. Thermoelastic analysis of functionally graded plates using the element-free kp-Ritz method [J]. Smart Materials and Structures, 2009, 18(3): 35007. doi: 10.1088/0964-1726/18/3/035007
    [25] LEISSA A W. Conditions for laminated plates to remain flat under inplane loading [J]. Composite Structures, 1986, 6(4): 261 − 270. doi: 10.1016/0263-8223(86)90022-X
  • 加载中
图(5) / 表(6)
计量
  • 文章访问数:  507
  • HTML全文浏览量:  87
  • PDF下载量:  112
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-11-13
  • 修回日期:  2022-04-03
  • 录用日期:  2022-04-23
  • 网络出版日期:  2022-04-23
  • 刊出日期:  2023-06-25

目录

    /

    返回文章
    返回