留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于地震动预测残差分析的工程场地分类标准检验与评价

刘也 任叶飞 王大任 王宏伟 冀昆 温瑞智 周宝峰

刘也, 任叶飞, 王大任, 王宏伟, 冀昆, 温瑞智, 周宝峰. 基于地震动预测残差分析的工程场地分类标准检验与评价[J]. 工程力学, 2023, 40(6): 99-109. doi: 10.6052/j.issn.1000-4750.2021.11.0880
引用本文: 刘也, 任叶飞, 王大任, 王宏伟, 冀昆, 温瑞智, 周宝峰. 基于地震动预测残差分析的工程场地分类标准检验与评价[J]. 工程力学, 2023, 40(6): 99-109. doi: 10.6052/j.issn.1000-4750.2021.11.0880
LIU Ye, REN Ye-fei, WANG Da-ren, WANG Hong-wei, JI Kun, WEN Rui-zhi, ZHOU Bao-feng. EVALUATING THE SCHEMES OF ENGINEERING SITE CLASSIFICATION BASED ON RESIDUAL ANALYSIS OF GROUND MOTION PREDICTION[J]. Engineering Mechanics, 2023, 40(6): 99-109. doi: 10.6052/j.issn.1000-4750.2021.11.0880
Citation: LIU Ye, REN Ye-fei, WANG Da-ren, WANG Hong-wei, JI Kun, WEN Rui-zhi, ZHOU Bao-feng. EVALUATING THE SCHEMES OF ENGINEERING SITE CLASSIFICATION BASED ON RESIDUAL ANALYSIS OF GROUND MOTION PREDICTION[J]. Engineering Mechanics, 2023, 40(6): 99-109. doi: 10.6052/j.issn.1000-4750.2021.11.0880

基于地震动预测残差分析的工程场地分类标准检验与评价

doi: 10.6052/j.issn.1000-4750.2021.11.0880
基金项目: 国家重点研发计划项目(2018YFE0109800);国家自然科学基金项目(51878632);黑龙江省自然科学基金优秀青年项目(YQ2019E036);黑龙江省头雁行动计划项目
详细信息
    作者简介:

    刘 也(1995−),男,黑龙江人,博士生,主要从事工程地震相关研究(E-mail: ly324001@hotmail.com)

    王大任(1995−),男,黑龙江人,硕士生,主要从事工程地震相关研究(E-mail: wangdrwm@126.com)

    王宏伟(1990−),男,山东人,副研究员,博士,主要从事工程地震相关研究(E-mail: whw1990413@163.com)

    冀 昆(1990−),男,山西人,副研究员,博士,主要从事工程地震相关研究(E-mail: jikun@iem.ac.cn)

    温瑞智(1968−),男,山东人,研究员,博士,主要从事工程地震相关研究(E-mail: ruizhi@iem.ac.cn)

    周宝峰(1978−),男,山东人,副研究员,博士,主要从事工程地震相关研究(E-mail: zbf166@126.com)

    通讯作者:

    任叶飞(1983−),男,江苏人,研究员,博士,主要从事工程地震及相关研究(E-mail: renyefei@iem.net.cn)

  • 中图分类号: P315.9

EVALUATING THE SCHEMES OF ENGINEERING SITE CLASSIFICATION BASED ON RESIDUAL ANALYSIS OF GROUND MOTION PREDICTION

  • 摘要: 各国抗震设计规范采用不同的指标定义场地分类标准,以中、日、美三国的标准最具有代表性,其能否合理体现相同类别内场地放大的集中性、不同类别间场地放大的差异性鲜见有研究开展检验与评价。针对此问题,利用日本KiK-net台网的强震动记录和台站的钻孔资料,分别以三国分类标准划分台站场地类别,基于地震动预测残差分析方法计算台站的真实场地放大因子,比较分析不同分类标准、不同场地类别的场地放大因子均值及标准差分布情况。得到如下结论:在PGA和SA的短周期段(T<0.1 s),以场地自振周期TS作为分类指标的日本规范没有体现出不同类别间场地放大效应的差异性,以地表20 m内等效剪切波速VSE及覆盖层厚度双指标的中国规范和以地表 30 m 以内平均剪切波速VS30为指标的美国规范均能较好地反映不同类别间场地放大效应的差异性;日本规范在整体上体现相同场地类别内场地放大的集中性方面表现最好,对于长周期(T>2 s)地震动,中国规范则表现最优越;中国III类场地对中长周期地震动的放大体现出较大离散性,分类标准合理性还需要进一步深入分析。研究结果可为改进场地分类方法提供理论参考。
  • 图  1  本文所选强震动数据集的震源距与矩震级对应分布

    Figure  1.  Magnitude-source distance distribution of strong motion data set selected

    图  2  本文所选地震事件震中位置和震源机制三元相图

    Figure  2.  The epicenter locations and triangle diagram displaying focal mechanism of selected earthquake events

    图  3  按照中国、日本、美国规范定义划分的场地类别对应台站数量(Kik-net台站)

    Figure  3.  The number of station associated with different site classes defined by seismic codes of China, Japan and U.S.A (KiK-net stations)

    图  4  按照中国、日本、美国规范定义划分的场地类别对应台站空间分布

    Figure  4.  Spatial distribution of stations classified according to seismic codes of China, Japan and U.S.A

    图  5  基于ZHAO[20]预测模型计算的PGA和SA事件内残差随震源距变化情况 (带有误差棒的圆点代表不同距离段的事件内残差均值及一倍标准差;实线代表路径修正函数)

    Figure  5.  PGA and SA within-event residuals against hypo-central distance calculated based on ZHAO2[20] ground motion model (circles with bar indicate the mean within one standard deviation of distance-binned within-event residuals; Solid lines indicate the path-corrected function)

    图  6  PGA和SA(T=0.1 s、0.3 s、0.5 s、1 s、3 s)在中国、日本、美国场地分类标准下不同场地类别上的场地放大因子均值与标准差

    Figure  6.  The mean and standard deviation of site amplification factors for PGA and SA (T=0.1 s, 0.3 s, 0.5 s, 1 s and 3 s), in each site class defined by seismic codes of China, Japan and U.S.A respectively

    图  7  在不同场地分类标准下PGA和不同周期的SA在不同场地类别下的场地放大因子标准差

    Figure  7.  Standard deviation of site amplification factors in each site class defined by seismic codes of China, Japan and U.S.A respectively for PGA and different spectral period SA

    图  8  III类场地放大因子分布

    Figure  8.  Site amplification factors of site class III

    图  9  典型台站的场地特征

    Figure  9.  Site characteristic of typical stations

  • [1] 唐川, 陈龙伟. 场地校正的地表PGA放大系数概率模型研究[J]. 工程力学, 2020, 37(12): 99 − 113. doi: 10.6052/j.issn.1000-4750.2020.01.0023

    TANG Chuan, CHEN Longwei. Probability modelling of PGA amplification factors corrected by site conditions [J]. Engineering Mechanics, 2020, 37(12): 99 − 113. (in Chinese) doi: 10.6052/j.issn.1000-4750.2020.01.0023
    [2] 胡进军, 赵泽锋, 谢礼立. 考虑场地类别和断层距的地震动及结构响应参数相关性分析[J]. 地震工程与工程振动, 2020, 40(2): 13 − 22.

    HU Jinjun, ZHAO Zefeng, XIE Lili. Correlation analysis of ground motion parameters and structural response parameters considering the site condition and fault distance [J]. Earthquake Engineering and Engineering Dynamics, 2020, 40(2): 13 − 22. (in Chinese)
    [3] 胡进军, 刘巴黎, 谢礼立. 基于因子分析的地震动特征提取及潜在破坏势评估[J]. 工程力学, 2022, 39(10): 140 − 151, 172. doi: 10.6052/j.issn.1000-4750.2021.06.0436

    HU Jinjun, LIU Bali, XIE Lili. Factor analysis-based ground motion feature extraction and the measurement of the potential structural damage [J]. Engineering Mechanics, 2022, 39(10): 140 − 151, 172. (in Chinese) doi: 10.6052/j.issn.1000-4750.2021.06.0436
    [4] 李宁, 刁泽民, 李忠献. 考虑震源和场地特征的近断层地区竖向地震动合成研究[J]. 工程力学, 2022, 39(6): 181 − 190. doi: 10.6052/j.issn.1000-4750.2021.03.0232

    LI Ning, DIAO Zemin, LI Zhongxian. Study on synthesis method of vertical ground motions for near-fault regions considering the characteristics of source and site condition [J]. Engineering Mechanics, 2022, 39(6): 181 − 190. (in Chinese) doi: 10.6052/j.issn.1000-4750.2021.03.0232
    [5] 任叶飞, 尹建华, 温瑞智, 等. 结构抗倒塌易损性分析中地震动输入不确定性影响研究[J]. 工程力学, 2020, 37(1): 115 − 125. doi: 10.6052/j.issn.1000-4750.2019.01.0042

    REN Yefei, YIN Jianhua, WEN Ruizhi, et al. The impact of ground motion inputs on the uncertainty of structural collapse fragility [J]. Engineering Mechanics, 2020, 37(1): 115 − 125. (in Chinese) doi: 10.6052/j.issn.1000-4750.2019.01.0042
    [6] 项梦洁, 陈隽. 考虑场地效应的建筑群动力可靠度PDEM评估[J]. 工程力学, 2021, 38(8): 85 − 96. doi: 10.6052/j.issn.1000-4750.2020.08.0549

    XIANG Mengjie, CHEN Jun. Dynamic reliability evaluation of building cluster considering site effect based on PDEM [J]. Engineering Mechanics, 2021, 38(8): 85 − 96. (in Chinese) doi: 10.6052/j.issn.1000-4750.2020.08.0549
    [7] NEHRP-2015, National Earthquake Hazards Reduction Program: Recommended provisions for seismic regulations for new buildings and other structures (2015 Edition) [S]. Washington D C: Building Seismic Safety Council: 14, 2015.
    [8] JRA-1980, Japan Road Association: Specifications for highway bridges, Part V, Seismic design [S]. Tokyo: Maruzen Co., LTD, 1980.
    [9] GB 50011−2010, 建筑抗震设计规范 [S]. 北京: 中国建筑工业出版社, 2010.

    GB 50011−2010, Code for seismic design of buildings [S]. Beijing: China Architecture and Building Press, 2010. (in Chinese)
    [10] CASTELLARO S, MULARGIA F, ROSSI P. VS30: Proxy for seismic amplification? [J]. Seismological Research Letters, 2008, 79(4): 540 − 543. doi: 10.1785/gssrl.79.4.540
    [11] ZHAO J X, XU H. A Comparison of VS30 and site period as site-effect parameters in response spectral ground-motion prediction equations [J]. Bulletin of the Seismological Society of America, 2013, 103(1): 1 − 18. doi: 10.1785/0120110251
    [12] ZHU C, PILZ M, COTTON F. Which is a better proxy, site period or depth to bedrock, in modelling linear site response in addition to the average shear-wave velocity? [J]. Bulletin of Earthquake Engineering, 2020, 18: 797 − 820. doi: 10.1007/s10518-019-00738-6
    [13] ABRAHAMSON N A, SILVA W J. Summary of the Abrahamson &Silva NGA ground-motion relations [J]. Earthquake Spectra, 2008, 24(1): 67 − 97. doi: 10.1193/1.2924360
    [14] BOORE D M, ATKINSON G M. Ground-motion prediction equations for the average horizontal component of PGA, PGV, and 5% damped PSA at spectral periods between 0.01 s and 10.0 s [J]. Earthquake Spectra, 2008, 24(1): 99 − 138. doi: 10.1193/1.2830434
    [15] CASTELLARO S. The VFZ matrix: Simplified seismic soil classification from a different perspective [C]// Fourth IASPEI/IAEE International Symposium: Effects of Surface Geology on Seismic Motion. Santa Barbara: University of California Santa Barbara, 2011: 23 − 26.
    [16] MUCCIARELLI M, GALLIPOLI M R. Comparison between VS30 and other estimates of site amplification in Italy [C]// First European Conference on Earthquake Engineering and Seismology, A Joint Event of the 13th European Conference on Earthquake Engineering and 30th General Assembly of the European Seismological Commission. Geneva: Swiss Society for Earthquake Engineering and Structural Dynamics (SGEB), 2006: 3 − 8 .
    [17] WALD L A, MORI J. Evaluation of methods for estimating linear site response amplifications in the Los Angeles region [J]. Bulletin of the Seismological Society of America, 2000, 90(6): 32 − 42. doi: 10.1785/0119970170
    [18] VERDUGO R. Seismic site classification [J]. Soil Dynamics and Earthquake Engineering, 2019, 124: 317 − 329. doi: 10.1016/j.soildyn.2018.04.045
    [19] VERDUGO R, OCHOA-CORNEJO F, GONZALEZ J, et al. Site effect and site classification in areas with large earthquakes [J]. Soil Dynamics and Earthquake Engineering, 2019, 126: 105071. doi: 10.1016/j.soildyn.2018.02.002
    [20] ZHAO J X. Attenuation relations of strong ground motion in Japan using site classification based on predominant period [J]. Bulletin of the Seismological Society of America, 2006, 96(3): 898 − 913. doi: 10.1785/0120050122
    [21] 齐文浩, 薄景山, 阮璠, 等. 中国场地分类方法的一种改进方案[J]. 自然灾害学报, 2015, 24(1): 234 − 238.

    QI Wenhao, BO Jingshan, RUAN Fan, et al. Improvement on current site classification in China [J]. Journal of Natural Disasters, 2015, 24(1): 234 − 238. (in Chinese)
    [22] 陈国兴, 丁杰发, 方怡, 等. 场地类别分类方案研究[J]. 岩土力学, 2020, 41(11): 3509 − 3522, 3582.

    CHEN Guoxing, DING Jiefa, FANG Yi, et al. Investigation of seismic site classification formulation [J]. Rock and Soil Mechanics, 2020, 41(11): 3509 − 3522, 3582. (in Chinese)
    [23] 薄景山, 李琪, 孙强强, 等. 场地分类研究现状及有关问题的讨论[J]. 自然灾害学报, 2021, 30(3): 1 − 13.

    BO Jingshan, LI Qi, SUN Qiangqiang, et al. Site classification research status and discussion of related issues [J]. Journal of Natural Disasters, 2021, 30(3): 1 − 13. (in Chinese)
    [24] 周健, 李小军, 李亚琦, 等. 中美建筑抗震设计规范中工程场地类别的对比和换算关系[J]. 地震学报, 2021, 43(4): 521 − 532, 534.

    ZHOU Jian, LI Xiaojun, LI Yaqi, et al. Comparative analysis and transformation relations between China and US site classification systems in building seismic code provisions [J]. Acta Seismologica Sinica, 2021, 43(4): 521 − 532, 534. (in Chinese)
    [25] FROHLICH C. Triangle diagrams: ternary graphs to display similarity and diversity of earthquake focal mechanisms [J]. Physics of the Earth and Planetary Interiors, 1992, 75(1/2/3): 193 − 198. doi: 10.1016/0031-9201(92)90130-N
    [26] ZHAO J X, ZHOU S L, GAO P J, et al. An earthquake classification scheme adapted for Japan determined by the goodness of fit for ground-motion prediction equations [J]. Bulletin of the Seismological Society of America, 2015, 105(5): 2750 − 2763. doi: 10.1785/0120150013
    [27] HAYES G P, MOORE G L, PORTNER D E, et al. Slab2, A comprehensive subduction zone geometry model [J]. Science, 2018, 362(6410): 58 − 61.
    [28] ABRAHAMSON N A, YOUNGS R R. A stable algorithm for regression analysis using the random effect model [J]. Bulletin of the Seismological Society of America, 1992, 82(1): 505 − 510. doi: 10.1785/BSSA0820010505
    [29] ABRAHAMSON N A, SILVA W J, KAMAI R. Summary of the ASK14 ground motion relation for active crustal regions [J]. Earthquake Spectra, 2014, 30(3): 913 − 914.
    [30] BOORE D M, STEWART J P, SEYHAN E, et al. NGA-West2 equations for predicting PGA, PGV, and 5% damped PSA for shallow crustal earthquakes [J]. Earthquake Spectra, 2013, 30(3): 1057 − 1085.
    [31] REN Y, WANG H, XU P, et al. Strong-motion observations of the 2017 Ms7.0 Jiuzhaigou earthquake: Comparison with the 2013 Ms7.0 Lushan earthquake [J]. Seismological Research Letters, 2018, 89(4): 1354 − 1365. doi: 10.1785/0220170238
    [32] WANG H W, LI C G, WEN R Z, et al. Integrating effects of source-dependent factors on sediment-depth scaling of additional site amplification to ground-motion prediction equation [J]. Bulletin of the Seismological Society of America, 2021, 112(1): 400 − 418.
  • 加载中
图(9)
计量
  • 文章访问数:  295
  • HTML全文浏览量:  111
  • PDF下载量:  54
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-11-11
  • 修回日期:  2022-03-03
  • 录用日期:  2022-03-15
  • 网络出版日期:  2022-03-15
  • 刊出日期:  2023-06-25

目录

    /

    返回文章
    返回