留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

预制节段UHPC梁接缝抗剪性能的有限元模拟

张世顺 田径 陈东 曾卓 聂雪飞

张世顺, 田径, 陈东, 曾卓, 聂雪飞. 预制节段UHPC梁接缝抗剪性能的有限元模拟[J]. 工程力学, 2023, 40(6): 85-98, 256. doi: 10.6052/j.issn.1000-4750.2021.11.0876
引用本文: 张世顺, 田径, 陈东, 曾卓, 聂雪飞. 预制节段UHPC梁接缝抗剪性能的有限元模拟[J]. 工程力学, 2023, 40(6): 85-98, 256. doi: 10.6052/j.issn.1000-4750.2021.11.0876
ZHANG Shi-shun, TIAN Jing, CHEN Dong, ZENG Zhuo, NIE Xue-fei. FINITE ELEMENT MODELLING OF THE SHEAR BEHAVIOR OF JOINTS IN PRECAST SEGMENTAL UHPC BRIDGE GIRDERS[J]. Engineering Mechanics, 2023, 40(6): 85-98, 256. doi: 10.6052/j.issn.1000-4750.2021.11.0876
Citation: ZHANG Shi-shun, TIAN Jing, CHEN Dong, ZENG Zhuo, NIE Xue-fei. FINITE ELEMENT MODELLING OF THE SHEAR BEHAVIOR OF JOINTS IN PRECAST SEGMENTAL UHPC BRIDGE GIRDERS[J]. Engineering Mechanics, 2023, 40(6): 85-98, 256. doi: 10.6052/j.issn.1000-4750.2021.11.0876

预制节段UHPC梁接缝抗剪性能的有限元模拟

doi: 10.6052/j.issn.1000-4750.2021.11.0876
基金项目: 国家自然科学基金项目(52078231);湖北省重点研发计划项目(2021BCA150)
详细信息
    作者简介:

    田 径(1978−),男,湖北人,高工,博士,主要从事桥梁设计相关研究(E-mail: 68436591@qq.com)

    陈 东(1993−),男,辽宁人,博士生,主要从事新材料结构和结构数值模拟相关研究(E-mail: d202081138@hust.edu.cn)

    曾 卓(1986−),女,湖北人,高工,硕士,主要从事桥梁设计相关研究(E-mail: 390234103@qq.com)

    聂雪飞(1989−),男,云南人,副教授,博士,主要从事复材(FRP)在土木工程中应用的相关研究(E-mail: niexuefei@hust.edu.cn)

    通讯作者:

    张世顺(1980−),男,湖南人,教授,博士,博导,主要从事新材料结构及新型结构、结构加固和结构数值模拟相关等研究(E-mail: shishun@hust.edu.cn)

  • 中图分类号: U443

FINITE ELEMENT MODELLING OF THE SHEAR BEHAVIOR OF JOINTS IN PRECAST SEGMENTAL UHPC BRIDGE GIRDERS

  • 摘要: 该文采用有限元软件ABAQUS对预制节段超高性能混凝土(UHPC)梁剪力键接缝的抗剪性能进行了三维精细有限元模拟。模型中同时考虑了材料非线性、几何非线性以及UHPC材料的塑性损伤,模拟得到的荷载-滑移曲线和破坏模态等均与试验结果吻合良好。采用经过验证的有限元模型对剪力键接缝的抗剪性能进行了数值参数分析,结果表明:接缝的抗剪承载力及其对应的滑移随着所施加的侧向应力或UHPC强度的增大而增大,但UHPC抗压强度对抗剪承载力的影响大于UHPC抗拉强度,而且UHPC的抗拉压强度之间无固定的相关规律,因此对于UHPC接缝抗剪承载力的计算应分别考虑抗拉强度与抗压强度的影响;由于剪应力分布的不均匀性,抗剪承载力的计算还应考虑多键块的强度折减效应。此外,对剪力键接缝构造的参数分析结果表明:当键块的宽度和总高度相同时,接缝抗剪承载力随着键块相对高度的减小而增大,但当键块相对高度小于1/2时,接缝的抗剪承载力基本保持不变;当键块总面积以及键块数量相同时,多个键块之间的协同工作能力随键块竖向间距的增大而变强;键块深度对接缝抗剪承载力的影响不大。与目前被广泛采用的普通混凝土接缝抗剪承载力的计算公式对比,有限元的预测值明显小于计算公式的预测值,且偏差随着侧向应力的增大而增大,因此有必要针对UHPC剪力键接缝提出新的抗剪承载力计算式。
  • 图  1  试件加载及截面尺寸 /mm

    Figure  1.  Loading and section size of specimens

    图  2  UHPC的本构关系

    Figure  2.  Constitutive relationship of UHPC

    图  3  边界条件

    Figure  3.  Boundary conditions

    图  4  网格尺寸分析结果

    Figure  4.  Analysis results of mesh size

    图  5  典型的网格划分

    Figure  5.  Typical FE mesh

    图  6  UHPC接缝荷载-滑移曲线试验结果与模拟结果的比较

    Figure  6.  Comparison between tested results and predicted results of load-slip curves for UHPC joints

    图  7  试件D3-10的破坏模态

    Figure  7.  Failure model of specimen D3-10

    图  8  UHPC抗压强度的影响

    Figure  8.  Influence of compressive strength of UHPC

    图  9  UHPC抗拉强度的影响

    Figure  9.  Influence of tensile strength of UHPC

    图  10  UHPC抗拉压强度关系

    Figure  10.  Tensile and compression strength relationship of UHPC

    图  11  侧向应力的影响

    Figure  11.  Influence of confining pressure

    图  12  剪力键数量的影响

    Figure  12.  Influence of the amount of shear keys

    图  13  摩擦系数对荷载-滑移曲线的影响

    Figure  13.  Influence of friction coefficient on load-slip curve

    图  14  不同相对高度键块的布置形式 /mm

    Figure  14.  Layout form of different keyed relative height

    图  15  键块相对高度对荷载-滑移曲线的影响

    Figure  15.  Influence of the relative height of keys on load-slip curve

    图  16  键块深度对荷载-滑移曲线的影响

    Figure  16.  Influence of the depth of keys on load-slip curve

    图  17  键块位置的布置形式 /mm

    Figure  17.  Layout form of positions of keys

    图  18  键块位置对荷载-滑移曲线的影响

    Figure  18.  Influence of the location of keys on load-slip curve

    图  19  不同键块间距的布置形式 /mm

    Figure  19.  Layout of different spacing of keys

    图  20  键块间距的影响

    Figure  20.  Influence of the spacing of keys

    表  1  试件参数

    Table  1.   Parameters of specimens

    模型编号接缝类型剪力键数量σn/MPaAk/mm2Asm/mm2
    D1-10干接缝11015 000145 000
    E1-10胶接缝11015 000145 000
    D1-20干接缝12015 000145 000
    E1-20胶接缝12015 000145 000
    D3-10干接缝31045 000115 000
    E3-10胶接缝31045 000115 000
    D3-20干接缝32045 000115 000
    E3-20胶接缝32045 000115 000
    D5-10干接缝51075 00085 000
    E5-10胶接缝51075 00085 000
    D5-20干接缝52075 00085 000
    E5-20胶接缝52075 00085 000
    注:编号中字母D或E分别为接缝的类型为干接缝或胶接缝,数字1、3或5分别为剪力键的数量为1、3或5,数字10或20分别为施加的侧向应力为10 MPa或20 MPa;σn为侧向应力;Ak为剪力键块根部总面积;Asm为接缝平接部分总面积。
    下载: 导出CSV

    表  2  模型参数

    Table  2.   Parameters of models

    模型编号fc/MPaεcoft/MPaE/GPaμ
    D1-10153.90.004611.946.50.50
    E1-10153.90.004611.946.50.47
    D1-20153.90.004611.946.50.40
    E1-20153.90.004611.946.50.39
    D3-10147.80.004412.144.80.50
    E3-10147.80.004412.144.80.48
    D3-20147.80.004412.144.80.42
    E3-20147.80.004412.144.80.40
    D5-10151.70.004513.245.80.50
    E5-10151.70.004513.245.80.48
    D5-20151.70.004513.245.80.42
    E5-20151.70.004513.245.80.41
    注:fc为UHPC的轴心抗压强度;εco为UHPC的峰值压应变;ft为UHPC的抗拉强度;E为UHPC的弹性模量;μ为材料界面的摩擦系数。
    下载: 导出CSV

    表  3  UHPC塑性参数

    Table  3.   Plastic parameters of UHPC

    ψεfb0/fc0Kη
    30°0.11.052/31×10−5
    注:ψ为膨胀角;ε为势函数偏心率;fb0/fc0为双轴极限抗压强度与单轴极限抗压强度之比;K为拉伸子午面上与压缩子午面上的第二应力不变量之比;η为粘性系数。
    下载: 导出CSV

    表  4  试验与模拟结果的对比

    Table  4.   Comparison between tested results and predicted results

    试件编号弹性刚度峰值荷载峰值荷载对应位移
    试验结果/(kN/mm)模拟结果/(kN/mm)$ \dfrac{\mathrm{模}\mathrm{拟}\mathrm{值}}{\mathrm{试}\mathrm{验}\mathrm{值}} $试验结果/kN模拟结果/kN$ \dfrac{\mathrm{模}\mathrm{拟}\mathrm{值}}{\mathrm{试}\mathrm{验}\mathrm{值}} $试验结果/mm模拟结果/mm$ \dfrac{\mathrm{模}\mathrm{拟}\mathrm{值}}{\mathrm{试}\mathrm{验}\mathrm{值}} $
    D1-10200018540.93127812951.011.502.111.41
    E1-10250920340.81160115130.951.502.451.63
    D1-20286024020.84182618291.011.752.101.20
    E1-20346425770.74228821830.951.752.671.51
    D3-10317720640.65195318760.961.751.811.03
    E3-10344023120.67225821680.962.001.600.80
    D3-20200020141.01270527381.012.202.501.14
    E3-20211625291.20286428270.992.201.550.70
    D5-10215422641.05291427400.942.202.331.06
    E5-10220622161.01298429640.992.202.231.01
    D5-20193820671.07321633981.062.702.090.77
    E5-20210622211.06349535631.022.602.090.80
    平均值0.920.981.09
    方差0.170.030.29
    变异系数0.180.040.27
    下载: 导出CSV
  • [1] 邵旭东, 邱明红, 晏班夫, 等. 超高性能混凝土在国内外桥梁工程中的研究与应用进展[J]. 材料导报, 2017, 31(12): 33 − 43. doi: 10.11896/j.issn.1005-023X.2017.023.004

    SHAO Xudong, QIU Minghong, YAN Banfu, et al. A review on the research and application of ultra-high-performance concrete in bridge engineering around the world [J]. Materials Reports, 2017, 31(12): 33 − 43. (in Chinese) doi: 10.11896/j.issn.1005-023X.2017.023.004
    [2] 邵旭东, 樊伟, 黄政宇. 超高性能混凝土在结构中的应用[J]. 土木工程学报, 2021, 54(1): 1 − 13. doi: 10.15951/j.tmgcxb.2021.01.001

    SHAO Xudong, FAN Wei, HUANG Zhengyu. Application of ultra-high-performance concrete in engineering structures [J]. China Civil Engineering Journal, 2021, 54(1): 1 − 13. (in Chinese) doi: 10.15951/j.tmgcxb.2021.01.001
    [3] KIM Y J, CHIN W J, JEON S J. Interface shear strength at joints of ultra-high performance concrete structures [J]. International Journal of Concrete Structures and Materials, 2018, 12(6): 767 − 780.
    [4] KIM H S, CHIN W J, CHO J R, et al. An experimental study on the behavior of shear keys according to the curing time of UHPC [J]. Engineering, 2015, 7(4): 212 − 218. doi: 10.4236/eng.2015.74017
    [5] GOPAL B A, HEJAZI F, HAFEZOLGHORANI M, et al. Shear strength of dry and epoxy joints for ultra-high-performance fiber-reinforced concrete [J]. ACI Structural Journal, 2020, 117(1): 279 − 288.
    [6] LIU T X, WANG Z, GUO J, et al. Shear strength of dry joints in precast UHPC segmental bridges: experimental and theoretical research [J]. Journal of Bridge Engineering, 2019, 24(1): 04018100. doi: 10.1061/(ASCE)BE.1943-5592.0001323
    [7] VOO Y L, FOSTER S J, VOO C C. Ultrahigh-performance concrete segmental bridge technology: toward sustainable bridge construction [J]. Journal of Bridge Engineering, 2015, 20(8): 5014001. doi: 10.1061/(ASCE)BE.1943-5592.0000704
    [8] 闫泽宇. 节段预制拼装UHPC胶接缝抗剪性能试验及有限元分析[J]. 公路工程, 2019, 44(6): 228 − 233. doi: 10.19782/j.cnki.1674-0610.2019.06.043

    YAN Zeyu. Experimental and numerical analysis on shear behavior of epoxied joints in precast UHPC segmental bridges [J]. Highway Engineering, 2019, 44(6): 228 − 233. (in Chinese) doi: 10.19782/j.cnki.1674-0610.2019.06.043
    [9] 刘桐旭. 节段预制拼装UHPC梁接缝抗剪性能试验与理论研究[D]. 南京: 东南大学, 2017.

    LIU Tongxu. Experimental and theoretical research on shear behavior of joints in precast UHPC segmental bridges [D]. Nanjing: Southeast University, 2017. (in Chinese)
    [10] 闫泽宇. 节段预制拼装UHPC接缝抗剪性能研究[D]. 长沙: 湖南大学, 2019.

    YAN Zeyu. Study on shear performance of joints in precast UHPC segmental bridge [D]. Changsha: Hunan University, 2019. (in Chinese)
    [11] 轩帅飞, 郑辉, 梁雪娇. 超高性能混凝土预制节段梁剪切性能有限元分析[J]. 湖南工业大学学报, 2020, 34(2): 24 − 30.

    XUAN Shuaifei, ZHENG Hui, LIANG Xuejiao. Finite element analysis of shear performance of ultra-high performance concrete precast segmental beams [J]. Journal of Hunan University of Technology, 2020, 34(2): 24 − 30. (in Chinese)
    [12] GOPAL B A, HEJAZI F, HAFEZOLGHORANI M, et al. Numerical analysis and experimental testing of ultra-high performance fiber reinforced concrete keyed dry and epoxy joints in precast segmental bridge girders [J]. International Journal of Advanced Structural Engineering, 2019, 11(4): 463 − 472. doi: 10.1007/s40091-019-00246-6
    [13] HUSSEIN H H, SARGAND S M, STEINBERG E P. Shape optimization of UHPC shear keys for precast, prestressed, adjacent box-girder bridges [J]. Journal of Bridge Engineering, 2018, 23(4): 04018009. doi: 10.1061/(ASCE)BE.1943-5592.0001220
    [14] YOUSEF A M, TAHWIA A M, MARAMI N A. Minimum shear reinforcement for ultra-high-performance fiber reinforced concrete deep beams [J]. Construction and Building Materials, 2018, 184: 177 − 185. doi: 10.1016/j.conbuildmat.2018.06.022
    [15] 武芳文, 冯彦鹏, 戴君, 等. 钢-UHPC组合结构中栓钉剪力键力学性能研究[J]. 工程力学, 2022, 39(2): 222 − 234, 243. doi: 10.6052/j.issn.1000-4750.2021.05.0389

    WU Fangwen, FENG Yanpeng, DAI Jun, et al. Study on mechanical properties of stud shear connectors in steel-UHPC composite structures [J]. Engineering Mechanics, 2022, 39(2): 222 − 234, 243. (in Chinese) doi: 10.6052/j.issn.1000-4750.2021.05.0389
    [16] SINGH M, SHEIKH A H, ALI M S M, et al. Experimental and numerical study of the flexural behaviour of ultra-high-performance fibre reinforced concrete beams [J]. Construction and Building Materials, 2017, 138: 12 − 25. doi: 10.1016/j.conbuildmat.2017.02.002
    [17] 鞠彦忠, 王德弘, 李秋晨, 等. 钢纤维掺量对活性粉末混凝土力学性能的影响[J]. 实验力学, 2011, 26(3): 254 − 260.

    JU Yanzhong, WANG Dehong, LI Qiuchen, et al. On the influence of steel fiber volume fraction on mechanical properties of reactive powder concrete [J]. Journal of Experimental Mechanics, 2011, 26(3): 254 − 260. (in Chinese)
    [18] 管品武, 涂雅筝, 张普, 等. 超高性能混凝土单轴拉压本构关系研究[J]. 复合材料学报, 2019, 36(5): 1295 − 1305. doi: 10.13801/j.cnki.fhclxb.20180703.004

    GUAN Pinwu, TU Yazheng, ZHANG Pu, et al. A review on constitutive relationship of ultra-high-performance concrete under uniaxial compression and tension [J]. Acta Materiae Compositae Sinica, 2019, 36(5): 1295 − 1305. (in Chinese) doi: 10.13801/j.cnki.fhclxb.20180703.004
    [19] 聂建国, 王宇航. ABAQUS中混凝土本构模型用于模拟结构静力行为的比较研究[J]. 工程力学, 2013, 30(4): 59 − 67. doi: 10.6052/j.issn.1000-4750.2011.07.0420

    NIE Jianguo, WANG Yuhang. Comparison study of constitutive model of concrete in abaqus for static analysis of structures [J]. Engineering Mechanics, 2013, 30(4): 59 − 67. (in Chinese) doi: 10.6052/j.issn.1000-4750.2011.07.0420
    [20] YOO D Y, LEE J H, YOON Y S. Effect of fiber content on mechanical and fracture properties of ultra-high-performance fiber reinforced cementitious composites [J]. Composite Structures, 2013, 106: 742 − 753. doi: 10.1016/j.compstruct.2013.07.033
    [21] MAHMUD G H, YANG Z J, HASSAN A M T. Experimental and numerical studies of size effects of ultra-high-performance steel fibre reinforced concrete (UHPFRC) beams [J]. Construction and Building Materials, 2013, 48: 1027 − 1034. doi: 10.1016/j.conbuildmat.2013.07.061
    [22] NIE X F, ZHANG S S, CHEN G M, et al. Strengthening of RC beams with rectangular web openings using externally bonded FRP: numerical simulation [J]. Composite Structures, 2020, 248: 112552. doi: 10.1016/j.compstruct.2020.112552
    [23] 王建超. 节段预制拼装混凝土桥梁接缝抗剪性能试验研究[D]. 南京: 东南大学, 2011.

    WANG Jianchao. Experimental study on shear behaviour of joints in precast concrete segmental bridges [J]. Nanjing: Southeast University, 2011. (in Chinese)
    [24] American Association of State Highway and Transportation Officials (AASHTO). Guide specifications for design and construction of segmental concrete bridges (2nd ed.) [S]. Washington, D. C: AASHTO, 2003.
    [25] 张哲, 邵旭东, 李文光, 等. 超高性能混凝土轴拉性能试验[J]. 中国公路学报, 2015, 28(8): 50 − 58. doi: 10.3969/j.issn.1001-7372.2015.08.007

    ZHANG Zhe, SHAO Xudong, LI Wenguang, et al. Axial tensile behavior test of ultra-high-performance concrete [J]. China Journal of Highway and Transport, 2015, 28(8): 50 − 58. (in Chinese) doi: 10.3969/j.issn.1001-7372.2015.08.007
    [26] YANG I H, JOH C, KIM B S. Shear behaviour of ultra-high-performance fibre-reinforced concrete beams without stirrups [J]. Magazine of Concrete Research, 2012, 64(11): 979 − 993. doi: 10.1680/macr.11.00153
    [27] LEE J Y, YUAN T F, SHIN H O, et al. Strategic use of steel fibers and stirrups on enhancing impact resistance of ultra-high-performance fiber-reinforced concrete beams [J]. Cement and Concrete Composites, 2020, 107: 103499. doi: 10.1016/j.cemconcomp.2019.103499
    [28] 陈宝春, 林毅焌, 杨简, 等. 超高性能纤维增强混凝土中纤维作用综述[J]. 福州大学学报, 2020, 48(1): 58 − 68.

    CHEN Baochun, LIN Yijun, YANG Jian, et al. Review on fiber function in ultra-high performance fiber reinforced concrete [J]. Journal of Fuzhou University, 2020, 48(1): 58 − 68. (in Chinese)
    [29] ZHOU X M, MICKLEBOROUGH N, LI Z J. Shear strength of joints in precast concrete segmental bridges [J]. ACI Structural Journal, 2015, 102(1): 3 − 11.
    [30] JIANG H B, CHEN L, MA Z J, et al. Shear behavior of dry joints with castellated keys in precast concrete segmental bridges [J]. Journal of Bridge Engineering, 2015, 20(2): 04014062. doi: 10.1061/(ASCE)BE.1943-5592.0000649
    [31] JONES L L. Shear test on joints between precast post-tensioned units [J]. Magazine of Concrete Research, 1959, 11(31): 25 − 30. doi: 10.1680/macr.1959.11.31.25
    [32] 张永涛, 李刚, 郑和晖. 预制UHPC-灌注RC组合桩基方案设计及试验研究[J]. 工程力学, 2021, 38(增刊): 45 − 51, 65. doi: 10.6052/j.issn.1000-4750.2020.04.S008

    ZHANG Yongtao, LI Gang, ZHENG Hehui. Scheme design and experimental study of prefabricated UHPC-perfusion RC composite piles [J]. Engineering Mechanics, 2021, 38(Suppl): 45 − 51, 65. (in Chinese) doi: 10.6052/j.issn.1000-4750.2020.04.S008
  • 加载中
图(20) / 表(4)
计量
  • 文章访问数:  317
  • HTML全文浏览量:  174
  • PDF下载量:  102
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-11-11
  • 修回日期:  2022-06-10
  • 网络出版日期:  2022-06-24
  • 刊出日期:  2023-06-25

目录

    /

    返回文章
    返回