FINITE ELEMENT MODELLING OF THE SHEAR BEHAVIOR OF JOINTS IN PRECAST SEGMENTAL UHPC BRIDGE GIRDERS
-
摘要: 该文采用有限元软件ABAQUS对预制节段超高性能混凝土(UHPC)梁剪力键接缝的抗剪性能进行了三维精细有限元模拟。模型中同时考虑了材料非线性、几何非线性以及UHPC材料的塑性损伤,模拟得到的荷载-滑移曲线和破坏模态等均与试验结果吻合良好。采用经过验证的有限元模型对剪力键接缝的抗剪性能进行了数值参数分析,结果表明:接缝的抗剪承载力及其对应的滑移随着所施加的侧向应力或UHPC强度的增大而增大,但UHPC抗压强度对抗剪承载力的影响大于UHPC抗拉强度,而且UHPC的抗拉压强度之间无固定的相关规律,因此对于UHPC接缝抗剪承载力的计算应分别考虑抗拉强度与抗压强度的影响;由于剪应力分布的不均匀性,抗剪承载力的计算还应考虑多键块的强度折减效应。此外,对剪力键接缝构造的参数分析结果表明:当键块的宽度和总高度相同时,接缝抗剪承载力随着键块相对高度的减小而增大,但当键块相对高度小于1/2时,接缝的抗剪承载力基本保持不变;当键块总面积以及键块数量相同时,多个键块之间的协同工作能力随键块竖向间距的增大而变强;键块深度对接缝抗剪承载力的影响不大。与目前被广泛采用的普通混凝土接缝抗剪承载力的计算公式对比,有限元的预测值明显小于计算公式的预测值,且偏差随着侧向应力的增大而增大,因此有必要针对UHPC剪力键接缝提出新的抗剪承载力计算式。Abstract: The finite element (FE) software ABAQUS was used to establish a three-dimensional fine FE model for the shear behavior of the keyed joints in the precast segmental ultra-high-performance concrete (UHPC) bridge girders. Material nonlinearity, geometric nonlinearity, and plastic damage of UHPC material were carefully considered in the model. The predicted load-slip curves and failure modes of the joints from the FE model are in a good agreement with the experimental results. The verified FE model was then used to analyze the shear behavior of the keyed joints. The results showed that: the shear capacity of the joints and its corresponding slip increase with the increase of the applied confining pressure or UHPC strength, but the influence of UHPC compressive strength on the shear capacity of the keyed joint is greater than that of UHPC tensile strength; in addition, there is no fixed correlation discipline between UHPC tensile strength and compressive strength, and thus for the calculation of the shear capacity of UHPC joints, the effects of UHPC tensile strength and compressive strength should be considered separately; due to the inhomogeneity of the shear stress distribution, the calculation of the shear capacity of the keyed joint should also consider the strength reduction effect of the multi-keys. In addition, the results of parametric analysis on the layout of keyed joints showed that: when the width and total height of the keys have the same dimension, the shear capacity of the joint increases with the decrease of the relative height of keys; however, when the relative height of keys is less than 1/2, the shear capacity of the joint remains basically unchanged; when the total area and number of keys are the same, the cooperative work ability between multiple keys becomes stronger with the increase of the key spacing; the depth of the keys has little effect on the shear capacity of the joint. Compared with the currently widely used formula for calculating the shear capacity of ordinary concrete joints, the FE predicted shear capacity of UHPC keyed joint is significantly smaller than the predicted result from the calculation formula, and the deviation increases with the increase of confining pressure. Therefore, it is necessary to propose a new calculation formula for the shear capacity of UHPC keyed joints.
-
Key words:
- precast segmental girder /
- UHPC joints /
- shear behavior /
- finite element modelling /
- parametric analysis
-
表 1 试件参数
Table 1. Parameters of specimens
模型编号 接缝类型 剪力键数量 σn/MPa Ak/mm2 Asm/mm2 D1-10 干接缝 1 10 15 000 145 000 E1-10 胶接缝 1 10 15 000 145 000 D1-20 干接缝 1 20 15 000 145 000 E1-20 胶接缝 1 20 15 000 145 000 D3-10 干接缝 3 10 45 000 115 000 E3-10 胶接缝 3 10 45 000 115 000 D3-20 干接缝 3 20 45 000 115 000 E3-20 胶接缝 3 20 45 000 115 000 D5-10 干接缝 5 10 75 000 85 000 E5-10 胶接缝 5 10 75 000 85 000 D5-20 干接缝 5 20 75 000 85 000 E5-20 胶接缝 5 20 75 000 85 000 注:编号中字母D或E分别为接缝的类型为干接缝或胶接缝,数字1、3或5分别为剪力键的数量为1、3或5,数字10或20分别为施加的侧向应力为10 MPa或20 MPa;σn为侧向应力;Ak为剪力键块根部总面积;Asm为接缝平接部分总面积。 表 2 模型参数
Table 2. Parameters of models
模型编号 fc/MPa εco ft/MPa E/GPa μ D1-10 153.9 0.0046 11.9 46.5 0.50 E1-10 153.9 0.0046 11.9 46.5 0.47 D1-20 153.9 0.0046 11.9 46.5 0.40 E1-20 153.9 0.0046 11.9 46.5 0.39 D3-10 147.8 0.0044 12.1 44.8 0.50 E3-10 147.8 0.0044 12.1 44.8 0.48 D3-20 147.8 0.0044 12.1 44.8 0.42 E3-20 147.8 0.0044 12.1 44.8 0.40 D5-10 151.7 0.0045 13.2 45.8 0.50 E5-10 151.7 0.0045 13.2 45.8 0.48 D5-20 151.7 0.0045 13.2 45.8 0.42 E5-20 151.7 0.0045 13.2 45.8 0.41 注:fc为UHPC的轴心抗压强度;εco为UHPC的峰值压应变;ft为UHPC的抗拉强度;E为UHPC的弹性模量;μ为材料界面的摩擦系数。 表 3 UHPC塑性参数
Table 3. Plastic parameters of UHPC
ψ ε fb0/fc0 K η 30° 0.1 1.05 2/3 1×10−5 注:ψ为膨胀角;ε为势函数偏心率;fb0/fc0为双轴极限抗压强度与单轴极限抗压强度之比;K为拉伸子午面上与压缩子午面上的第二应力不变量之比;η为粘性系数。 表 4 试验与模拟结果的对比
Table 4. Comparison between tested results and predicted results
试件编号 弹性刚度 峰值荷载 峰值荷载对应位移 试验结果/(kN/mm) 模拟结果/(kN/mm) $ \dfrac{\mathrm{模}\mathrm{拟}\mathrm{值}}{\mathrm{试}\mathrm{验}\mathrm{值}} $ 试验结果/kN 模拟结果/kN $ \dfrac{\mathrm{模}\mathrm{拟}\mathrm{值}}{\mathrm{试}\mathrm{验}\mathrm{值}} $ 试验结果/mm 模拟结果/mm $ \dfrac{\mathrm{模}\mathrm{拟}\mathrm{值}}{\mathrm{试}\mathrm{验}\mathrm{值}} $ D1-10 2000 1854 0.93 1278 1295 1.01 1.50 2.11 1.41 E1-10 2509 2034 0.81 1601 1513 0.95 1.50 2.45 1.63 D1-20 2860 2402 0.84 1826 1829 1.01 1.75 2.10 1.20 E1-20 3464 2577 0.74 2288 2183 0.95 1.75 2.67 1.51 D3-10 3177 2064 0.65 1953 1876 0.96 1.75 1.81 1.03 E3-10 3440 2312 0.67 2258 2168 0.96 2.00 1.60 0.80 D3-20 2000 2014 1.01 2705 2738 1.01 2.20 2.50 1.14 E3-20 2116 2529 1.20 2864 2827 0.99 2.20 1.55 0.70 D5-10 2154 2264 1.05 2914 2740 0.94 2.20 2.33 1.06 E5-10 2206 2216 1.01 2984 2964 0.99 2.20 2.23 1.01 D5-20 1938 2067 1.07 3216 3398 1.06 2.70 2.09 0.77 E5-20 2106 2221 1.06 3495 3563 1.02 2.60 2.09 0.80 平均值 − − 0.92 − − 0.98 − − 1.09 方差 − − 0.17 − − 0.03 − − 0.29 变异系数 − − 0.18 − − 0.04 − − 0.27 -
[1] 邵旭东, 邱明红, 晏班夫, 等. 超高性能混凝土在国内外桥梁工程中的研究与应用进展[J]. 材料导报, 2017, 31(12): 33 − 43. doi: 10.11896/j.issn.1005-023X.2017.023.004SHAO Xudong, QIU Minghong, YAN Banfu, et al. A review on the research and application of ultra-high-performance concrete in bridge engineering around the world [J]. Materials Reports, 2017, 31(12): 33 − 43. (in Chinese) doi: 10.11896/j.issn.1005-023X.2017.023.004 [2] 邵旭东, 樊伟, 黄政宇. 超高性能混凝土在结构中的应用[J]. 土木工程学报, 2021, 54(1): 1 − 13. doi: 10.15951/j.tmgcxb.2021.01.001SHAO Xudong, FAN Wei, HUANG Zhengyu. Application of ultra-high-performance concrete in engineering structures [J]. China Civil Engineering Journal, 2021, 54(1): 1 − 13. (in Chinese) doi: 10.15951/j.tmgcxb.2021.01.001 [3] KIM Y J, CHIN W J, JEON S J. Interface shear strength at joints of ultra-high performance concrete structures [J]. International Journal of Concrete Structures and Materials, 2018, 12(6): 767 − 780. [4] KIM H S, CHIN W J, CHO J R, et al. An experimental study on the behavior of shear keys according to the curing time of UHPC [J]. Engineering, 2015, 7(4): 212 − 218. doi: 10.4236/eng.2015.74017 [5] GOPAL B A, HEJAZI F, HAFEZOLGHORANI M, et al. Shear strength of dry and epoxy joints for ultra-high-performance fiber-reinforced concrete [J]. ACI Structural Journal, 2020, 117(1): 279 − 288. [6] LIU T X, WANG Z, GUO J, et al. Shear strength of dry joints in precast UHPC segmental bridges: experimental and theoretical research [J]. Journal of Bridge Engineering, 2019, 24(1): 04018100. doi: 10.1061/(ASCE)BE.1943-5592.0001323 [7] VOO Y L, FOSTER S J, VOO C C. Ultrahigh-performance concrete segmental bridge technology: toward sustainable bridge construction [J]. Journal of Bridge Engineering, 2015, 20(8): 5014001. doi: 10.1061/(ASCE)BE.1943-5592.0000704 [8] 闫泽宇. 节段预制拼装UHPC胶接缝抗剪性能试验及有限元分析[J]. 公路工程, 2019, 44(6): 228 − 233. doi: 10.19782/j.cnki.1674-0610.2019.06.043YAN Zeyu. Experimental and numerical analysis on shear behavior of epoxied joints in precast UHPC segmental bridges [J]. Highway Engineering, 2019, 44(6): 228 − 233. (in Chinese) doi: 10.19782/j.cnki.1674-0610.2019.06.043 [9] 刘桐旭. 节段预制拼装UHPC梁接缝抗剪性能试验与理论研究[D]. 南京: 东南大学, 2017.LIU Tongxu. Experimental and theoretical research on shear behavior of joints in precast UHPC segmental bridges [D]. Nanjing: Southeast University, 2017. (in Chinese) [10] 闫泽宇. 节段预制拼装UHPC接缝抗剪性能研究[D]. 长沙: 湖南大学, 2019.YAN Zeyu. Study on shear performance of joints in precast UHPC segmental bridge [D]. Changsha: Hunan University, 2019. (in Chinese) [11] 轩帅飞, 郑辉, 梁雪娇. 超高性能混凝土预制节段梁剪切性能有限元分析[J]. 湖南工业大学学报, 2020, 34(2): 24 − 30.XUAN Shuaifei, ZHENG Hui, LIANG Xuejiao. Finite element analysis of shear performance of ultra-high performance concrete precast segmental beams [J]. Journal of Hunan University of Technology, 2020, 34(2): 24 − 30. (in Chinese) [12] GOPAL B A, HEJAZI F, HAFEZOLGHORANI M, et al. Numerical analysis and experimental testing of ultra-high performance fiber reinforced concrete keyed dry and epoxy joints in precast segmental bridge girders [J]. International Journal of Advanced Structural Engineering, 2019, 11(4): 463 − 472. doi: 10.1007/s40091-019-00246-6 [13] HUSSEIN H H, SARGAND S M, STEINBERG E P. Shape optimization of UHPC shear keys for precast, prestressed, adjacent box-girder bridges [J]. Journal of Bridge Engineering, 2018, 23(4): 04018009. doi: 10.1061/(ASCE)BE.1943-5592.0001220 [14] YOUSEF A M, TAHWIA A M, MARAMI N A. Minimum shear reinforcement for ultra-high-performance fiber reinforced concrete deep beams [J]. Construction and Building Materials, 2018, 184: 177 − 185. doi: 10.1016/j.conbuildmat.2018.06.022 [15] 武芳文, 冯彦鹏, 戴君, 等. 钢-UHPC组合结构中栓钉剪力键力学性能研究[J]. 工程力学, 2022, 39(2): 222 − 234, 243. doi: 10.6052/j.issn.1000-4750.2021.05.0389WU Fangwen, FENG Yanpeng, DAI Jun, et al. Study on mechanical properties of stud shear connectors in steel-UHPC composite structures [J]. Engineering Mechanics, 2022, 39(2): 222 − 234, 243. (in Chinese) doi: 10.6052/j.issn.1000-4750.2021.05.0389 [16] SINGH M, SHEIKH A H, ALI M S M, et al. Experimental and numerical study of the flexural behaviour of ultra-high-performance fibre reinforced concrete beams [J]. Construction and Building Materials, 2017, 138: 12 − 25. doi: 10.1016/j.conbuildmat.2017.02.002 [17] 鞠彦忠, 王德弘, 李秋晨, 等. 钢纤维掺量对活性粉末混凝土力学性能的影响[J]. 实验力学, 2011, 26(3): 254 − 260.JU Yanzhong, WANG Dehong, LI Qiuchen, et al. On the influence of steel fiber volume fraction on mechanical properties of reactive powder concrete [J]. Journal of Experimental Mechanics, 2011, 26(3): 254 − 260. (in Chinese) [18] 管品武, 涂雅筝, 张普, 等. 超高性能混凝土单轴拉压本构关系研究[J]. 复合材料学报, 2019, 36(5): 1295 − 1305. doi: 10.13801/j.cnki.fhclxb.20180703.004GUAN Pinwu, TU Yazheng, ZHANG Pu, et al. A review on constitutive relationship of ultra-high-performance concrete under uniaxial compression and tension [J]. Acta Materiae Compositae Sinica, 2019, 36(5): 1295 − 1305. (in Chinese) doi: 10.13801/j.cnki.fhclxb.20180703.004 [19] 聂建国, 王宇航. ABAQUS中混凝土本构模型用于模拟结构静力行为的比较研究[J]. 工程力学, 2013, 30(4): 59 − 67. doi: 10.6052/j.issn.1000-4750.2011.07.0420NIE Jianguo, WANG Yuhang. Comparison study of constitutive model of concrete in abaqus for static analysis of structures [J]. Engineering Mechanics, 2013, 30(4): 59 − 67. (in Chinese) doi: 10.6052/j.issn.1000-4750.2011.07.0420 [20] YOO D Y, LEE J H, YOON Y S. Effect of fiber content on mechanical and fracture properties of ultra-high-performance fiber reinforced cementitious composites [J]. Composite Structures, 2013, 106: 742 − 753. doi: 10.1016/j.compstruct.2013.07.033 [21] MAHMUD G H, YANG Z J, HASSAN A M T. Experimental and numerical studies of size effects of ultra-high-performance steel fibre reinforced concrete (UHPFRC) beams [J]. Construction and Building Materials, 2013, 48: 1027 − 1034. doi: 10.1016/j.conbuildmat.2013.07.061 [22] NIE X F, ZHANG S S, CHEN G M, et al. Strengthening of RC beams with rectangular web openings using externally bonded FRP: numerical simulation [J]. Composite Structures, 2020, 248: 112552. doi: 10.1016/j.compstruct.2020.112552 [23] 王建超. 节段预制拼装混凝土桥梁接缝抗剪性能试验研究[D]. 南京: 东南大学, 2011.WANG Jianchao. Experimental study on shear behaviour of joints in precast concrete segmental bridges [J]. Nanjing: Southeast University, 2011. (in Chinese) [24] American Association of State Highway and Transportation Officials (AASHTO). Guide specifications for design and construction of segmental concrete bridges (2nd ed.) [S]. Washington, D. C: AASHTO, 2003. [25] 张哲, 邵旭东, 李文光, 等. 超高性能混凝土轴拉性能试验[J]. 中国公路学报, 2015, 28(8): 50 − 58. doi: 10.3969/j.issn.1001-7372.2015.08.007ZHANG Zhe, SHAO Xudong, LI Wenguang, et al. Axial tensile behavior test of ultra-high-performance concrete [J]. China Journal of Highway and Transport, 2015, 28(8): 50 − 58. (in Chinese) doi: 10.3969/j.issn.1001-7372.2015.08.007 [26] YANG I H, JOH C, KIM B S. Shear behaviour of ultra-high-performance fibre-reinforced concrete beams without stirrups [J]. Magazine of Concrete Research, 2012, 64(11): 979 − 993. doi: 10.1680/macr.11.00153 [27] LEE J Y, YUAN T F, SHIN H O, et al. Strategic use of steel fibers and stirrups on enhancing impact resistance of ultra-high-performance fiber-reinforced concrete beams [J]. Cement and Concrete Composites, 2020, 107: 103499. doi: 10.1016/j.cemconcomp.2019.103499 [28] 陈宝春, 林毅焌, 杨简, 等. 超高性能纤维增强混凝土中纤维作用综述[J]. 福州大学学报, 2020, 48(1): 58 − 68.CHEN Baochun, LIN Yijun, YANG Jian, et al. Review on fiber function in ultra-high performance fiber reinforced concrete [J]. Journal of Fuzhou University, 2020, 48(1): 58 − 68. (in Chinese) [29] ZHOU X M, MICKLEBOROUGH N, LI Z J. Shear strength of joints in precast concrete segmental bridges [J]. ACI Structural Journal, 2015, 102(1): 3 − 11. [30] JIANG H B, CHEN L, MA Z J, et al. Shear behavior of dry joints with castellated keys in precast concrete segmental bridges [J]. Journal of Bridge Engineering, 2015, 20(2): 04014062. doi: 10.1061/(ASCE)BE.1943-5592.0000649 [31] JONES L L. Shear test on joints between precast post-tensioned units [J]. Magazine of Concrete Research, 1959, 11(31): 25 − 30. doi: 10.1680/macr.1959.11.31.25 [32] 张永涛, 李刚, 郑和晖. 预制UHPC-灌注RC组合桩基方案设计及试验研究[J]. 工程力学, 2021, 38(增刊): 45 − 51, 65. doi: 10.6052/j.issn.1000-4750.2020.04.S008ZHANG Yongtao, LI Gang, ZHENG Hehui. Scheme design and experimental study of prefabricated UHPC-perfusion RC composite piles [J]. Engineering Mechanics, 2021, 38(Suppl): 45 − 51, 65. (in Chinese) doi: 10.6052/j.issn.1000-4750.2020.04.S008 -