SEISMIC FRAGILITY ANALYSIS OF FRAME-SUPPORTED MULTI-RIBBED COMPOSITE WALL STRUCTURE
-
摘要: 地震易损性分析通过概率计算建立地震强度和结构损伤之间的关系,可以实现结构地震风险预测和评估。为了对框支密肋复合墙结构在不同地震强度下的抗震能力进行评估,该文采用OpenSEES有限元软件,选用密肋复合墙的刚架-等效斜撑简化模型,建立结构整体分析模型,基于增量动力时程分析(IDA)和易损性分析,研究不同参数的变化对结构抗震性能的影响。结果表明:转换层刚度比的变化对结构性能影响显著,结构竖向布置均匀对抗震有利,建议8度区框支密肋复合墙结构的刚度比取值为1.0~2.5;肋柱数量、砌块强度的变化可对结构的抗震性能产生影响,应合理选择;混凝土强度等级对结构的抗震性能影响较大,在实际应用中应在满足规范要求的前提下选择较大的混凝土强度等级。Abstract: Seismic fragility analysis can be used to predict and assess the seismic risk of structures by quantitatively establishing the relationship between seismic intensity and structural damage. This paper aims to evaluate the seismic capacity of frame-supported multi-ribbed composite wall structure under different seismic intensities. Models of the whole building are constructed in OpenSEES, which use the simplified frame-equivalent diagonal brace model of multi-ribbed composite wall, and the influence of different parameters on the seismic performance of the structure is studied based on the Incremental Dynamic Analysis (IDA) and fragility analysis. The results show that the change of the stiffness ratio of the transfer floor has significant impact on the structural performance. Uniform arrangement of the structure along the vertical direction can improve the seismic resistance. It is suggested that: the stiffness ratio of the frame structures with multi-ribbed composite wall in areas with an seismic intensity of 8 should be 1.0 - 2.5; the number of ribbed columns and block strength can affect the seismic performance of the structure, which should be reasonably selected; and the concrete strength has significant effect on the seismic performance of the structure, and concrete with higher grade should be adopted in practice while the code requirements should be satisfied.
-
表 1 结构配筋表
Table 1. Structural reinforcement
构件 构件尺寸 纵筋 箍筋 框支梁 400 mm×800 mm 6 16 8 mm@100 mm框支柱 600 mm×600 mm 8 16 8 mm@100 mm连接梁 200 mm×400 mm 4 16 8 mm@100 mm连接柱 400 mm×400 mm 4 16 8 mm@100 mm肋梁 100 mm×200 mm 4 6 6 mm@100 mm肋柱 100 mm×200 mm 4 6 6 mm@100 mm表 2 各模型工况布置情况和转换层刚度比
Table 2. Layout and transfer-floor stiffness ratio of each model
模型 底层墙体布置 刚度比$k_{\text{2} }/k_{\text{1}}$ 模型M1 底部布置0道墙体 4.973 模型M2 底部布置2道墙体 2.636 模型M3 底部布置4道墙体 1.793 模型M4 底部布置6道墙体 1.359 模型M5 底部布置8道墙体 1.094 模型M6 底部布置12道墙体 0.787 表 3 修正系数的取值
Table 3. Values of correction coefficient
墙板中肋柱跨数 1跨 (2根肋柱) 2跨 (3根肋柱) 3跨 (4根肋柱) 4跨 (5根肋柱) $ \zeta $ 0.11 0.12 0.18 0.23 表 4 模态分析各阶频率计算值与试验值对比
Table 4. Modal analysis natural vibration of calculated and experimental values
振型序号 试验值/Hz 计算值/Hz 误差/(%) 1 6.90 7.14 3.36 2 18.32 19.36 5.37 3 31.50 32.51 3.11 表 5 框支密肋复合墙结构性能水准和极限状态界限值
Table 5. Description and
${\theta _{\max }}$ corresponding to limit states结构性能水准 性能水准的宏观描述 ${\theta _{\max }}$界限值 立即使用LS1 结构没有出现塑性侧移,基本完好,不经修补便可继续使用 0.0010 生命安全LS2 结构表面发生破坏,非结构构件破坏比较严重,但不会威胁到生命安全,修复后继续使用 0.0050 防止倒塌LS3 结构强度及刚度都已严重退化,塑性变形大,处于局部或整体倒塌临界状态,结构随时可能倒塌 0.0083 表 6 选取的地震波信息
Table 6. Selected ground motion
编号 地震波名称 发生时间 测点位置 PGA/g 01 El-Centro 1940 El-Centro calif 0.349 02 Westmorland 1981 Westmorland Fire 0.368 03 Kocaeli,Turkey 1999 Izmit,090(ERD) 0.224 04 Imperial Valley 1979 El-Centro Array 0.139 05 Morgan Hil 1 1984 Gilroy Array #3 0.395 06 BigBear 1992 Civic center grounds 0.491 07 TH1TG035 1980 Del Valle Dan(Toe),Calif S 0.212 08 Whittier Narrows 1987 Compton-Castlegate St 0.332 09 Northridge-01 1994 LA-Temple&Hope 0.184 10 Duzce,Turkey 1999 Duzce 0.404 -
[1] 吕大刚, 刘洋, 于晓辉. 第二代基于性能地震工程中的地震易损性模型及正逆概率风险分析[J]. 工程力学, 2019, 36(9): 1 − 11. doi: 10.6052/j.issn.1000-4750.2018.07.ST08LYU Dagang, LIU Yang, YU Xiaohui. Seismic fragility models and forward-backward probabilistic risk analysis in second-generation performance-based earthquake engineering [J]. Engineering Mechanics, 2019, 36(9): 1 − 11. (in Chinese) doi: 10.6052/j.issn.1000-4750.2018.07.ST08 [2] 许民泽, 崔春义, 李静波, 等. 饱和砂土场地中地铁车站结构地震易损性分析[J]. 工程力学, 2021, 38(增刊): 251 − 258. doi: 10.6052/j.issn.1000-4750.2020.05.S044XU Minze, CUI Chunyi, LI Jingbo, et al. Seismic vulnerability analysis of subway station embedded in saturated sand layers [J]. Engineering Mechanics, 2021, 38(Suppl): 251 − 258. (in Chinese) doi: 10.6052/j.issn.1000-4750.2020.05.S044 [3] MANDER J B, DHAKAL R P, MASHIKO N, et al. Incremental dynamic analysis applied to seismic financial risk assessment of bridges [J]. Engineering Structures, 2007, 29(10): 2662 − 2672. doi: 10.1016/j.engstruct.2006.12.015 [4] 马千里, 叶列平, 陆新征, 等. 采用逐步增量弹塑性时程方法对RC框架结构推覆分析侧力模式的研究[J]. 建筑结构学报, 2008, 29(2): 132 − 140. doi: 10.3321/j.issn:1000-6869.2008.02.020MA Qianli, YE Lieping, LU Xinzheng, et al. Study on lateral load patterns of pushover analysis using incremental dynamical analysis for RC frame structure [J]. Journal of Building Structures, 2008, 29(2): 132 − 140. (in Chinese) doi: 10.3321/j.issn:1000-6869.2008.02.020 [5] 王东明, 高永武. 城市建筑群概率地震灾害风险评估研究[J]. 工程力学, 2019, 36(7): 165 − 173. doi: 10.6052/j.issn.1000-4750.2018.06.0331WANG Dongming, GAO Yongwu. Study on the probsblistic seismic disaster risk assessment of urban building complex [J]. Engineering Mechanics, 2019, 36(7): 165 − 173. (in Chinese) doi: 10.6052/j.issn.1000-4750.2018.06.0331 [6] 丁永刚. 框支密肋壁板结构墙梁受力性能及设计计算方法研究[D]. 西安: 西安建筑科技大学, 2006.DING Yonggang. Research on load-bearing performance and design method of frame-supported multi-ribbed wall beam [D]. Xi’an: Xi’an University of Architecture and Technology, 2006. (in Chinese) [7] 田洁. 框支密肋壁板结构非线性地震反应分析及基于损伤性能的抗震能力评估方法研究[D]. 西安: 西安建筑科技大学, 2007.TIAN Jie. The nonlinear earthquake response analysis of frame-supported multi-ribbed slab structure and damage performance based seismic evaluation methods [D]. Xi’an: Xi’an University of Architecture and Technology, 2007. (in Chinese) [8] 魏晓. 框支密肋复合墙结构墙梁受力机理及结构抗震设计理论研究[D]. 西安: 西安建筑科技大学, 2008.WEI Xiao. Stress mechanism of frame-supported multi-ribbed composite wall beam and structural seismic design theory [D]. Xi’an: Xi’an University of Architecture and Technology, 2008. (in Chinese) [9] 夏雷. 底部框架密肋复合墙结构组合作用效应及非线性分析方法研究[D]. 北京: 北京交通大学, 2012.XIA Lei. Study on composite action effect and non-linear analysis method of multi-ribbed composite wall structure with frame at the bottom [D]. Beijing: Beijing Jiaotong University, 2012. (in Chinese) [10] 庞乃勇, 贾英杰, 夏雷. 框支密肋复合墙梁竖向承载力影响因素分析[J]. 工业建筑, 2012, 42(2): 54 − 57.PANG Naiyong, JIA Yingjie, XIA Lei. Analysis of factors influencing performance of frame-supported multi-ribbed wall beam under vertical load [J]. Industrial Construction, 2012, 42(2): 54 − 57. (in Chinese) [11] 何玉阳. 框支密助复合墙结构振动台试验与抗震性能评定[D]. 北京: 北京交通大学, 2015.HE Yuyang. Frame-supported multi-ribbed composite wall shaking table test and seismic performance evaluation. [D]. Beijing: Beijing Jiaotong University, 2015. (in Chinese) [12] JGJ/T 275−2013, 中华人民共和国住房和城乡建设部, 密肋复合板结构技术规程[S]. 北京: 中国建筑工业出版社, 2013.JGJ/T 275−2013, Ministry of Housing and Urban-Rural Development of the People's Republic of China, Technical specification for multi-ribbed composite panel structures [S]. Bejing: China Architecture & Building Press, 2013. (in Chinese) [13] 姚谦峰, 荆罡, 黄炜, 等. 密肋壁板结构刚架-等效斜撑计算模型研究[J]. 工业建筑, 2009, 39(8): 52 − 56.YAO Qianfeng, JING Gang, HUANG Wei, et al. Study on rigid frame-equivalent brace model of multi-ribbed slab structure [J]. Industrial Construction, 2009, 39(8): 52 − 56. (in Chinese) [14] 黄炜, 张程华, 姚谦峰, 等. 密肋壁板结构弹塑性计算模型研究[J]. 振动与冲击, 2011, 30(2): 233 − 237.HUANG Wei, ZHANG Chenghua, YAO Qianfeng, et al. Elasto-plastic models of a multi-ribbed slab structure [J]. Journal of Vibration and Shock, 2011, 30(2): 233 − 237. (in Chinese) [15] 荆罡, 姚谦峰, 侯莉娜, 等. 密肋壁板结构计算模型及Pushover分析[J]. 世界地震工程, 2009, 25(4): 120 − 125.JING Gang, YAO Qianfeng, HOU Lina, et al. Calculation model and Pushover analysis for a multi-ribbed slab structure [J]. World Earthquake Engineering, 2009, 25(4): 120 − 125. (in Chinese) [16] CLOUGH R W. Effect of stiffness degradation on earthquake ductility requirements [C]// Proceedings of Japan EarthQuake Engineering Symposium. Tokyo, Japan, 1966. [17] 袁泉. 密肋璧板轻框结构非线性地震反应分析[D]. 西安: 西安建筑科技大学, 2003.YUAN Quan. Non-linear earthquake response analysis on multi-ribbed slab with light frame structure [D]. Xi’an: Xi’an University of Architecture and Technology, 2003. (in Chinese) [18] 叶列平, 马千里, 缪志伟. 结构抗震分析用地震动强度指标的研究[J]. 地震工程与工程振动, 2009, 29(4): 9 − 22.YE Lieping, MA Qianli, MIAO Zhiwei. Study on earthquake intensities for seismic analysis of structures [J]. Earthquake Engineering and Engineering Vibration, 2009, 29(4): 9 − 22. (in Chinese) [19] GB 50011−2010, 中华人民共和国住房和城乡建设部, 建筑抗震设计规范[S]. 北京: 中国建筑工业出版社, 2016.GB 50011−2010, Ministry of Housing and Urban-Rural Development of the People's Republic of China, Code for seismic design of buildings [S]. Bejing: China Architecture & Building Press, 2016. (in Chinese) [20] FEMA−350, Recommended seismic design criteria for new steel moment-frame buildings [S]. Washington, D.C.: Federal Emergency Management Agency (FEMA), 2000. [21] 纪晓东, 徐梦超, 庄赟城, 等. 钢筋混凝土剪力墙和连梁易损性曲线研究[J]. 工程力学, 2020, 37(4): 205 − 216. doi: 10.6052/j.issn.1000-4750.2019.09.0549JI Xiaodong, XU Mengchao, ZHUANG Yuncheng, et al. Fragility curves of reinforced concrete shear walls and coupling beams [J]. Engineering Mechanics, 2020, 37(4): 205 − 216. (in Chinese) doi: 10.6052/j.issn.1000-4750.2019.09.0549 [22] VAMVATSIKOS D, CORNELL C A. Applied incremental dynamic analysis [J]. Earthquake Spectra, 2004, 20(2): 523 − 553. doi: 10.1193/1.1737737 [23] 汪梦甫, 曹秀娟, 孙文林. 增量动力分析方法的改进及其在高层混合结构地震危害性评估中的应用[J]. 工程抗震与加固改造, 2010, 32(1): 104 − 109. doi: 10.3969/j.issn.1002-8412.2010.01.019WANG Mengpu, CAO Xiujuan, SUN Wenlin. Incremental dynamic analysis applied to seismic risk assessment of hybrid structure [J]. Earthquake Resistant Engineering and Retrofitting, 2010, 32(1): 104 − 109. (in Chinese) doi: 10.3969/j.issn.1002-8412.2010.01.019 [24] 张令心, 江近仁, 刘洁平. 多层住宅砖房的地震易损性分析[J]. 地震工程与工程振动, 2002, 22(1): 49 − 55. doi: 10.3969/j.issn.1000-1301.2002.01.009ZHANG Lingxin, JIANG Jinren, LIU Jieping. Seismic vulnerability analysis of multistory dwelling brick buildings [J]. Earthquake Engineering and Engineering Vibration, 2002, 22(1): 49 − 55. (in Chinese) doi: 10.3969/j.issn.1000-1301.2002.01.009 [25] 陆新征, 唐代远, 叶列平, 等. 我国7度设防等跨RC框架抗地震倒塌能力研究[J]. 地震工程与工程振动, 2011, 31(5): 13 − 20.LU Xinzheng, TANG Daiyuan, YE Lieping, et al. Study on the seismic collapse resistance of RC frame structures with equal spans in zones with seismic intensity Ⅶ [J]. Earthquake Engineering and Engineering Vibration, 2011, 31(5): 13 − 20. (in Chinese) [26] JGJ 3−2010, 中华人民共和国住房和城乡建设部, 高层建筑混凝土结构技术规程[S]. 北京: 中国建筑工业出版社, 2011.JGJ 3−2010, Ministry of Housing and Urban-Rural Development of the People's Republic of China, Technical specification for concrete structure of tall building [S]. Bejing: China Architecture & Building Press, 2011. (in Chinese) -