留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

多级载荷耦合下的镍钛合金血管支架疲劳强度和寿命预测

张海潞 冯海全 王晓天 王永刚

张海潞, 冯海全, 王晓天, 王永刚. 多级载荷耦合下的镍钛合金血管支架疲劳强度和寿命预测[J]. 工程力学, 2023, 40(6): 236-244. doi: 10.6052/j.issn.1000-4750.2021.11.0862
引用本文: 张海潞, 冯海全, 王晓天, 王永刚. 多级载荷耦合下的镍钛合金血管支架疲劳强度和寿命预测[J]. 工程力学, 2023, 40(6): 236-244. doi: 10.6052/j.issn.1000-4750.2021.11.0862
ZHANG Hai-lu, FENG Hai-quan, WANG Xiao-tian, WANG Yong-gang. FATIGUE STRENGTH AND LIFE PREDICTION OF NITINOL STENT UNDER MULTI-LEVEL LOADS COUPLING[J]. Engineering Mechanics, 2023, 40(6): 236-244. doi: 10.6052/j.issn.1000-4750.2021.11.0862
Citation: ZHANG Hai-lu, FENG Hai-quan, WANG Xiao-tian, WANG Yong-gang. FATIGUE STRENGTH AND LIFE PREDICTION OF NITINOL STENT UNDER MULTI-LEVEL LOADS COUPLING[J]. Engineering Mechanics, 2023, 40(6): 236-244. doi: 10.6052/j.issn.1000-4750.2021.11.0862

多级载荷耦合下的镍钛合金血管支架疲劳强度和寿命预测

doi: 10.6052/j.issn.1000-4750.2021.11.0862
基金项目: 国家自然科学基金项目(12162026);内蒙古自治区科技计划项目(2020GG0024)
详细信息
    作者简介:

    张海潞(1997−),女,河南人,硕士生,主要从事机械设计及理论研究(E-mail: 1520894585@qq.com)

    王晓天(1967−),男,安徽人,主任医师,学士,主要从事临床医学研究(E-mail: wangxiaotian@venmed.com)

    王永刚(1969−),男,江苏人,研究员,硕士,总经理,主要从事生物医学工程研究(E-mail: yonggang69@venmed.com)

    通讯作者:

    冯海全(1972−),男,内蒙古人,教授,博士,博导,主要从事机械设计及理论研究(E-mail: fhq515@163.com)

  • 中图分类号: R318.01

FATIGUE STRENGTH AND LIFE PREDICTION OF NITINOL STENT UNDER MULTI-LEVEL LOADS COUPLING

  • 摘要: 为探究镍钛合金血管支架植入下肢动脉后产生断裂失效的原因,对Absolute Pro下肢动脉支架在多级载荷耦合作用下的疲劳性能进行研究。利用有限元方法对镍钛合金支架在一级(生理脉动、轴向拉伸、压缩、弯曲、扭转)、二级(拉-弯、拉-扭、压-弯、压-扭、弯-扭)和三级(拉-弯-扭、压-弯-扭)载荷下分别进行数值模拟,基于应变法评价支架的疲劳强度,采用名义应力法和断裂力学进行疲劳寿命预测。经疲劳性能分析发现,一级载荷和部分多级载荷下的支架疲劳强度均满足10年疲劳寿命的要求,其中二级载荷的拉-弯和三级载荷的拉-弯-扭下最大交变应变大于疲劳极限,易产生应力集中导致疲劳失效;寿命云图和安全系数显示,在一级载荷下,压缩载荷对支架寿命的影响最大,脉动载荷最小,在二级载荷下,拉-弯载荷影响最大,弯-扭载荷影响最小,在三级载荷下拉-弯-扭对支架寿命的影响大于压-弯-扭;基于断裂力学寿命预测发现,初始裂纹的大小对支架的寿命有显著的影响。该研究结果揭示了多级载荷对支架疲劳强度和寿命的影响,为支架的临床断裂失效机理提供理论参考。
  • 图  1  支架模型

    Figure  1.  Model of stent

    图  2  支架局部网格区域

    Figure  2.  Stent local mesh area

    图  3  支架植入图

    Figure  3.  Stent implantation diagram

    图  4  支架加载示意图

    Figure  4.  Stents loading diagram

    图  5  Absolute Pro支架在多级载荷下的疲劳极限图

    Figure  5.  Fatigue strength diagram of the Absolute Pro stents under multi-level loads

    图  6  支架多级载荷下的弹性应变分布云图

    Figure  6.  Elastic strain distribution cloud diagram of the Absolute Pro stents under multi-level loads

    图  7  Absolute Pro支架多级载荷下的寿命分布云图

    Figure  7.  Fatigue life distribution diagram of the Absolute Pro stents under multi-level loads

    图  8  支架在多级载荷下的安全系数

    Figure  8.  Safety factor of stent under multi-level loads

    图  9  支架在多级载荷下的断裂力学寿命值

    Figure  9.  Fracture mechanical life of stent under multi-level loads

  • [1] QIU B, KANG Q, KANG G, et al. Rate-dependent transformation ratcheting-fatigue interaction of super-elastic NiTi alloy under uniaxial and torsional loading: Experimental observation [J]. International Journal of Fatigue, 2019, 127(10): 470 − 478.
    [2] CARVALHO A, MONTALVÃO D, FREITAS M, et al. Determination of the rotary fatigue life of NiTi alloy wires [J]. Theoretical and Applied Fracture Mechanics, 2016, 85: 37 − 44. doi: 10.1016/j.tafmec.2016.08.010
    [3] EARLY M, KELLY D J. The consequences of the mechanical environment of peripheral arteries for nitinol stenting [J]. Medical & Biological Engineering & Computing, 2011, 49(11): 1279 − 1288.
    [4] MEOLI A, DORDONI E, PETRINI L, et al. Computational study of axial fatigue for peripheral nitinol stents [J]. Journal of Materials Engineering & Performance, 2014, 23(7): 2606 − 2613.
    [5] LEI L, QI X, LI S, et al. Finite element analysis for fatigue behavior of a self-expanding Nitinol peripheral stent under physiological biomechanical conditions [J]. Computers in Biology and Medicine, 2018, 104: 205 − 214.
    [6] DORDONI E, MEOLI A, WU W, et al. Fatigue behavior of Nitinol peripheral stents: the role of plaque shape studied with computational structural analysis [J]. Medical Engineering & Physics, 2014, 36(7): 842 − 849.
    [7] 徐江. 冠状动脉支架断裂的力学机理研究[D]. 西安: 西南交通大学, 2018.

    XUE Jiang. Research on the mechanical mechanism of coronary stent fracture [D]. Xi’an: Southwest Jiaotong University, 2018. (in Chinese)
    [8] 胡章頔. 医用镍钛合金自膨胀支架的结构设计及力学性能分析[D]. 西安: 西安理工大学, 2018.

    HU Zhangdi. Structrual design and mechanical property analysis of self-expanding nitinol stent [D]. Xi’an: Xi'an University of Technology, 2018. (in Chinese)
    [9] GIBBS J M, PEÑA C S, BENENATI J F. Treating the diseased superficial femoral artery [J]. Techniques in Vascular and Interventional Radiology, 2010, 13: 37 − 42. doi: 10.1053/j.tvir.2009.10.005
    [10] MOHAMED S, ZAGHLOUL M D, ELIZABETH A, et al. Poor runoff and distal coverage below the knee are associated with poor long-term outcomes following endovascular popliteal aneurysm repair [J]. Journal of Vascular Surgery, 2021, 74(1): 153 − 160.
    [11] TAN M, TAKAHARA M, SOGA Y, et al. Three-year clinical outcomes following implantation of life stent self-expanding nitinol stents in patients with femoropopliteal artery lesions [J]. Angiology, 2021: 1 − 8.
    [12] NAGL F, SIEKMEYER G, QUELLMALZ M, et al. A comparison of different nitinol material data sources for finite element analysis [J]. Journal of Materials Engineering & Performance, 2011, 20(4/5): 737 − 744.
    [13] 冯海全, 王淑彪, 王永刚, 等. 不同释放尺度下新型镍钛合金髂静脉支架力学性能和动物实验研究[J]. 生物医学工程学杂志, 2019, 36(6): 1024 − 1031.

    FENG Haiquan, WANG Shubiao, WANG Yonggang, et al. Study on mechanical properties of nitinol iliac vein stent and animal test under different release scales [J]. Journal of Biomedical Engineering, 2019, 36(6): 1024 − 1031. (in Chinese)
    [14] 高振宇. 医用镍钛合金支架结构的优化设计[D]. 大连: 大连理工大学, 2005.

    GAO Zhenyu. Structural optimization design of medical NiITi stent [D]. Dalian: Dalian University of Technology, 2005. (in Chinese)
    [15] 王惟颢, 冯海全, 朱明新, 等. 不同扩张尺度对非对称椎动脉支架力学性能影响的研究[J]. 工程力学, 2017, 34(3): 232 − 240. doi: 10.6052/j.issn.1000-4750.2015.09.0735

    WANG Weihao, FENG Haiquan, ZHU Mingxin, et al. Influence of different dilatation size on mechanical properties of asymmetric vertrbral artery stents [J]. Engineering Mechanics, 2017, 34(3): 232 − 240. (in Chinese) doi: 10.6052/j.issn.1000-4750.2015.09.0735
    [16] 于文博. 超弹性镍钛合金支架设计优化及有限元分析[D]. 西安: 西安电子科技大学, 2020.

    YU Wenbo. Design optimization and finite element analysis of superelastic nitinol stents [D]. Xi’an: Xidian University, 2020. (in Chinese)
    [17] 王越彤, 冯海全, 王晓天, 等. 两种工况下8中腔静脉滤器疲劳强度的对比研究[J]. 工程力学, 2020, 37(9): 230 − 239. doi: 10.6052/j.issn.1000-4750.2019.10.0590

    WANG Yuetong, FENG Haiquan, WANG Xiaotian, et al. Comparative study on fatigue strength of 8 kinds of vena cava filters under two working conditions [J]. Engineering Mechanics, 2020, 37(9): 230 − 239. (in Chinese) doi: 10.6052/j.issn.1000-4750.2019.10.0590
    [18] 江旭东, 李鹏飞, 刘铮, 等. 球囊扩张式血管支架介入对弯曲血管的生物力学损伤研究[J]. 工程力学, 2019, 36(2): 239 − 248. doi: 10.6052/j.issn.1000-4750.2017.12.0979

    JIANG Xudong, LI Pengfei, LIU Zheng, et al. Numerical investigation of biomechanical injure of curved vessels induced by intervened balloon expandable vascular stent [J]. Engineering Mechanics, 2019, 36(2): 239 − 248. (in Chinese) doi: 10.6052/j.issn.1000-4750.2017.12.0979
    [19] 周更苏. 不同卧位测量下肢动脉血压的研究[J]. 中华互理杂志, 2002, 37(12): 892 − 893.

    ZHOU Gengsu. Research of the blood pressure in arterise of leg measured in various lying position [J]. Chinese Journal of Nursing, 2002, 37(12): 892 − 893. (in Chinese)
    [20] JASON N, MACTAGGART, NICHOLAS Y, et al. Three dimensional bending, torsion and axial compression of the femoropopliteal artery during limb flexion [J]. Journal of Biomechanics, 2014, 47(10): 2249 − 2256. doi: 10.1016/j.jbiomech.2014.04.053
    [21] POULSON W, KAMENSKIY A, SEAS A, et al. Limb flesion induced axial compression and bending in human femoropopliteal artery segments [J]. Journal of Vascular Surgery, 2018, 67(2): 607 − 613. doi: 10.1016/j.jvs.2017.01.071
    [22] CHENG C P, WILSON N M, HALLETT R L, et al. In vivo MR angiographic quantification of axial and twisting deformations of the superfical femoral artery resulting form maximum hip and knee flexion [J]. Journal of Vascular and Interventional Radiology, 2006, 17(6): 979 − 987. doi: 10.1097/01.RVI.0000220367.62137.E8
    [23] STENTS I, SERVICES H. Guidance for industry and FDA staff non-clinical engineering tests and recommended labeling for intravascular stents and associated delivery systems [R]. The United States: Food and Drug Administration, 2010.
    [24] 赵振心. TiNi合金血管支架的有限元分析及疲劳测试[D]. 上海: 上海交通大学, 2008.

    ZHAO Zhenxin. Finite element ansys and fatigue test for the TiNi vascular stent [D]. Shanghai: Shanghai Jiaotong University, 2008. (in Chinese)
    [25] PELTON A, GONG X, DUERIG T. Fatigue testing of diamond shaped specimens [C]. Pacific Grove, CA(US): Shape Memory and Superelastic Technologies, 2003.
    [26] 成大先. 机械设计手册[M]. 第5版. 北京: 化学工业出版社, 2010.

    CHENG Daxian. Machine design manual [M]. 5th ed. Beijing: Chemical Industry Publishing House, 2010. (in Chinese)
    [27] BROWN M W, MILLER K L. Atheory for fatigue under multiaxial stress-strain conditions [J]. Proceedings of the Institution of Mechanical Engineers, 1973, 187(1): 745 − 755. doi: 10.1243/PIME_PROC_1973_187_161_02
    [28] PARIS P C, ERDOGAN F. A critical analysis of crack propagation laws [J]. Journal of Basic Engineering, 1963, 85(4): 528 − 533. doi: 10.1115/1.3656900
    [29] MARREY R V, BURGERMEISTER R, GRISHABER R B, et al. Fatigue and life prediction for cobalt-cobalt-chromium stents: A fracture mechanics analysis [J]. Biomaterials, 2006, 27(9): 1988 − 2000. doi: 10.1016/j.biomaterials.2005.10.012
    [30] ROBERTSON S W, RITCHIE R O. In vitro fatigue-crack growth and fracture toughness behavior of thin-walled superelastic Nitinol tube for endovascular stents: A basis for defining the effect of crack-like defects [J]. Biomaterials, 2007, 28(4): 700 − 709.
    [31] 中国研究航空院. 应力强度因子手册[M]. 北京: 科学出版社, 1981.

    Chinese Aeronautical Establishment. Manusl of stress intensity factor [M]. Beijing: Science Press, 1993. (in Chinese)
    [32] FROTSCHER M, NEUKING K, BÖCKMANN R, et al. In situ scanning electron microscopic study of structural fatigue of struts, the characteristic elementary building units of medical stents [J]. Materials Science and Engineering: A, 2008, 481: 160 − 165.
  • 加载中
图(9)
计量
  • 文章访问数:  524
  • HTML全文浏览量:  330
  • PDF下载量:  78
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-11-07
  • 修回日期:  2022-03-04
  • 网络出版日期:  2022-04-28
  • 刊出日期:  2023-06-25

目录

    /

    返回文章
    返回