留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

带环形阻尼器的装配式高强钢板剪力墙抗震性能研究

郁银泉 马晓飞 张爱林 王喆

郁银泉, 马晓飞, 张爱林, 王喆. 带环形阻尼器的装配式高强钢板剪力墙抗震性能研究[J]. 工程力学, 2023, 40(6): 28-36. doi: 10.6052/j.issn.1000-4750.2021.11.0846
引用本文: 郁银泉, 马晓飞, 张爱林, 王喆. 带环形阻尼器的装配式高强钢板剪力墙抗震性能研究[J]. 工程力学, 2023, 40(6): 28-36. doi: 10.6052/j.issn.1000-4750.2021.11.0846
YU Yin-quan, MA Xiao-fei, ZHANG Ai-lin, WANG Zhe. SEISMIC PERFORMANCE OF PREFABRICATED HIGH STRENGTH STEEL PLATE SHEAR WALL WITH ANNULAR DAMPERS[J]. Engineering Mechanics, 2023, 40(6): 28-36. doi: 10.6052/j.issn.1000-4750.2021.11.0846
Citation: YU Yin-quan, MA Xiao-fei, ZHANG Ai-lin, WANG Zhe. SEISMIC PERFORMANCE OF PREFABRICATED HIGH STRENGTH STEEL PLATE SHEAR WALL WITH ANNULAR DAMPERS[J]. Engineering Mechanics, 2023, 40(6): 28-36. doi: 10.6052/j.issn.1000-4750.2021.11.0846

带环形阻尼器的装配式高强钢板剪力墙抗震性能研究

doi: 10.6052/j.issn.1000-4750.2021.11.0846
基金项目: 国家重点研发计划项目(2018YFC0705501);中国建筑标准设计研究院自立课题项目(2021104)
详细信息
    作者简介:

    郁银泉(1962−),男,江苏人,教授级工程师,学士,从事标准规范、图集编制和结构工程设计(E-mail: yuyq@cbs.com.cn)

    张爱林(1961−),男,山东人,教授,博士,博导,从事大跨度预应力与高层装配式钢结构的研究(E-mail: zhangailin@bucea.edu.cn)

    王 喆(1976−),男,北京人,教授级工程师,硕士,从事标准规范、图集编制和结构工程设计(E-mail: wangz@cbs.com.cn)

    通讯作者:

    马晓飞(1988−),男,河北人,工程师,博士,从事装配式钢结构方面研究(E-mail: maxf@cbs.com.cn)

  • 中图分类号: TU391

SEISMIC PERFORMANCE OF PREFABRICATED HIGH STRENGTH STEEL PLATE SHEAR WALL WITH ANNULAR DAMPERS

  • 摘要: 钢板剪力墙因具有良好的抗震性能被大量应用到高层建筑和高烈度区域。为解决装配式钢板剪力墙滞回曲线捏缩、平面外屈曲问题,该文提出一种带环形阻尼器的装配式高强钢板剪力墙。针对该装配式高强钢板剪力墙,变化高厚比和钢材牌号对其进行拟静力荷载作用下抗震性能有限元和试验研究,分析破坏模式、滞回曲线、骨架曲线、刚度退化、耗能性能和延性。研究结果表明:该装配式高强钢板剪力墙内嵌板环形阻尼器和边界连接板带屈服破坏,其他构件完好;滞回曲线饱满,位移延性系数在5.7~8.7,抗震性能良好;提出的抗剪承载力计算公式简单明了、概念明确,与有限元模拟和试验吻合良好。
  • 图  1  装配式钢结构

    Figure  1.  Prefabricated steel structure

    图  2  带环形阻尼器的装配式高强钢板剪力墙构造示意图

    Figure  2.  Configuration of prefabricated high-strength steel plate shear wall with annular dampers

    图  3  模型尺寸

    Figure  3.  Model dimensions

    图  4  有限元模型

    Figure  4.  Finite element model

    图  5  模型加载制度

    Figure  5.  Loading protocol of FE model

    图  6  破坏模式

    Figure  6.  Failure mode

    图  7  模型滞回曲线

    Figure  7.  Hysteretic curves of models

    图  8  骨架曲线

    Figure  8.  Skeleton curves

    图  9  刚度退化

    Figure  9.  Stiffness degenerations

    图  10  耗能性能

    Figure  10.  Dissipation capacity

    图  11  有限元与试验滞回曲线验证

    Figure  11.  Comparison of hysteretic curves between finite element analysis and test

    图  12  有限元与试验破坏对比

    Figure  12.  Comparison of failure between finite element analysis and test

    表  1  参数变化

    Table  1.   Parameters

    模型编号钢材牌号内嵌板高厚比
    SPSW-RD-1Q460C208
    SPSW-RD-2Q460C156
    SPSW-RD-3Q460C125
    SPSW-RD-4Q355B208
    SPSW-RD-5Q355B156
    SPSW-RD-6Q355B125
    下载: 导出CSV

    表  2  特征值

    Table  2.   Characteristic values

    模型编号屈服荷载/kN极限荷载/kN破坏荷载/kN
    SPSW-RD-1167.0471.9471.9
    SPSW-RD-2193.1330.0330.0
    SPSW-RD-3273.4376.7320.2
    SPSW-RD-4132.5215.9215.9
    SPSW-RD-5178.6271.0271.0
    SPSW-RD-6213.8321.0321.0
    下载: 导出CSV

    表  3  位移延性

    Table  3.   Displacement ductility

    模型编号屈服位移/mm极限位移/mm位移延性系数μ
    SPSW-RD-17.060.08.6
    SPSW-RD-27.459.48.0
    SPSW-RD-310.257.75.7
    SPSW-RD-46.960.08.7
    SPSW-RD-57.460.08.1
    SPSW-RD-67.460.08.1
    下载: 导出CSV

    表  4  抗剪承载力对比

    Table  4.   Comparison of shear capacities

    模型理论值/kN模拟值/kN理论值/模拟值
    SPSW-RD-1185.0178.71.03
    SPSW-RD-2246.7244.31.01
    SPSW-RD-3308.4281.51.10
    SPSW-RD-4142.8136.51.05
    SPSW-RD-5190.4179.21.06
    SPSW-RD-6238.0216.01.11
    下载: 导出CSV

    表  5  试验材料性能

    Table  5.   Test materials

    10 mm内嵌板 屈服强度fy/MPa 极限强度fu/MPa 弹性模量Es/MPa 断裂伸长率/(%)
    381.9 510.2 2.06×105 23.4
    C30混凝土 立方体抗压强度fcu/MPa 轴心抗压强度fc/MPa 轴心抗拉强度ft/MPa 弹性模量Ec/MPa
    42.18 28.21 2.42 3.31×104
    下载: 导出CSV

    表  6  试验与有限元抗剪承载力对比

    Table  6.   Comparison of shear capacities between test and finite element analysis

    模型参数理论值/kN试验值/kN模拟值/kN
    10 mm/Q355B256253221
    比值理论/试验理论/模拟试验/模拟
    1.011.161.15
    下载: 导出CSV
  • [1] 郁银泉, 朱峰岐, 王喆. 钢结构建筑的推广与应用综述[J]. 钢结构, 2020, 35(1): 59 − 69.

    YU Yinquan, ZHU Fengqi, WANG Zhe. Review of the promotion and application of steel structures in construction [J]. China Construction Metal Structure, 2020, 35(1): 59 − 69. (in Chinese)
    [2] 张爱林. 工业化装配式高层钢结构体系创新、标准规范编制及产业化关键问题[J]. 工业建筑, 2014, 44(8): 1 − 6, 38.

    ZHANG Ailin. The key issues of system innovation, drawing up standard and industrialization for modularized prefabricated high-rise steel structures [J]. Industrial Construction, 2014, 44(8): 1 − 6, 38. (in Chinese)
    [3] 郭彦林, 朱靖申. 剪力墙的型式、设计理论研究进展[J]. 工程力学, 2020, 37(6): 19 − 33. doi: 10.6052/j.issn.1000-4750.2019.08.0432

    GUO Yanlin, ZHU Jingshen. Research progress of shear walls: types and design methods [J]. Engineering Mechanics, 2020, 37(6): 19 − 33. (in Chinese) doi: 10.6052/j.issn.1000-4750.2019.08.0432
    [4] HITAKA T, MATSUI C, SAKAI J. Cyclic tests on steel and concrete-filled tube frames with slit walls [J]. Earthquake Engineering & Structural Dynamics, 2007, 36(6): 707 − 727.
    [5] CORTES G, LIU J. Experimental evaluation of steel slit panel–frames for seismic resistance [J]. Journal of Constructional Steel Research, 2011, 67(2): 181 − 191. doi: 10.1016/j.jcsr.2010.08.002
    [6] 蒋路, 陈以一, 汪文辉, 等. 足尺带缝钢板剪力墙低周往复加载试验研究Ⅰ[J]. 建筑结构学报, 2009, 30(5): 57 − 64.

    JIANG Lu, CHEN Yiyi, WANG Wenhui, et al. Experimental study on full scale steel plate shear wall with slits under low-frequency cyclic loads PartⅠ [J]. Journal of Building Structures, 2009, 30(5): 57 − 64. (in Chinese)
    [7] 张艳霞, 庞占洋, 武丙龙, 等. 装配式自复位钢框架-开缝钢板剪力墙结构试验研究[J]. 工程力学, 2020, 37(10): 168 − 178. doi: 10.6052/j.issn.1000-4750.2019.11.0701

    ZHANG Yanxia, PANG Zhayang, WU Binglong, et al. Experimental study on prefabricated self-centering steel frames with slit steel plate shear walls [J]. Engineering Mechanics, 2020, 37(10): 168 − 178. (in Chinese) doi: 10.6052/j.issn.1000-4750.2019.11.0701
    [8] ROBERT T M, SABOURI-CHOMI S. Hysteretic characteristics of unstiffened perforated steel plate shear panels [J]. Thin-Walled Structures, 1992, 14: 139 − 151. doi: 10.1016/0263-8231(92)90047-Z
    [9] ALAVI E, NATEGHI F. Experimental study on diagonally stiffened steel plate shear walls with central perforation [J]. Journal of Constructional Steel Research, 2013, 89: 9 − 20. doi: 10.1016/j.jcsr.2013.06.005
    [10] MATTEIS D G, SARRACCO G, BRANDO G. Experimental tests and optimization rules for steel perforated shear panels [J]. Journal of Constructional Steel Research, 2016, 123: 41 − 52. doi: 10.1016/j.jcsr.2016.04.025
    [11] PHILLIPS A R, EATHERTON M R. Large-scale experimental study of ring shaped-steel plate shear walls [J]. Journal of Structural Engineering, 2018, 144(8): 04018106. doi: 10.1061/(ASCE)ST.1943-541X.0002119
    [12] YU J G, FENG X T, LI B, et al. Effects of non-welded multi-rib stiffeners on the performance of steel plate shear walls [J]. Journal of Constructional Steel Research, 2018, 144: 1 − 12. doi: 10.1016/j.jcsr.2018.01.009
    [13] 聂建国, 朱力, 樊健生, 等. 钢板剪力墙抗震性能试验研究[J]. 建筑结构学报, 2013, 34(1): 61 − 69.

    NIE Jianguo, ZHU Li, FAN Jiansheng, et al. Experimental research on seismic behavior of steel plate shear walls [J]. Journal of Building Structures, 2013, 34(1): 61 − 69. (in Chinese)
    [14] 马尤苏夫, 崔聪, 周清汉, 等. 联肢加劲钢板剪力墙滞回性能试验研究与数值分析[J]. 工程力学, 2021, 38(9): 212 − 227. doi: 10.6052/j.issn.1000-4750.2020.11.0795

    MA Yousufu, CUI Cong, ZHOU Qinghan, et al. Experimental study and numerical analysis on hysteresis behavior of coupled steel plate shear walls with stiffeners [J]. Engineering Mechanics, 2021, 38(9): 212 − 227. (in Chinese) doi: 10.6052/j.issn.1000-4750.2020.11.0795
    [15] 牟在根, 杨雨青. 对角槽钢加劲钢板剪力墙抗震性能试验研究[J]. 工程力学, 2021, 38(3): 214 − 227, 238. doi: 10.6052/j.issn.1000-4750.2020.05.0312

    MU Zaigen, YANG Yuqing. Experimental study on seismic behavior of steel plate shear walls with diagonal channel stiffeners [J]. Engineering Mechanics, 2021, 38(3): 214 − 227, 238. (in Chinese) doi: 10.6052/j.issn.1000-4750.2020.05.0312
    [16] CHEN S J, JHANG C. Experimental study of low-yield-point steel plate shear wall under in-plane load [J]. Journal of Constructional Steel Research, 2011, 67: 977 − 985. doi: 10.1016/j.jcsr.2011.01.011
    [17] ZIRAKIAN T, ZHANG J. Structural performance of unstiffened low yield point steel plate shear walls [J]. Journal of Constructional Steel Research, 2015, 112: 40 − 53. doi: 10.1016/j.jcsr.2015.04.023
    [18] JIN S S, YANG S C, BAI J L. Numerical and experimental investigation of the full-scale buckling restrained steel plate shear wall with inclined slots [J]. Thin-Walled Structures, 2019, 144: 106362. doi: 10.1016/j.tws.2019.106362
    [19] 范重, 李媛媛, 李玮, 等. 屈曲约束钢板剪力墙边框刚度影响研究[J]. 工程力学, 2020, 37(4): 30 − 40. doi: 10.6052/j.issn.1000-4750.2019.05.ST02

    FAN Zhong, LI Yuanyuan, LI Wei, et al. Influence of frame stiffness on performance of buckling restrained steel plate shear walls [J]. Engineering Mechanics, 2020, 37(4): 30 − 40. (in Chinese) doi: 10.6052/j.issn.1000-4750.2019.05.ST02
    [20] LIU W Y, LI G Q, JIANG J. Mechanical behavior of buckling restrained steel plate shear walls with two-side connections [J]. Engineering Structures, 2017, 138: 283 − 292. doi: 10.1016/j.engstruct.2017.02.010
    [21] ZHANG X, ZHANG A L, LIU X C. Seismic performance of discontinuous cover-plate connection for prefabricated steel plate shear wall [J]. Journal of Constructional Steel Research, 2019, 160: 374 − 386. doi: 10.1016/j.jcsr.2019.05.045
    [22] VALIZADEH H, VELADI H, AZAR B F, et al. The cyclic behavior of butterfly-shaped link steel plate shear walls with and without buckling-restrainers [J]. Structures, 2020, 27: 607 − 625. doi: 10.1016/j.istruc.2020.06.012
    [23] 郝际平, 申新波, 边浩, 等. 密肋防屈曲钢板剪力墙低周反复荷载试验研究[J]. 地震工程与工程振动, 2015, 35(6): 114 − 120.

    HAO Jiping, SHEN Xinbo, BIAN Hao, et al. Cyclic test of a grid-stiffened buckling restrained steel plate shear wall [J]. Earthquake Engineering and Engineering Dynamics, 2015, 35(6): 114 − 120. (in Chinese)
  • 加载中
图(12) / 表(6)
计量
  • 文章访问数:  310
  • HTML全文浏览量:  92
  • PDF下载量:  71
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-11-01
  • 修回日期:  2022-03-08
  • 录用日期:  2022-03-25
  • 网络出版日期:  2022-03-25
  • 刊出日期:  2023-06-25

目录

    /

    返回文章
    返回