SEISMIC PERFORMANCE OF PREFABRICATED HIGH STRENGTH STEEL PLATE SHEAR WALL WITH ANNULAR DAMPERS
-
摘要: 钢板剪力墙因具有良好的抗震性能被大量应用到高层建筑和高烈度区域。为解决装配式钢板剪力墙滞回曲线捏缩、平面外屈曲问题,该文提出一种带环形阻尼器的装配式高强钢板剪力墙。针对该装配式高强钢板剪力墙,变化高厚比和钢材牌号对其进行拟静力荷载作用下抗震性能有限元和试验研究,分析破坏模式、滞回曲线、骨架曲线、刚度退化、耗能性能和延性。研究结果表明:该装配式高强钢板剪力墙内嵌板环形阻尼器和边界连接板带屈服破坏,其他构件完好;滞回曲线饱满,位移延性系数在5.7~8.7,抗震性能良好;提出的抗剪承载力计算公式简单明了、概念明确,与有限元模拟和试验吻合良好。Abstract: Steel plate shear walls have been widely adopted in high-rise buildings and high intensity areas due to their good seismic performance. In order to avoid hysteretic curve pinching and buckling of prefabricated steel plate shear wall, a prefabricated high-strength steel plate shear wall with annular dampers is proposed. Both finite element analysis and experiments under low cyclic loading were carried out by changing the ratio of height to thickness and the steel grade. The failure mode, hysteresis curves, skeleton curves, stiffness degenerations, energy dissipation and ductility were analyzed. The results show that the annular dampers of the inner panel and the boundary connecting plate belts experience yield failure under low cyclic loading, while the other components remain intact. The hysteresis curves are full, and the displacement ductility coefficients are within the range from 5.7 to 8.7. Thus the prefabricated high-strength steel plate shear wall exhibits satisfying seismic performance. The proposed design formulas are simple with clear concept, which agree well with the finite element calculation and test results.
-
Key words:
- steel plate shear wall /
- prefabrication /
- high strength steel /
- seismic performance /
- design method
-
表 1 参数变化
Table 1. Parameters
模型编号 钢材牌号 内嵌板高厚比 SPSW-RD-1 Q460C 208 SPSW-RD-2 Q460C 156 SPSW-RD-3 Q460C 125 SPSW-RD-4 Q355B 208 SPSW-RD-5 Q355B 156 SPSW-RD-6 Q355B 125 表 2 特征值
Table 2. Characteristic values
模型编号 屈服荷载/kN 极限荷载/kN 破坏荷载/kN SPSW-RD-1 167.0 471.9 471.9 SPSW-RD-2 193.1 330.0 330.0 SPSW-RD-3 273.4 376.7 320.2 SPSW-RD-4 132.5 215.9 215.9 SPSW-RD-5 178.6 271.0 271.0 SPSW-RD-6 213.8 321.0 321.0 表 3 位移延性
Table 3. Displacement ductility
模型编号 屈服位移/mm 极限位移/mm 位移延性系数μ SPSW-RD-1 7.0 60.0 8.6 SPSW-RD-2 7.4 59.4 8.0 SPSW-RD-3 10.2 57.7 5.7 SPSW-RD-4 6.9 60.0 8.7 SPSW-RD-5 7.4 60.0 8.1 SPSW-RD-6 7.4 60.0 8.1 表 4 抗剪承载力对比
Table 4. Comparison of shear capacities
模型 理论值/kN 模拟值/kN 理论值/模拟值 SPSW-RD-1 185.0 178.7 1.03 SPSW-RD-2 246.7 244.3 1.01 SPSW-RD-3 308.4 281.5 1.10 SPSW-RD-4 142.8 136.5 1.05 SPSW-RD-5 190.4 179.2 1.06 SPSW-RD-6 238.0 216.0 1.11 表 5 试验材料性能
Table 5. Test materials
10 mm内嵌板 屈服强度fy/MPa 极限强度fu/MPa 弹性模量Es/MPa 断裂伸长率/(%) 381.9 510.2 2.06×105 23.4 C30混凝土 立方体抗压强度fcu/MPa 轴心抗压强度fc/MPa 轴心抗拉强度ft/MPa 弹性模量Ec/MPa 42.18 28.21 2.42 3.31×104 表 6 试验与有限元抗剪承载力对比
Table 6. Comparison of shear capacities between test and finite element analysis
模型参数 理论值/kN 试验值/kN 模拟值/kN 10 mm/Q355B 256 253 221 比值 理论/试验 理论/模拟 试验/模拟 1.01 1.16 1.15 -
[1] 郁银泉, 朱峰岐, 王喆. 钢结构建筑的推广与应用综述[J]. 钢结构, 2020, 35(1): 59 − 69.YU Yinquan, ZHU Fengqi, WANG Zhe. Review of the promotion and application of steel structures in construction [J]. China Construction Metal Structure, 2020, 35(1): 59 − 69. (in Chinese) [2] 张爱林. 工业化装配式高层钢结构体系创新、标准规范编制及产业化关键问题[J]. 工业建筑, 2014, 44(8): 1 − 6, 38.ZHANG Ailin. The key issues of system innovation, drawing up standard and industrialization for modularized prefabricated high-rise steel structures [J]. Industrial Construction, 2014, 44(8): 1 − 6, 38. (in Chinese) [3] 郭彦林, 朱靖申. 剪力墙的型式、设计理论研究进展[J]. 工程力学, 2020, 37(6): 19 − 33. doi: 10.6052/j.issn.1000-4750.2019.08.0432GUO Yanlin, ZHU Jingshen. Research progress of shear walls: types and design methods [J]. Engineering Mechanics, 2020, 37(6): 19 − 33. (in Chinese) doi: 10.6052/j.issn.1000-4750.2019.08.0432 [4] HITAKA T, MATSUI C, SAKAI J. Cyclic tests on steel and concrete-filled tube frames with slit walls [J]. Earthquake Engineering & Structural Dynamics, 2007, 36(6): 707 − 727. [5] CORTES G, LIU J. Experimental evaluation of steel slit panel–frames for seismic resistance [J]. Journal of Constructional Steel Research, 2011, 67(2): 181 − 191. doi: 10.1016/j.jcsr.2010.08.002 [6] 蒋路, 陈以一, 汪文辉, 等. 足尺带缝钢板剪力墙低周往复加载试验研究Ⅰ[J]. 建筑结构学报, 2009, 30(5): 57 − 64.JIANG Lu, CHEN Yiyi, WANG Wenhui, et al. Experimental study on full scale steel plate shear wall with slits under low-frequency cyclic loads PartⅠ [J]. Journal of Building Structures, 2009, 30(5): 57 − 64. (in Chinese) [7] 张艳霞, 庞占洋, 武丙龙, 等. 装配式自复位钢框架-开缝钢板剪力墙结构试验研究[J]. 工程力学, 2020, 37(10): 168 − 178. doi: 10.6052/j.issn.1000-4750.2019.11.0701ZHANG Yanxia, PANG Zhayang, WU Binglong, et al. Experimental study on prefabricated self-centering steel frames with slit steel plate shear walls [J]. Engineering Mechanics, 2020, 37(10): 168 − 178. (in Chinese) doi: 10.6052/j.issn.1000-4750.2019.11.0701 [8] ROBERT T M, SABOURI-CHOMI S. Hysteretic characteristics of unstiffened perforated steel plate shear panels [J]. Thin-Walled Structures, 1992, 14: 139 − 151. doi: 10.1016/0263-8231(92)90047-Z [9] ALAVI E, NATEGHI F. Experimental study on diagonally stiffened steel plate shear walls with central perforation [J]. Journal of Constructional Steel Research, 2013, 89: 9 − 20. doi: 10.1016/j.jcsr.2013.06.005 [10] MATTEIS D G, SARRACCO G, BRANDO G. Experimental tests and optimization rules for steel perforated shear panels [J]. Journal of Constructional Steel Research, 2016, 123: 41 − 52. doi: 10.1016/j.jcsr.2016.04.025 [11] PHILLIPS A R, EATHERTON M R. Large-scale experimental study of ring shaped-steel plate shear walls [J]. Journal of Structural Engineering, 2018, 144(8): 04018106. doi: 10.1061/(ASCE)ST.1943-541X.0002119 [12] YU J G, FENG X T, LI B, et al. Effects of non-welded multi-rib stiffeners on the performance of steel plate shear walls [J]. Journal of Constructional Steel Research, 2018, 144: 1 − 12. doi: 10.1016/j.jcsr.2018.01.009 [13] 聂建国, 朱力, 樊健生, 等. 钢板剪力墙抗震性能试验研究[J]. 建筑结构学报, 2013, 34(1): 61 − 69.NIE Jianguo, ZHU Li, FAN Jiansheng, et al. Experimental research on seismic behavior of steel plate shear walls [J]. Journal of Building Structures, 2013, 34(1): 61 − 69. (in Chinese) [14] 马尤苏夫, 崔聪, 周清汉, 等. 联肢加劲钢板剪力墙滞回性能试验研究与数值分析[J]. 工程力学, 2021, 38(9): 212 − 227. doi: 10.6052/j.issn.1000-4750.2020.11.0795MA Yousufu, CUI Cong, ZHOU Qinghan, et al. Experimental study and numerical analysis on hysteresis behavior of coupled steel plate shear walls with stiffeners [J]. Engineering Mechanics, 2021, 38(9): 212 − 227. (in Chinese) doi: 10.6052/j.issn.1000-4750.2020.11.0795 [15] 牟在根, 杨雨青. 对角槽钢加劲钢板剪力墙抗震性能试验研究[J]. 工程力学, 2021, 38(3): 214 − 227, 238. doi: 10.6052/j.issn.1000-4750.2020.05.0312MU Zaigen, YANG Yuqing. Experimental study on seismic behavior of steel plate shear walls with diagonal channel stiffeners [J]. Engineering Mechanics, 2021, 38(3): 214 − 227, 238. (in Chinese) doi: 10.6052/j.issn.1000-4750.2020.05.0312 [16] CHEN S J, JHANG C. Experimental study of low-yield-point steel plate shear wall under in-plane load [J]. Journal of Constructional Steel Research, 2011, 67: 977 − 985. doi: 10.1016/j.jcsr.2011.01.011 [17] ZIRAKIAN T, ZHANG J. Structural performance of unstiffened low yield point steel plate shear walls [J]. Journal of Constructional Steel Research, 2015, 112: 40 − 53. doi: 10.1016/j.jcsr.2015.04.023 [18] JIN S S, YANG S C, BAI J L. Numerical and experimental investigation of the full-scale buckling restrained steel plate shear wall with inclined slots [J]. Thin-Walled Structures, 2019, 144: 106362. doi: 10.1016/j.tws.2019.106362 [19] 范重, 李媛媛, 李玮, 等. 屈曲约束钢板剪力墙边框刚度影响研究[J]. 工程力学, 2020, 37(4): 30 − 40. doi: 10.6052/j.issn.1000-4750.2019.05.ST02FAN Zhong, LI Yuanyuan, LI Wei, et al. Influence of frame stiffness on performance of buckling restrained steel plate shear walls [J]. Engineering Mechanics, 2020, 37(4): 30 − 40. (in Chinese) doi: 10.6052/j.issn.1000-4750.2019.05.ST02 [20] LIU W Y, LI G Q, JIANG J. Mechanical behavior of buckling restrained steel plate shear walls with two-side connections [J]. Engineering Structures, 2017, 138: 283 − 292. doi: 10.1016/j.engstruct.2017.02.010 [21] ZHANG X, ZHANG A L, LIU X C. Seismic performance of discontinuous cover-plate connection for prefabricated steel plate shear wall [J]. Journal of Constructional Steel Research, 2019, 160: 374 − 386. doi: 10.1016/j.jcsr.2019.05.045 [22] VALIZADEH H, VELADI H, AZAR B F, et al. The cyclic behavior of butterfly-shaped link steel plate shear walls with and without buckling-restrainers [J]. Structures, 2020, 27: 607 − 625. doi: 10.1016/j.istruc.2020.06.012 [23] 郝际平, 申新波, 边浩, 等. 密肋防屈曲钢板剪力墙低周反复荷载试验研究[J]. 地震工程与工程振动, 2015, 35(6): 114 − 120.HAO Jiping, SHEN Xinbo, BIAN Hao, et al. Cyclic test of a grid-stiffened buckling restrained steel plate shear wall [J]. Earthquake Engineering and Engineering Dynamics, 2015, 35(6): 114 − 120. (in Chinese) -