STUDY ON TRANSVERSE ANTI-SEISMIC STRUCTURE AND PARAMETER SELECTION OF SLENDER STRAIGHT PIPE SUPPORT
-
摘要: 细长直管道系统,相比于纵向其横向的力学性能对管道的稳定性更重要;对直管道支架抗震性能进行研究,考虑连接方式对管架抗震性能的影响,管道支架与底部基础采用螺栓连接和焊接,设计了SJ1和SJ2两试件进行拟静力试验,并建立管道支架的有限元模型。在获得准确有限元模型的条件下对管道支架构件进行考虑不同中面板构造形式、肋板数量以及连接方式等支架细部构造的参数分析,最终获得具有良好抗震性能的管道支架构造参数。研究结果表明:该文采用螺栓连接的支架构件由于螺栓易被拉起未能充分发挥支架结构的抗震性能,相较于螺栓连接,管架与底部基础采用焊接连接时支架构件试验及有限元分析所得滞回曲线相对饱满,骨架曲线较高,耗能能力较强,表现出相对较好的抗震性能;不同中面板构造形式的支架结构其骨架曲线、耗能能力曲线数值差异不大,刚度退化规律基本一致;增加竖向肋板的数量,支架构件抗屈曲能力增强,承载力和耗能能力得到显著提高,当竖向肋板数量为2个时,有利于协调管道支架的承载力、强度、刚度和耗能能力,更好发挥支架结构的抗震性能。Abstract: Compared with the longitudinal mechanical properties, the transverse mechanical properties of the slender straight pipeline system are particularly important for the stability of the pipeline. The transverse seismic performance of slender straight pipe support was studied. Considering the influence of connection mode on the seismic performance of the pipe support, and the pipe support and the bottom foundation were bolted and welded, two specimens, i.e., SJ1 and SJ2, were designed for quasi-static tests, and the finite element model of the pipe support was established. On the basis of the finite element model, the detailed structural parameters of the pipe support considering the connection mode, the structural form of the middle panel and the number of ribs are analyzed, and finally the structural parameters of the pipe support with good seismic performance are obtained. The results show that the bolted bracket members fail to give full contribution to the seismic performance of the bracket structure because the bolts are easily pulled up. Compared with the bolt connection, the hysteresis curve of the welded pipe frame and the bottom foundation is relatively plump, with higher skeleton curve and stronger energy dissipation capacity, indicating a relatively good seismic performance. The skeleton curves and energy dissipation capacity curves of the bracket structures with different middle panel structure forms have little difference, with similar stiffness degradation law. A larger number of vertical ribs leads to enhanced buckling resistance of pipe support members, with the bearing capacity and energy dissipation capacity being significantly improved. When the number of vertical ribs is 2, it leads to better bearing capacity, strength, stiffness, energy dissipation capacity, and better seismic performance of the supports.
-
表 1 试件参数
Table 1. Specimen parameters
试件编号 地梁型号 中面板形式 连接方式 SJ1 HW400×400 三角形中面板 螺栓连接 SJ2 HW400×400 三角形中面板 螺栓与焊接 表 2 钢材材料参数
Table 2. Steel material parameters
钢材 弹性模量/MPa 泊松比 屈服强度/MPa 双线性模型切线模量/MPa 304钢 199 340 0.3 218.00 1689.1 Q235钢 207 000 0.3 270.66 1792.2 表 3 模型编号及直角边高度
Table 3. Model number and edge height of right angle
模型编号 H1 H2 H3 H4 H5 H6 H7 H8 高度/mm 0 50 100 150 200 250 300 400 -
[1] 于虹, 王延文. 关于工程抗震支架标准等相关问题的思考[J]. 工程建设标准化, 2021(2): 72 − 74. doi: 10.13924/j.cnki.cecs.2021.02.006YU Hong, WANG Yanwen. Thoughts on engineering seismic support standards and other related issues [J]. Engineering Construction Standardization, 2021(2): 72 − 74. (in Chinese) doi: 10.13924/j.cnki.cecs.2021.02.006 [2] 曲昭嘉, 王瑾, 曲圣伟. 简明管道支架计算及构造手册[M]. 北京: 机械工业出版社, 2002.QU Zhaojia, WANG Jin, QU Shengwei. Concise calculation and construction manual of pipeline support [M]. Beijing: Machinery Industry Press, 2002. (in Chinese) [3] AYRES J M, EZER. Northridge earthquake hospital water damage study [R]. Sacramento, CA: Office of Statewide Health Planning and Development, 1996. [4] JU B S. Seismic fragility of piping system [D]. Raleigh: North Carolina State University, 2011. [5] ARIMAN T, MULESKI G E. A review of the response of buried pipelines under seismic excitations [J]. Earthquake Engineering & Structural Dynamics, 1981, 9(2): 133 − 152. [6] ZHANG X, ZHANG S, XU S, et al. Study of seismic behavior of PHC piles with partial normal-strength deformed bars [J]. Earthquake Engineering and Engineering Vibration, 2020, 19(2): 307 − 320. doi: 10.1007/s11803-020-0563-0 [7] 卢嘉茗, 解琳琳, 李爱群, 等. 建筑隔震金属柔性管道抗震性能试验研究[J]. 工程力学, 2020, 37(5): 208 − 216. doi: 10.6052/j.issn.1000-4750.2019.07.0402LU Jiaming, XIE Linlin, LI Aiqun, et al. Experiments on seismic performance of metal flexible pipes for seismically isolated buildings [J]. Engineering Mechanics, 2020, 37(5): 208 − 216. (in Chinese) doi: 10.6052/j.issn.1000-4750.2019.07.0402 [8] 曾德民, 刘文科, 解琳琳, 等. 建筑隔震橡胶柔性管道抗震性能试验研究[J]. 工程力学, 2020, 37(6): 92 − 99. doi: 10.6052/j.issn.1000-4750.2019.07.0412ZENG Demin, LIU Wenke, XIE Linlin, et al. Experiment study on seismic performance of rubber flexible pipes for seismically isolated buildings [J]. Engineering Mechanics, 2020, 37(6): 92 − 99. (in Chinese) doi: 10.6052/j.issn.1000-4750.2019.07.0412 [9] 张春晓. 独立式管道支架的加固设计[J]. 城市建设理论研究(电子版), 2013(18): 1 − 4.ZHANG Chunxiao. Reinforcement design of independent pipe support [J]. Theoretical Research on Urban Construction (Electronic Version), 2013(18): 1 − 4. (in Chinese) [10] 曹芙波, 魏宏刚, 桑冬梅. 独立式管道支架的加固设计[J]. 工业建筑, 2007, 37(增刊 1): 1252 − 1254. doi: 10.13204/j.gyjz2007.s1.020CAO Fubo, WEI Honggang, SANG Dongmei. Reinforcement design of independent pipe support [J]. Industrial Architecture, 2007, 37(Suppl 1): 1252 − 1254. (in Chinese) doi: 10.13204/j.gyjz2007.s1.020 [11] 张芳. 管道支架的设计[J]. 山西化工, 2006, 26(1): 56 − 57, 66. doi: 10.3969/j.issn.1004-7050.2006.01.017ZHANG Fang. Design of pipe support [J]. Shanxi Chemical Industry, 2006, 26(1): 56 − 57, 66. (in Chinese) doi: 10.3969/j.issn.1004-7050.2006.01.017 [12] 王玉辉. 管道支架的设计[J]. 现代冶金, 2013(1): 70 − 73.WANG Yuhui. Design of pipe support [J]. Modern Metallurgy, 2013(1): 70 − 73. (in Chinese) [13] 汪进步. 建筑工程中抗震支架的施工、设计及应用探讨[J]. 机电信息, 2020(15): 145 − 147, 149. doi: 10.3969/j.issn.1671-0797.2020.15.069WANG Jinbu. Discussion on construction, design and application of seismic support in building engineering [J]. Electromechanical Information, 2020(15): 145 − 147, 149. (in Chinese) doi: 10.3969/j.issn.1671-0797.2020.15.069 [14] 尚庆学, 李泽, 刘瑞康, 等. 管线系统抗震支架力学试验研究[J]. 工程力学, 2018, 35(增刊): 120 − 125, 133. doi: 10.6052/j.issn.1000-4750.2017.06.S021SHANG Qingxue, LI Ze, LIU Ruikang, et al. Experimental study on mechanics of seismic support of pipeline system [J]. Engineering Mechanics, 2018, 35(Suppl): 120 − 125, 133. (in Chinese) doi: 10.6052/j.issn.1000-4750.2017.06.S021 [15] 祝恩淳, 王笑婷, 牛爽, 等. 木结构钢板螺栓连接节点承载力计算分析及试验研究[J]. 建筑结构学报, 2020, 41(1): 113 − 121.ZHU Enchun, WANG Xiaoting, NIU Shuang, et al. Calculation analysis and experimental study on bearing capacity of steel plate bolted joints of wood structure [J]. Journal of Building Structure, 2020, 41(1): 113 − 121. (in Chinese) [16] 刘学春, 浦双辉, 徐阿新, 等. 模块化装配式多高层钢结构全螺栓连接节点静力及抗震性能试验研究[J]. 建筑结构学报, 2015, 36(12): 43 − 51. doi: 10.14006/j.jzjgxb.2015.12.006LIU Xuechun, PU Shuanghui, XU Axin, et al. Experimental study on static and seismic performance of bolted joint in modularized multi-layer and high-rise Prefabricated steel structures [J]. Journal of Building Structures, 2015, 36(12): 43 − 51. (in Chinese) doi: 10.14006/j.jzjgxb.2015.12.006 [17] LIU X C, ZHAN X X, PU S H, et al. Seismic performance study on slipping bolted truss-to-column connections in modularized prefabricated steel structures [J]. Engineering Structures, 2018, 163: 241 − 254. doi: 10.1016/j.engstruct.2018.02.043 [18] 张艳霞, 王旭东, 赵曦, 等. 箱形柱塞焊与单向螺栓芯筒式连接节点性能试验对比研究[J]. 工程力学, 2021, 38(10): 103 − 118. doi: 10.6052/j.issn.1000-4750.2020.09.0690ZHANG Yanxia, WANG Xudong, ZHAO Xi, et al. Comparative study of experimental performance on box-shaped column connection achieved by plug welding-core sleeve and self-lock one-side bolt-core sleeve [J]. Engineering Mechanics, 2021, 38(10): 103 − 118. (in Chinese) doi: 10.6052/j.issn.1000-4750.2020.09.0690 [19] 范俊伟, 杨璐, 班慧勇. 新型单边拧紧高强度螺栓摩擦型连接扭矩系数及抗剪性能试验研究[J]. 工程力学, 2021, 38(1): 119 − 128. doi: 10.6052/j.issn.1000-4750.2020.02.0111FAN Junwei, YANG Lu, BAN Huiyong. Experimental study on torque coefficient and on shear performance of a novel blind bolted connection with high-strength bolts [J]. Engineering Mechanics, 2021, 38(1): 119 − 128. (in Chinese) doi: 10.6052/j.issn.1000-4750.2020.02.0111 [20] WOOD R L, HUTCHINSON T C, HOEHLER M S, et al. Experimental characterization of trapeze assemblies supporting suspended nonstructural systems [C]// NCEE 2014 - 10th U.S. National Conference on Earthquake Engineering. Anchorage, Alaska, Frontiers of Earthquake Engineering, 2014. [21] MALHOTRA P K, SENSENY P E, BRAGA AC, et al. Testing sprinkler-pipe seismic-brace components [J]. Earthquake Spectra, 2003, 19(1): 87 − 109. doi: 10.1193/1.1543160 [22] GB 50017−2017, 钢结构设计标准[S]. 北京: 中国建筑工业出版社, 2017.GB 50017−2017, Steel structure design standard [S]. Beijing: China Building Industry Press, 2017. (in Chinese) [23] GB 51019−2014, 化工工程管架、管墩设计规范[S]. 北京: 中国计划出版社, 2014.GB 51019−2014, Code for design of pipe support and pipe pier in chemical engineering [S]. Beijing: China Planning Press, 2014. (in Chinese) [24] GB 50011−2010, 建筑抗震设计规范[S]. 北京: 中国建筑工业出版社, 2010.GB 50011−2010, Code for seismic design of buildings [S]. Beijing: China Building Industry Press, 2010. (in Chinese) [25] GB 50709−2011, 钢铁企业管道支架设计规范[S]. 北京: 中国计划出版社, 2012.GB 50709−2011, Code for design of pipe supports in iron and steel enterprises [S]. Beijing: China Planning Press, 2012. (in Chinese) [26] 梁文龙. 延性交错桁架钢框架双槽钢组合截面弦杆在往复荷载下滞回性能研究[D]. 西安: 西安建筑科技大学, 2016.LIANG Wenlong. Study on hysteretic behavior of double channel composite section chord of ductile staggered truss steel frame under reciprocating load [D]. Xi’an: Xi’an University of Architecture and Technology, 2016. (in Chinese) [27] JGJ/T 101−2015, 建筑抗震试验规程[S]. 北京: 中国建筑工业出版社, 2015.JGJ/T 101−2015, Code for seismic test of buildings [S]. Beijing: China Building Industry Press, 2015. (in Chinese) -