[1] |
吕西林, 周颖, 陈聪. 可恢复功能抗震结构新体系研究进展[J]. 地震工程与工程振动, 2014, 34(4): 130 − 139.Lü Xilin, Zhou Ying, Chen Cong. Research progress on innovative earthquake-resilient structural systems [J]. Earthquake Engineering and Engineering Dynamics, 2014, 34(4): 130 − 139. (in Chinese)
|
[2] |
周颖, 吴浩, 顾安琪. 地震工程: 从抗震、减隔震到可恢复性[J]. 工程力学, 2019, 36(6): 1 − 12. doi: 10.6052/j.issn.1000-4750.2018.07.ST09Zhou Ying, Wu Hao, Gu Anqi. Earthquake engineering: From earthquake resistance, energy dissipation, and isolation, to resilience [J]. Engineering Structures, 2019, 36(6): 1 − 12. (in Chinese) doi: 10.6052/j.issn.1000-4750.2018.07.ST09
|
[3] |
曲哲, 叶列平. 基于损伤机制控制的钢筋混凝土结构抗震设计方法研究[J]. 建筑结构学报, 2011, 32(10): 21 − 29.Qu Zhe, Ye Lieping. Seismic design methodology based on damage mechanism control for reinforced concrete structures [J]. Journal of Building Structures, 2011, 32(10): 21 − 29. (in Chinese)
|
[4] |
Paulay T. Deterministic seismic design procedures for reinforced concrete buildings [J]. Engineering Structures, 1983, 5(1): 79 − 86. doi: 10.1016/0141-0296(83)90044-5
|
[5] |
经杰. 双重抗震结构基于位移抗震设计方法的研究 [D]. 北京: 清华大学, 2002.Jing Jie. Studies on displacement-based seismic design for dual structures [D]. Beijing: Tsinghua University, 2002. (in Chinese)
|
[6] |
马千里, 陆新征, 叶列平. 层屈服后刚度对地震响应离散性影响的研究[J]. 工程力学, 2008, 25(7): 133 − 141.Ma Qianli, Lu Xinzheng, Ye Lieping. Influence of the inter-story post-yield stiffness to the variance of seismic response [J]. Engineering Mechanics, 2008, 25(7): 133 − 141. (in Chinese)
|
[7] |
周靖. 钢筋混凝土框架结构基于性能系数抗震设计法的基础研究 [D]. 广州: 华南理工大学, 2006.Zhou Jing. Fundamental research on the seismic design method of reinforced concrete frame structures based on behavior factor [D]. Guangzhou: South China University of Technology, 2006. (in Chinese)
|
[8] |
Christopoulos C, Pampanin S, Nigel Priestley M J. Performance-based seismic response of frame structures including residual deformations. Part I: Single-degree of freedom systems [J]. Journal of Earthquake Engineering, 2003, 7(1): 97 − 118.
|
[9] |
Xiang Y, Koetaka Y. Ductility demand of bilinear hysteretic systems with large post-yield stiffness: Spectral model and application in the seismic design of dual-systems [J]. Engineering Structures, 2019, 187: 504 − 517. doi: 10.1016/j.engstruct.2019.02.011
|
[10] |
程光煜. 基于能量抗震设计方法及其在钢支撑框架结构中的应用 [D]. 北京: 清华大学, 2007.Cheng Guangyu. Study on energy-based seismic design methodology and application in steel braced frames [D]. Beijing: Tsinghua University, 2007. (in Chinese)
|
[11] |
Nakashima M, Saburi K, Tsuji B. Energy input and dissipation behavior of structures with hysteretic dampers [J]. Earthquake Engineering & Structural Dynamics, 1996, 25(5): 483 − 496.
|
[12] |
Connor J J, Wada A, Iwata M, Huang Y H. Damage-controlled structures. I: Preliminary design methodology for seismically active regions [J]. Journal of Structural Engineering, 1997, 123(4): 423 − 431. doi: 10.1061/(ASCE)0733-9445(1997)123:4(423)
|
[13] |
Harada Y, Akiyama H. Seismic design of flexible-stiff mixed frame with energy concentration [J]. Engineering Structures, 1998, 20(12): 1039 − 1044. doi: 10.1016/S0141-0296(97)00201-0
|
[14] |
叶列平. 体系能力设计法与基于性态/位移抗震设计[J]. 建筑结构, 2004, 34(6): 10 − 14.Ye Lieping. Structure system capacity design approach and performance/displacement based seismic design [J]. Building Structure, 2004, 34(6): 10 − 14. (in Chinese)
|
[15] |
Paulay T, Priestley M J N. 钢筋混凝土和砌体结构的抗震设计 [M]. 北京: 中国建筑工业出版社, 2011.Paulay T, Priestley M J N. Seismic design of reinforced concrete and masonry buildings [M]. Beijing: China Architecture & Building Press, 2011. (in Chinese)
|
[16] |
Kiggins S, Uang C M. Reducing residual drift of buckling-restrained braced frames as a dual system [J]. Engineering Structures, 2006, 28(11): 1525 − 1532. doi: 10.1016/j.engstruct.2005.10.023
|
[17] |
Gharaibeh E S, Frangopol D M, Onoufriou T. Reliability-based importance assessment of structural members with applications to complex structures [J]. Computers & Structures, 2002, 80(12): 1113 − 1131.
|
[18] |
张雷明, 刘西拉. 框架结构能量流网络及其初步应用[J]. 土木工程学报, 2007, 40(3): 45 − 49. doi: 10.3321/j.issn:1000-131X.2007.03.008Zhang Leiming, Liu Xila. Network of energy transfer in frame structures and its preliminary application [J]. China Civil Engineering Journal, 2007, 40(3): 45 − 49. (in Chinese) doi: 10.3321/j.issn:1000-131X.2007.03.008
|
[19] |
林旭川. 基于系统方法的RC框架结构抗震性能优化设计 [D]. 北京: 清华大学, 2009.Lin Xuchuan. Optimal design for seismic performance of RC frame based on system method [D]. Beijing: Tsinghua University, 2009. (in Chinese)
|
[20] |
叶列平, 林旭川, 曲哲, 等. 基于广义结构刚度的构件重要性评价方法[J]. 建筑科学与工程学报, 2010, 27(1): 1 − 6, 20.Ye Lieping, Lin Xuchuan, Qu Zhe, et al. Evaluating method of element importance of structural system based on generalized structural stiffness [J]. Journal of Architecture and Civil Engineering, 2010, 27(1): 1 − 6, 20. (in Chinese)
|
[21] |
林旭川, 叶列平. 基于构件重要性指标的RC框架结构抗震优化设计研究[J]. 建筑结构学报, 2012, 33(6): 16 − 21.Lin Xuchuan, Ye Lieping. Study on optimization of seismic design for RC frames based on member importance index [J]. Journal of Building Structures, 2012, 33(6): 16 − 21. (in Chinese)
|
[22] |
叶列平, Asad U Q, 马千里, 陆新征. 高强钢筋对框架结构抗震破坏机制和性能控制的研究[J]. 工程抗震与加固改造, 2006, 28(1): 18 − 24, 30. doi: 10.3969/j.issn.1002-8412.2006.01.005Ye Lieping, Asad U Q, Ma Qianli, Lu Xinzheng. Study on failure mechanism and seismic performance of passive control RC frame against earthquake [J]. Earthquake Resistant Engineering and Retrofitting, 2006, 28(1): 18 − 24, 30. (in Chinese) doi: 10.3969/j.issn.1002-8412.2006.01.005
|
[23] |
钱稼茹, 李宁波, 赵作周, 纪晓东. 震后可快速恢复功能的双钢管混凝土柱试验研究[J]. 建筑钢结构进展, 2015, 17(1): 7 − 13.Qian Jiaru, Li Ningbo, Zhao Zuozhou, Ji Xiaodong. Experimental study on earthquake-resilient high strength concrete filled double-tube columns [J]. Progress in Steel Building Structures, 2015, 17(1): 7 − 13. (in Chinese)
|
[24] |
Lin X, Okazaki T, Chung Y L, Nakashima M. Flexural performance of bolted built-up columns constructed of H-SA700 steel [J]. Journal of Constructional Steel Research, 2013, 82: 48 − 58. doi: 10.1016/j.jcsr.2012.11.015
|
[25] |
Lin X, Chen Y, Yan J, Hu Y. Seismic behavior of welded beam-to-column joints of high-strength steel moment frame with replaceable damage-control fuses [J]. Journal of Structural Engineering, 2020, 146(8): 04020143. doi: 10.1061/(ASCE)ST.1943-541X.0002691
|
[26] |
曾勇. 双功能带缝剪力墙的受力及抗震性能分析 [D]. 北京: 清华大学, 2000.Zeng Yong. Non-linear and seismic response analysis for reinforced concrete dual function slitted shear wall [D]. Beijing: Tsinghua University, 2000. (in Chinese)
|
[27] |
张磊. 地震-连续倒塌综合韧性防御框架-支撑筒-伸臂体系研究 [D]. 北京: 清华大学, 2019.Zhang Lei. Study of seismic and progressive collapse resilient frame-braced tube-outrigger system [D]. Beijing: Tsinghua University, 2019. (in Chinese)
|
[28] |
王啸霆, 曲哲, 王涛. 损伤可控的塑性铰支墙抗震性能试验研究[J]. 土木工程学报, 2016, 49(增刊 1): 131 − 136.Wang Xiaoting, Qu Zhe, Wang Tao. Seismic behavior of damage-controlled plastic hinge-supported walls [J]. China Civil Engineering Journal, 2016, 49(Suppl 1): 131 − 136. (in Chinese)
|
[29] |
徐龙河, 张焱, 肖水晶. 底部铰支自复位钢筋混凝土剪力墙设计与性能研究[J]. 工程力学, 2020, 37(6): 122 − 130. doi: 10.6052/j.issn.1000-4750.2019.04.0235Xu Longhe, Zhang Yan, Xiao Shuijing. Design and behavior study on bottom hinged self-centering reinforced concrete shear wall [J]. Engineering Mechanics, 2020, 37(6): 122 − 130. (in Chinese) doi: 10.6052/j.issn.1000-4750.2019.04.0235
|
[30] |
Wang X T, Wang T, Qu Z. An experimental study of a damage-controllable plastic-hinge-supported wall structure [J]. Earthquake Engineering & Structural Dynamics, 2018, 47(3): 594 − 612.
|
[31] |
曲哲, 和田章, 叶列平. 摇摆墙在框架结构抗震加固中的应用[J]. 建筑结构学报, 2011, 32(9): 11 − 19.Qu Zhe, Wada Akira, Ye Lieping. Seismic retrofit of frame structures using rocking wall system [J]. Journal of Building Structures, 2011, 32(9): 11 − 19. (in Chinese)
|
[32] |
Qu Z, Wada A, Motoyui S, et al. Pin-supported walls for enhancing the seismic performance of building structures [J]. Earthquake Engineering & Structural Dynamics, 2012, 41(14): 2075 − 2091.
|
[33] |
Usami T, Wang C L, Funayama J. Developing high performance aluminum alloy buckling-restrained braces based on series of low-cycle fatigue tests [J]. Earthquake Engineering & Structural Dynamics, 2012, 41(4): 643 − 661.
|
[34] |
王佼姣, 石永久, 严红, 等. 低屈服点全钢防屈曲支撑抗震性能试验研究[J]. 土木工程学报, 2013, 46(10): 9 − 16.Wang Jiaojiao, Shi Yongjiu, Yan Hong, et al. Experimental study on the seismic behavior of all-steel buckling-restrained brace with low yield point [J]. China Civil Engineering Journal, 2013, 46(10): 9 − 16. (in Chinese)
|
[35] |
Uang C M, Nakashima M, Tsai K C. Research and application of buckling-restrained braced frames [J]. International Journal of Steel Structures, 2004, 4(4): 301 − 313.
|
[36] |
Sabelli R, Mahin S, Chang C. Seismic demands on steel braced frame buldings with buckling-restrained braces [J]. Engineering Structures, 2003, 25(5): 655 − 666. doi: 10.1016/S0141-0296(02)00175-X
|
[37] |
Christopoulos C, Tremblay R, Kim H J, Lacerte M. Self-centering energy dissipative bracing system for the seismic resistance of structures: Development and validation [J]. Journal of Structural Engineering, 2008, 134(1): 96 − 107. doi: 10.1061/(ASCE)0733-9445(2008)134:1(96)
|
[38] |
Tremblay R, Lacerte M, Christopoulos C. Seismic response of multistory buildings with self-cetering energy dissipative steel braces [J]. Journal of Structural Engineering, 2008, 134(1): 108 − 120. doi: 10.1061/(ASCE)0733-9445(2008)134:1(108)
|
[39] |
Chung H S, Moon B W, Lee S K, et al. Seismic performance of friction dampers using flexure of RC shear wall system [J]. The Structural Design of Tall and Special Buildings, 2009, 18(7): 807 − 822. doi: 10.1002/tal.524
|
[40] |
吕西林, 陈云, 蒋欢军. 新型可更换连梁研究进展[J]. 地震工程与工程振动, 2013, 33(1): 8 − 15.Lü Xilin, Chen Yun, Jiang Huanjun. Research progress in new replaceable coupling beams [J]. Engineering and Engineering Dynamics, 2013, 33(1): 8 − 15. (in Chinese)
|
[41] |
吕西林, 陈云, 蒋欢军. 可更换连梁保险丝抗震性能试验研究[J]. 同济大学学报(自然科学版), 2013, 41(9): 1318 − 1325. doi: 10.3969/j.issn.0253-374x.2013.09.007Lü Xilin, Chen Yun, Jiang Huanjun. Experimental study on seismic behavior of “fuse” of replaceable coupling beam [J]. Journal of Tongji University(Natural Science), 2013, 41(9): 1318 − 1325. (in Chinese) doi: 10.3969/j.issn.0253-374x.2013.09.007
|
[42] |
纪晓东, 马琦峰, 王彦栋, 钱稼茹. 钢连梁可更换消能梁段抗震性能试验研究[J]. 建筑结构学报, 2014, 35(6): 1 − 11.Ji Xiaodong, Ma Qifeng, Wang Yandong, Qian Jiaru. Cyclic tests of replaceable shear links in steel coupling beams [J]. Journal of Building Structures, 2014, 35(6): 1 − 11. (in Chinese)
|
[43] |
纪晓东, 王彦栋, 马琦峰, 钱稼茹. 可更换钢连梁抗震性能试验研究[J]. 建筑结构学报, 2015, 36(10): 1 − 10.Ji Xiaodong, Wang Yandong, Ma Qifeng, Qian Jiaru. Experimental study on seismic behavior of replaceable steel coupling beams [J]. Journal of Building Structures, 2015, 36(10): 1 − 10. (in Chinese)
|
[44] |
Smith R J, Willford M R. The damped outrigger concept for tall buildings [J]. The Structural Design of Tall and Special Buildings, 2007, 16(4): 501 − 517. doi: 10.1002/tal.413
|
[45] |
周颖, 吕西林, 张翠强. 消能减震伸臂桁架超高层结构抗震性能研究[J]. 振动与冲击, 2011, 30(11): 186 − 189. doi: 10.3969/j.issn.1000-3835.2011.11.038Zhou Ying, Lü Xilin, Zhang Cuiqiang. Seismic performance of a super-tall building with energy dissipation outriggers [J]. Journal of Vibration and Shock, 2011, 30(11): 186 − 189. (in Chinese) doi: 10.3969/j.issn.1000-3835.2011.11.038
|
[46] |
任重翠, 徐自国, 肖从真, 等. 防屈曲支撑在超高层建筑结构伸臂桁架中的应用[J]. 建筑结构, 2013, 43(5): 54 − 59, 96.Ren Chongcui, Xu Ziguo, Xiao Congzhen, et al. Application of unbonded brace in super high-rise structure with cantilever truss [J]. Building Structure, 2013, 43(5): 54 − 59, 96. (in Chinese)
|
[47] |
Erochko J, Christopoulos C, Tremblay R, Kim H J. Shake table testing and numerical simulation of a self-centering energy dissipative braced frame [J]. Earthquake Engineering & Structural Dynamics, 2013, 42(11): 1617 − 1635.
|
[48] |
Xu L H, Zhang G, Xiao S J, Li Z X. Development and experimental verification of damage controllable energy dissipation beam to column connection [J]. Engineering Structures, 2019, 199: 109660. doi: 10.1016/j.engstruct.2019.109660
|
[49] |
Peng H, Ou J P, Mahin S. Design and numerical analysis of a damage-controllable mechanical hinge beam-to-column connection [J]. Soil Dynamics and Earthquake Engineering, 2020, 133: 106149. doi: 10.1016/j.soildyn.2020.106149
|
[50] |
Banisheikholeslami A, Behnamfar F, Ghandil M. A beam-to-column connection with visco-elastic and hysteretic dampers for seismic damage control [J]. Journal of Constructional Steel Research, 2016, 117: 185 − 195. doi: 10.1016/j.jcsr.2015.10.016
|
[51] |
王佼姣. 低屈服点钢防屈曲支撑及其框架抗震性能研究 [D]. 北京: 清华大学, 2015.Wang Jiaojiao. Seismic performance on the buckling-restrained braces and buckling-restrained braced frames with low-yield-point steel [D]. Beijing: Tsinghua University, 2015. (in Chinese)
|
[52] |
杨青顺. 耗能伸臂桁架试验及设计方法研究 [D]. 北京: 清华大学, 2017.Yang Qingshun. Experimental and design method study of energy dissipating outriggers [D]. Beijing: Tsinghua University, 2017. (in Chinese)
|
[53] |
朱亚宁. 含耗能伸臂桁架的框架-核心筒结构性能分析及改进 [D]. 合肥: 合肥工业大学, 2018.Zhu Yaning. Performance analysis and optimization of frame-core tube structures with energy dissipation outtriggers[D]. Hefei: Hefei University of Technology, 2018. (in Chinese)
|
[54] |
Pasala D T R, Sarlis A A, Nagarajaiah S, et al. Adaptive negative stiffness: New structural modification approach for seismic protection [J]. Journal of Structural Engineering, 2013, 139(7): 1112 − 1123. doi: 10.1061/(ASCE)ST.1943-541X.0000615
|
[55] |
Pasala D T R, Sarlis A A, Reinhorn A M, et al. Simulated bilinear-elastic behavior in a SDOF elastic structure using negative stiffness device: Experimental and analytical study [J]. Journal of Structural Engineering, 2014, 140(2): 04013049. doi: 10.1061/(ASCE)ST.1943-541X.0000830
|
[56] |
Pasala D T R, Sarlis A A, Reinhorn A M, et al. Apparent weakening in SDOF yielding structures using a negative stiffness device: Experimental and analytical study [J]. Journal of Structural Engineering, 2015, 141(4): 04014130. doi: 10.1061/(ASCE)ST.1943-541X.0001077
|
[57] |
Sarlis A A, Pasala D T R, Constantinou M C, et al. Negative stiffness device for seismic protection of structures [J]. Journal of Structural Engineering, 2013, 139(7): 1124 − 1133. doi: 10.1061/(ASCE)ST.1943-541X.0000616
|
[58] |
Shi X, Zhu S. Magnetic negative stiffness dampers [J]. Smart Materials and Structures, 2015, 24(7): 072002. doi: 10.1088/0964-1726/24/7/072002
|
[59] |
Sun T, Lai Z, Nagarajaiah S, Li H. Negative stiffness device for seismic protection of smart base isolated benchmark building [J]. Structural Control and Health Monitoring, 2017, 24(11): e1968. doi: 10.1002/stc.1968
|
[60] |
Wang M, Nagarajaiah S, Sun F F. Dynamic characteristics and responses of damped outrigger tall buildings using negative stiffness [J]. Journal of Structural Engineering, 2020, 146(12): 04020273. doi: 10.1061/(ASCE)ST.1943-541X.0002846
|
[61] |
龚微, 熊世树, 谭平, 郑鑫城. 拟负刚度磁流变智能隔震系统振动台试验研究[J]. 建筑结构学报, 2019, 40(12): 1 − 10.Gong Wei, Xiong Shishu, Tan Ping, Zheng Xincheng. Shaking table test of smart isolation system with magneto-rheological damper employing pseudo-negative-stiffness control algorithm [J]. Journal of Building Structures, 2019, 40(12): 1 − 10. (in Chinese)
|
[62] |
缪志伟, 叶列平, 吴耀辉, 等. 框架-核心筒高层混合结构抗震性能评价及破坏模式分析[J]. 建筑结构, 2009, 39(4): 1 − 6.Miao Zhiwei, Ye Lieping, Wu Yaohui, et al. Seismic performances and failure mode analysis of hybrid frame-core tube structures [J]. Building Structure, 2009, 39(4): 1 − 6. (in Chinese)
|
[63] |
滕军, 郭伟亮, 张浩, 李祚华. 斜交网格筒-核心筒结构地震非线性性能研究[J]. 土木工程学报, 2012, 45(8): 90 − 96.Teng Jun, Guo Weiliang, Zhang Hao, Li Zuohua. Study of the nonlinear seismic performance of diagrid tube-core tube structures [J]. China Civil Engineering Journal, 2012, 45(8): 90 − 96. (in Chinese)
|
[64] |
陈麟, 杨航, 吴珊瑚, 周云. 巨型型钢混凝土框架-核心筒超高层结构抗震性能与破坏模式分析[J]. 建筑结构, 2014, 44(2): 25 − 31.Chen Lin, Yang Hang, Wu Shanhu, Zhou Yun. Seismic performance and damage patterns of super high-rise mega SRC frame-core wall structure [J]. Building Structure, 2014, 44(2): 25 − 31. (in Chinese)
|
[65] |
Lu X Z, Lu X, Guan H, et al. Earthquake-induced collapse simulation of a super-tall mega-braced frame-core tube building [J]. Journal of Constructional Steel Research, 2013, 82(3): 59 − 71.
|
[66] |
刘鹏远. 高层主次结构体系力学性能及地震失效模式研究 [D]. 哈尔滨: 哈尔滨工业大学, 2019.Liu Pengyuan. Research on mechanical properties and seismic failure mode for high-rise primary-secondary structural system [D]. Harbin: Harbin Institute of Technology, 2019. (in Chinese)
|
[67] |
曲哲. 摇摆墙-框架结构抗震损伤机制控制及设计方法研究 [D]. 北京: 清华大学, 2010.Qu Zhe. Study on seismic damage mechanism control and design of rocking wall-frame structures [D]. Beijing: Tsinghua University, 2010. (in Chinese)
|
[68] |
缪志伟. 钢筋混凝土框架剪力墙结构基于能量抗震设计方法研究 [D]. 北京: 清华大学, 2009.Miao Zhiwei. Study on energy-based seismic design methodology for reinforced concrete frame-shear wall structures [D]. Beijing: Tsinghua University, 2009. (in Chinese)
|
[69] |
解琳琳. 巨柱-核心筒-伸臂超高层结构大震功能可恢复设计方法 [D]. 北京: 清华大学, 2016.Xie Linlin. Resilience-based design method for super tall mega column-core tube-outrigger buildings under maximum considered earthquake [D]. Beijing: Tsinghua University, 2016. (in Chinese)
|
[70] |
赵锐. 预制装配式钢筋混凝土结构塑性可控钢质梁柱节点研究 [D]. 哈尔滨: 哈尔滨工业大学, 2017.Zhao Rui. Research on plastic controllable steel beam-column joints for precast reinforced concrete structures [D]. Harbin: Harbin Institute of Technology, 2017. (in Chinese)
|
[71] |
康婷, 许高娲, 欧进萍. 承载-耗能铰节点装配式钢框架结构抗震弹塑性分析[J]. 地震工程与工程振动, 2018, 38(6): 43 − 51.Kang Ting, Xu Gaowa, Ou Jinping. Elasto-plastic analysis of prefabricated steel frame with bearing-energy dissipated joints against earthquake [J]. Earthquake Engineering and Engineering Dynamics, 2018, 38(6): 43 − 51. (in Chinese)
|
[72] |
周颖, 肖意, 顾安琪. 自复位支撑-摇摆框架结构体系及其基于位移抗震设计方法[J]. 建筑结构学报, 2019, 40(10): 17 − 26.Zhou Ying, Xiao Yi, Gu Anqi. Self-centering braced rocking frame systems and displacement-based seismic design method [J]. Journal of Building Structures, 2019, 40(10): 17 − 26. (in Chinese)
|
[73] |
Shoeibi S, Kafi M A, Gholhaki M. New performance-based seismic design method for structures with structural fuse system [J]. Engineering Structures, 2017, 132: 745 − 760. doi: 10.1016/j.engstruct.2016.12.002
|
[74] |
Shoeibi S, Gholhaki M, Kafi M A. Simplified force-based seismic design procedure for linked column frame system [J]. Soil Dynamics and Earthquake Engineering, 2019, 121: 87 − 101. doi: 10.1016/j.soildyn.2019.03.003
|
[75] |
Zhai Z P, Guo W, Li Y Z, et al. An improved performance-based plastic design method for seismic resilient fused high-rise buildings [J]. Engineering Structures, 2019, 199: 109650. doi: 10.1016/j.engstruct.2019.109650
|
[76] |
Yang T Y, Tung D P, Li Y J. Equivalent energy design procedure for earthquake resilient fused structures [J]. Earthquake Spectra, 2018, 34(2): 795 − 815. doi: 10.1193/122716EQS254M
|
[77] |
Poon D, Hsiao L, Zhu Y, et al. Non-linear time history analysis for the performance based design of Shanghai Tower [C]// Structures Congress, 2011, 541 − 551.
|
[78] |
Jiang H J, Fu B, Liu L E, Yin X W. Study on seismic performance of a super-tall steel-concrete hybrid structure [J]. The Structural Design of Tall and Special Buildings, 2014, 23(5): 334 − 349. doi: 10.1002/tal.1040
|
[79] |
Fan H, Li Q S, Tuan A Y, Xu L H. Seismic analysis of the world's tallest building [J]. Journal of Constructional Steel Research, 2009, 65(5): 1206 − 1215. doi: 10.1016/j.jcsr.2008.10.005
|
[80] |
Lu X L, Su N F, Zhou Y. Nonlinear time history analysis of a super-tall building with setbacks in elevation [J]. The Structural Design of Tall and Special Buildings, 2013, 22(7): 593 − 614. doi: 10.1002/tal.717
|
[81] |
Lu X, Lu X Z, Guan H, Ye L P. Collapse simulation of reinforced concrete high-rise building induced by extreme earthquakes [J]. Earthquake Engineering & Structural Dynamics, 2013, 42(5): 705 − 723.
|
[82] |
Lu X, Lu X Z, Zhang W K, Ye L P. Collapse simulation of a super high-rise building subjected to extremely strong earthquakes [J]. Science China Technological Sciences, 2011, 54(10): 2549 − 2560. doi: 10.1007/s11431-011-4548-0
|
[83] |
Lu X, Lu X Z, Guan H, Xie L L. Application of earthquake-induced collapse analysis in design optimization of a super-tall building [J]. The Structural Design of Tall and Special Buildings, 2016, 25(17): 926 − 946. doi: 10.1002/tal.1291
|
[84] |
Lin X, Kato M, Zhang L, Nakashima M. Quantitative investigation on collapse margin of steel high-rise buildings subjected to extremely severe earthquakes [J]. Earthquake Engineering and Engineering Vibration, 2018, 17(3): 445 − 457. doi: 10.1007/s11803-018-0454-9
|
[85] |
Bai Y T, Guan S Y, Lin X C, Mou B. Seismic collapse analysis of high-rise reinforced concrete frames under long-period ground motions [J]. The Structural Design of Tall and Special Buildings, 2019, 28(1): e1566. doi: 10.1002/tal.1566
|
[86] |
Li J, Zhou H, Ding Y Q. Stochastic seismic collapse and reliability assessment of high-rise reinforced concrete structures [J]. The Structural Design of Tall and Special Buildings, 2018, 27(2): e1417. doi: 10.1002/tal.1417
|
[87] |
Lu X Z, Tian Y, Cen S, et al. A high-performance quadrilateral flat shell element for seismic collapse simulation of tall buildings and its implementation in OpenSees [J]. Journal of Earthquake Engineering, 2018, 22(9): 1662 − 1682. doi: 10.1080/13632469.2017.1297269
|
[88] |
Azghandi R R, Shakib H, Zakersalehi M. Numerical simulation of seismic collapse mechanisms of vertically irregular steel high-rise buildings [J]. Journal of Constructional Steel Research, 2020, 166: 105914. doi: 10.1016/j.jcsr.2019.105914
|
[89] |
卢啸. 超高巨柱-核心筒-伸臂结构地震灾变及抗震性能研究 [D]. 北京: 清华大学, 2013.Lu Xiao. Study on the collapse simulation and seismic performance of super tall mega column-core tube-outrigger buildings [D]. Beijing: Tsinghua University, 2013. (in Chinese)
|
[90] |
Lu X, Lu X Z, Sezen H, Ye L P. Development of a simplified model and seismic energy dissipation in a super-tall building [J]. Engineering Structures, 2014, 67: 109 − 122. doi: 10.1016/j.engstruct.2014.02.017
|
[91] |
Lu X Z, Xie L L, Yu C, Lu X. Development and application of a simplified model for the design of a super-tall mega-braced frame-core tube building [J]. Engineering Structures, 2016, 110: 116 − 126. doi: 10.1016/j.engstruct.2015.11.039
|