EXPERIMENTAL STUDY AND NUMERICAL ANALYSIS ON HYSTERESIS BEHAVIOR OF COUPLED STEEL PLATE SHEAR WALLS WITH STIFFENERS
-
摘要: 完成了3个1/3比例的3层联肢钢板剪力墙试件的低周反复加载试验。3个试件的钢板剪力墙分别采用非加劲、槽钢竖向加劲和井字加劲的形式,钢板剪力墙的竖向边缘构件采用方钢管混凝土。得到了联肢钢板剪力墙试件的荷载-位移滞回曲线和破坏形态,对试件的骨架曲线、应力发展、延性及耗能能力等进行了分析。采用有限元软件ABAQUS对试件进行了数值模拟。结果表明:非加劲和槽钢竖向加劲墙板先屈曲后屈服,井字加劲墙板先屈服后屈曲,墙板屈服后连梁与钢板剪力墙边框梁相继屈服。方钢管混凝土柱脚屈服较早,屈服后仍具有良好的承载力和弹塑性变形能力。采用非加劲墙板的试件承载力最低,滞回环捏缩效应最严重,其次是采用槽钢竖向加劲墙板的试件。采用井字加劲墙板的试件滞回环较饱满。井字加劲和槽钢竖向加劲试件的峰值荷载分别比非加劲试件的峰值荷载提高了11.7%和6.9%,井字加劲和槽钢竖向加劲试件的等效黏滞阻尼系数分别比非加劲试件的等效黏滞阻尼系数提高了65.9%和19.9%。各试件的延性系数均大于4.5,表明不同加劲形式的联肢钢板剪力墙均具有良好的延性。数值分析与试验结果吻合较好,可充分地反映试件的滞回性能和破坏过程。加劲肋对连梁和边缘构件的内力影响较小,但可显著提高剪力墙板的抗剪承载力。相较于两片单肢钢板剪力墙,联肢钢板剪力墙的承载力和耗能能力均有大于20%的提高。Abstract: The cyclic tests were conducted on three 1/3 scaled three-story coupled steel plate shear wall specimens. Unstiffened, vertical channel stiffened, and grid stiffened steel plates were employed as web plates of specimens, respectively. Vertical boundary elements of the coupled steel plate shear walls were concrete-filled square steel tubes. Force-displacement hysteresis curves and failure modes of the specimens were obtained. Envelop curves, stress development, ductility, and energy dissipation were investigated. The finite element analysis software ABAQUS was used to simulate the behavior of specimens. The results show that unstiffened and vertical channel stiffened web plates buckle before yielding, and grid stiffened web plates yield before buckling. Coupling beams and horizontal boundary elements yield after the yielding of web plates. Concrete-filled square steel tubes yield early and have good strength and inelastic deformation. The specimen with unstiffened web plates has the least strength and energy dissipation. The specimen with vertical channel stiffened web plates is the next. The specimen with grid stiffened web plates has stable hysteretic characteristics. The strength of specimens with grid stiffeners and vertical channel stiffeners is increased by 11.7% and 6.9%, respectively compared with that of the unstiffened specimen. The equivalent viscous damping coefficient of specimens with grid stiffeners and vertical channel stiffeners is increased by 65.9% and 19.9% compared with that of the unstiffened specimen. The ductility factors of three specimens are greater than 4.5. It indicates that the coupled steel plate shear walls with different stiffeners have excellent ductility. The analysis results are in good agreement with the experimental results. The stiffener has little influence on the internal force of the coupling beams and boundary elements but increases the strength of the web plates. Compared with two single pier steel plate shear walls, the strength and energy dissipation of the coupled steel plate shear wall have an increase greater than 20%.
-
表 1 构件与板件截面
Table 1. Sections of members and plates
构件 截面/mm 备注 边框柱 □160×8 热轧无缝方管 1层、2层边框梁 HN150×75×5×7 热轧H型钢 3层边框梁 H150×100×10×16 焊接H形截面 连梁 HM148×100×6×9 热轧H型钢 墙板 3×800×950 热轧钢板 梁柱节点隔板 10×220×220 热轧,开$ {\text{ϕ}} $80 mm圆孔 槽钢加劲肋 槽5 热轧槽钢 井字加劲肋(竖) 6×60×820 热轧钢板 井字加劲肋(横) 6×60×660 热轧钢板 井字加劲肋圆管 $ {\text{ϕ}} $26.8×3 冷弯圆管 连梁加劲肋 6×40×130 热轧钢板 鱼尾板(竖) 6×60×950 热轧钢板 鱼尾板(横) 6×60×650 热轧钢板 表 2 钢材力学性能
Table 2. Mechanical properties of steels
板厚/mm 屈服强度/MPa 抗拉强度/MPa 弹性模量/MPa 伸长率 名义 实测 3 3.00 270 381 1.96×105 0.32 5 5.08 364 494 1.98×105 0.29 6 5.94 343 483 2.09×105 0.32 7 6.86 332 473 2.26×105 0.27 8 7.74 389 491 2.34×105 0.28 9 8.70 327 480 2.02×105 0.25 10 9.69 464 618 2.10×105 0.29 表 3 破坏状态对应层间位移角
Table 3. Story drift at each damage state
顺序 试件CSPSW-US 试件CSPSW-CS 试件CSPSW-GS 状态 层间位移角/(%) 状态 层间位移角/(%) 状态 层间位移角/(%) 1 墙板屈曲 0.10(1/1009) 墙板屈曲 0.24(1/420) 墙板角部撕裂 0.68(1/148) 2 墙板角部撕裂 1.51(1/66) 墙板角部撕裂 0.69(1/144) 墙板屈曲 0.73(1/137) 3 连梁节点焊缝断裂 1.51(1/66) 连梁节点焊缝断裂 1.77(1/57) 连梁节点焊缝断裂 1.18(1/85) 4 墙板中部撕裂 1.82(1/55) 边框梁端部屈曲 1.77(1/57) 边框梁端部屈曲 1.56(1/64) 5 边框梁端部屈曲 2.38(1/42) 墙板中部撕裂 2.25(1/45) 墙板中部撕裂 1.71(1/58) 6 柱脚鼓曲 2.64(1/38) 柱脚鼓曲 2.25(1/45) 柱脚鼓曲 1.99(1/50) 表 4 整体骨架曲线特征点
Table 4. Characteristic points on global envelope curves
试件编号 加载方向 屈服 峰值 极限 μ Py/kN Δy/mm Δy/H/(%) Pmax/kN Δmax/mm Δmax/H/(%) Pu/kN Δu/mm Δu/H/(%) CSPSW-US 推 890.2 23.71 2.66 1097.4 69.73 6.35 932.8 117.61 12.61 4.96 拉 848.3 17.82 2.10 1084.6 59.70 5.50 921.9 97.46 10.57 5.47 平均 869.3 20.77 2.39 1091.0 64.72 5.93 927.4 107.54 11.60 5.22 CSPSW-CS 推 952.1 20.04 2.10 1161.1 58.18 5.01 986.8 96.34 9.76 4.81 拉 901.9 15.09 1.67 1170.7 59.47 5.08 995.6 93.86 9.43 6.22 平均 927.3 17.57 1.89 1166.2 58.83 5.04 991.3 95.10 9.59 5.52 CSPSW-GS 推 992.0 23.41 2.36 1219.2 67.89 5.57 1036.3 97.43 9.40 4.16 拉 970.5 20.26 2.09 1218.8 58.99 4.84 1036.0 97.10 9.37 4.79 平均 981.3 21.84 2.23 1219.0 63.44 5.20 1036.2 97.27 9.39 4.48 注:Py、Δy为屈服荷载、位移;Pmax、Δmax为峰值荷载、位移;Pu、Δu为极限荷载、位移;μ为位移延性系数。 表 5 有限元与试验结果对比
Table 5. Comparison between analyses and tests
试件 初始刚度/(kN·mm) 初始刚度
误差/(%)峰值荷载/kN 峰值荷载
误差/(%)有限元 试验 有限元 试验 CSPSW-US 77.7 73.0 6.4 1153.1 1097.4 5.1 CSPSW-CS 82.6 77.7 6.3 1180.0 1170.7 0.8 CSPSW-GS 82.7 78.2 5.9 1261.2 1219.2 3.4 表 6 模型构件与板件截面
Table 6. Sections of members and plates of model
构件 截面/mm 边框柱 □500×25 1层、2层边框梁 H450×300×8×14 3层边框梁 H500×400×14×22 连梁 H600×350×14×22 墙板 3×2800×3300 表 7 连梁破坏模式
Table 7. Failure modes of coupling beams
钢连梁净跨 钢连梁破坏模式 ln < 1.6Mp/Vp 剪切破坏 1.6Mp/Vp ≤ ln < 2.6Mp/Vp 弯剪破坏 ln ≥ 2.6Mp/Vp 弯曲破坏 注:Mp、Vp分别为连梁的塑性抗弯和塑性抗剪承载力。 -
[1] 聂建国, 朱力, 樊健生, 等. 钢板剪力墙抗震性能试验研究[J]. 建筑结构学报, 2013, 34(1): 61 − 69.Nie Jianguo, Zhu Li, Fan Jiansheng, et al. Experimental research on seismic behavior of steel plate shear walls [J]. Journal of Building Structures, 2013, 34(1): 61 − 69. (in Chinese) [2] 王萌, 郭勇超. 内嵌钢板及边缘框架相互作用对带连梁低屈服点钢板剪力墙结构受力性能的影响[J]. 工程力学, 2020, 37(9): 184 − 198. doi: 10.6052/j.issn.1000-4750.2019.10.0640Wang Meng, Guo Yongchao. Study on performance of coupled low yield point steel plate shear walls affected by the interaction of infill plates and boundary frame [J]. Engineering Mechanics, 2020, 37(9): 184 − 198. (in Chinese) doi: 10.6052/j.issn.1000-4750.2019.10.0640 [3] 郭兰慧, 李然, 范峰, 等. 钢管混凝土框架-钢板剪力墙结构滞回性能研究[J]. 土木工程学报, 2012, 45(11): 69 − 78.Guo Lanhui, Li Ran, Fan Feng, et al. Study on hysteretic behaviors of composite frame-steel plate shear wall structures [J]. Journal of Civil Engineering, 2012, 45(11): 69 − 78. (in Chinese) [4] GB 50017−2017, 钢结构设计标准 [S]. 北京: 中国建筑工业出版社, 2018.GB 50017−2017, Standard for design of steel structures [S]. Beijing: China Architecture & Building Press, 2018. (in Chinese) [5] JGJ 99−2015, 高层民用建筑钢结构技术规程 [S]. 北京: 中国建筑工业出版社, 2016.JGJ 99−2015, Technical specification for steel structure of tall building [S]. Beijing: China Architecture & Building Press, 2016. (in Chinese) [6] JGJ/T 380−2015, 钢板剪力墙技术规程 [S]. 北京: 中国建筑工业出版社, 2016.JGJ/T 380−2015, Technical specification for steel plate shear walls [S]. Beijing: China Architecture & Building Press, 2016. (in Chinese) [7] 田建勃, 史庆轩, 刘云贺, 等. PRC连梁-混合联肢剪力墙抗震性能分析[J]. 工程力学, 2018, 35(11): 53 − 67. doi: 10.6052/j.issn.1000-4750.2017.07.0575Tian Jianbo, Shi Qingxuan, Liu Yunhe, et al. Research on aseismic performance of PRC coupling beam-hybrid coupled shear wall system [J]. Engineering Mechanics, 2018, 35(11): 53 − 67. (in Chinese) doi: 10.6052/j.issn.1000-4750.2017.07.0575 [8] 刘阳, 郭子雄, 陈海, 等. 钢连梁-钢板混凝土组合剪力墙组合件抗震性能试验研究[J]. 建筑结构学报, 2021, 42(3): 41 − 49.Liu Yang, Guo Zixiong, Chen Hai, et al. Seismic behavior of double steel plate-high strength concrete composite coupled shear wall [J]. Journal of Building Structures, 2021, 42(3): 41 − 49. (in Chinese) [9] Li C H, Tsai K C, Chang J T, et al. Cyclic test of a coupled steel plate shear wall substructure [J]. Earthquake Engineering & Structural Dynamics, 2012, 41(9): 1277 − 1299. [10] Borello D J, Fahnestock L A. Large-scale cyclic testing of steel-plate shear walls with coupling [J]. Journal of Structural Engineering, 2017, 143(10): 04017133. doi: 10.1061/(ASCE)ST.1943-541X.0001861 [11] Wang M, Borello D J, Fahnestock L A. Boundary frame contribution in coupled and uncoupled steel plate shear walls [J]. Earthquake Engineering & Structural Dynamics, 2017, 46(14): 2355 − 2380. [12] 汪大绥, 陆道渊, 黄良, 等. 天津津塔结构设计[J]. 建筑结构学报, 2009, 30(增刊 1): 1 − 7.Wang Dasui, Lu Daoyuan, Huang Liang, et al. Structure design of Jinta in Tianjin [J]. Journal of Building Structures, 2009, 30(Suppl 1): 1 − 7. (in Chinese) [13] 张谨, 杨律磊, 龚敏锋, 等. 苏州现代传媒广场新型钢结构技术研究与应用[J]. 建筑结构, 2019, 49(1): 25 − 35, 48.Zhang Jin, Yang Lülei, Gong Minfeng, et al. Research and application of new steel structure technology in Suzhou Modern Media Plaza [J]. Building Structure, 2019, 49(1): 25 − 35, 48. (in Chinese) [14] Sabelli R, Bruneau M. Design guide 20: Steel plate shear wall [M]. Chicago: American Institute of Steel Construction, 2007. [15] Borello D J, Fahnestock L A. Seismic design and analysis of steel plate shear walls with coupling [J]. Journal of Structural Engineering, 2013, 139(8): 1263 − 1273. doi: 10.1061/(ASCE)ST.1943-541X.0000576 [16] 李慎, 连鸣, 苏明周. 高强钢组合K形偏心支撑钢框架弹塑性状态的层剪力分布研究[J]. 工程力学, 2016, 33(12): 167 − 175, 224. doi: 10.6052/j.issn.1000-4750.2015.05.0410Li Shen, Lian Ming, Su Mingzhou. Seismic shear of K-type eccentrically braced steel frames with high strength steel in elasto-plastic state [J]. Engineering Mechanics, 2016, 33(12): 167 − 175, 224. (in Chinese) doi: 10.6052/j.issn.1000-4750.2015.05.0410 [17] GB 50011−2010, 建筑抗震设计规范(2016版)[S]. 北京: 中国建筑工业出版社, 2016.GB 50011−2010, Code for seismic design of buildings (2016 Edition) [S]. Beijing: China Architecture & Building Press, 2016. (in Chinese) [18] Webster D J. The inelastic seismic response of steel plate shear wall web plates and their interaction with the vertical boundary members [D]. Washington: University of Washington, 2013. [19] 韩林海. 钢管混凝土结构-理论与实践[M]. 第三版. 北京: 科学出版社, 2016.Han Linhai. Concrete filled steel tubular structures [M]. 3rd ed. Beijing: Science Press, 2016. (in Chinese) [20] 周天华, 李文超, 管宇, 等. 基于应力三轴度的钢框架循环加载损伤分析[J]. 工程力学, 2014, 31(7): 146 − 155. doi: 10.6052/j.issn.1000-4750.2013.01.0090Zhou Tianhua, Li Wenchao, Guan Yu, et al. Damage analysis of steel frames under cyclic load based on steel triaxiality [J]. Engineering Mechanics, 2014, 31(7): 146 − 155. (in Chinese) doi: 10.6052/j.issn.1000-4750.2013.01.0090 [21] GB 50936−2014, 钢管混凝土结构技术规范 [S]. 北京: 中国建筑工业出版社, 2014.GB 50936−2014, Technical code for concrete filled tubular structures [S]. Beijing: China Architecture & Building Press, 2014. (in Chinese) -