留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于简化四阶矩法的各种截面钢管混凝土轴压承载力可靠度分析

丁发兴 熊姝宁 向平

丁发兴, 熊姝宁, 向平. 基于简化四阶矩法的各种截面钢管混凝土轴压承载力可靠度分析[J]. 工程力学, 2021, 38(9): 182-191, 202. doi: 10.6052/j.issn.1000-4750.2020.09.0665
引用本文: 丁发兴, 熊姝宁, 向平. 基于简化四阶矩法的各种截面钢管混凝土轴压承载力可靠度分析[J]. 工程力学, 2021, 38(9): 182-191, 202. doi: 10.6052/j.issn.1000-4750.2020.09.0665
DING Fa-xing, XIONG Shu-ning, XIANG Ping. RELIABILITY ANALYSIS OF AXIAL BEARING CAPACITY OF CONCRETE FILLED STEEL TUBULAR STUB COLUMNS WITH DIFFERENT CROSS SECTIONS BASED ON SIMPLIFIED FOURTH-MOMENT METHOD[J]. Engineering Mechanics, 2021, 38(9): 182-191, 202. doi: 10.6052/j.issn.1000-4750.2020.09.0665
Citation: DING Fa-xing, XIONG Shu-ning, XIANG Ping. RELIABILITY ANALYSIS OF AXIAL BEARING CAPACITY OF CONCRETE FILLED STEEL TUBULAR STUB COLUMNS WITH DIFFERENT CROSS SECTIONS BASED ON SIMPLIFIED FOURTH-MOMENT METHOD[J]. Engineering Mechanics, 2021, 38(9): 182-191, 202. doi: 10.6052/j.issn.1000-4750.2020.09.0665

基于简化四阶矩法的各种截面钢管混凝土轴压承载力可靠度分析

doi: 10.6052/j.issn.1000-4750.2020.09.0665
基金项目: 国家自然科学基金面上项目(51978664);湖南省自然科学杰出青年基金项目(2019JJ20029)
详细信息
    作者简介:

    丁发兴(1979−),男,浙江人,教授,工学博士,主要从事混凝土及岩石强度理论、钢-混凝土组合结构研究(E-mail: dinfaxin@csu.edu.cn)

    熊姝宁(1997−),女,江西人,硕士生,主要从事可靠度理论研究(E-mail: xsn@csu.edu.cn)

    通讯作者:

    向 平(1982−),男,湖南人,特聘教授,工学博士,主要从事混凝土结构抗震及计算力学研究(E-mail: pxiang@csu.edu.cn)

  • 中图分类号: TU398

RELIABILITY ANALYSIS OF AXIAL BEARING CAPACITY OF CONCRETE FILLED STEEL TUBULAR STUB COLUMNS WITH DIFFERENT CROSS SECTIONS BASED ON SIMPLIFIED FOURTH-MOMENT METHOD

  • 摘要: 该文采用新点估计法和简化四阶矩法对丁发兴提出的钢管混凝土轴压承载力公式进行可靠度分析,该公式考虑了不同截面钢管形状约束系数,且探讨了不同截面形状、混凝土等级、钢材强度等级、两种荷载组合以及不同荷载比对可靠指标的影响。分析结果表明,不同截面形状的钢管混凝土轴压承载力公式的可靠指标均高于3.7,满足目标可靠指标3.2的要求;当办公室活恒载比为1.0时,混凝土强度越高时,可靠指标越大。
  • 图  1  各种截面钢管混凝土

    Figure  1.  Sections of different shapes

    图  2  截面形状和含钢率变化对钢管混凝土轴压承载力可靠度指标的影响

    Figure  2.  Influence of section shape and steel ratio on reliability index

    图  3  截面形状和含钢率变化对钢管混凝土轴压承载力可靠度指标的影响

    Figure  3.  Influence of section shape and steel ratio on reliability index

    图  4  截面形状和含钢率变化对钢管混凝土轴压承载力可靠度指标的影响

    Figure  4.  Influence of section shape and steel ratio on reliability index

    图  5  混凝土类别对钢管混凝土轴压承载力可靠度指标的影响

    Figure  5.  Influence of concrete type on reliability index of axial bearing capacity of concrete filled steel tube

    图  6  钢材类别对钢管混凝土轴压承载力可靠度指标的影响

    Figure  6.  Influence of steel type on reliability index of axial bearing capacity of concrete filled steel tube

    图  7  荷载比对钢管混凝土轴压承载力可靠度指标的影响

    Figure  7.  Influence of load ratio on reliability index of axial bearing capacity of concrete filled steel tube

    图  8  活载类别对钢管混凝土轴压承载力可靠度指标的影响

    Figure  8.  Influence of live load category on reliability index of axial bearing capacity of concrete filled steel tube

    表  1  钢管形状约束系数k1列表

    Table  1.   Shape confinement coefficient of CFST

    系数圆形方形矩形六边形八边形椭圆形圆端形
    k11.71.21.04−0.06ln(B/D−0.93)1.31.51.10.8+0.9D/B
    注:表中截面尺寸见图1
    下载: 导出CSV

    表  2  不同截面钢管混凝土柱AcAs的计算公式

    Table  2.   Calculation formula of Ac and As for concrete filled steel tubular columns with different sections

    系数圆形矩形六边形
    Acπ(D−2t)2/4(D−2t)(B−2t)$ 1.5\sqrt{3}(D/\sqrt{3}-t{)}^{2}$
    AsπD2/4−AcB×DAc$ 6(D/\sqrt{3}-t)t$
    八边形椭圆形圆端形
    Ac$2{[ {D/(1 + \sqrt 2 ) - t} ]^2}\tan {67.5^ \circ }$π(D/2–t)(B/2–t)π(D/2–t)2+(BD)(D−2t)
    As$8[ {D/(1 + \sqrt 2 ) - t} ]t$πDB/4−Ac πDt+2(BD)t
    下载: 导出CSV

    表  3  荷载组合时的荷载统计参数[27]

    Table  3.   The statistical parameters of load combinations

    荷载类型恒载办公室活载住宅活载
    μ1.0600.6980.859
    δ0.0700.2880.233
    分布类型 正态分布 极值Ⅰ型分布 极值Ⅰ型分布
    下载: 导出CSV

    表  4  混凝土强度的变异系数[26]

    Table  4.   Variation coefficient of concrete strength /(%)

    强度等级C15C20C25C30C35C40C45C50C60C70C80C90
    δc23.320.618.917.216.415.615.614.914.112.110.19.1
    注:大于C90级的混凝土,δc按C90取值。
    下载: 导出CSV

    表  5  普通钢管混凝土轴压公式计算模式不定性统计参数

    Table  5.   The statistical parameters of calculation model uncertainty

    统计变量圆形矩形六边形八边形椭圆形圆端形所有截面
    μ1.1971.2611.3691.2971.2711.2671.234
    δ0.1690.1530.0930.1390.0920.1000.157
    分布类型正态分布
    下载: 导出CSV

    表  6  材料性能指标的统计参数[25- 26, 78]

    Table  6.   The statistical parameters of material

    统计
    参数
    钢材混凝土
    Q235Q345C30C40C50C60C70C80C90
    fyk
    (fck)/
    MPa
    235
    (t≤16 mm)
    225
    (t>16 mm)
    345
    (t≤16 mm)
    335
    (t>16 mm)
    20.126.832.438.544.550.255.7
    fyd
    (fcd)/
    MPa
    215
    (t≤16 mm)
    205
    (t>16 mm)
    305
    (t≤16 mm)
    295
    (t>16 mm)
    14.319.123.127.531.835.939.8
    μ1.0801.0901.3741.3421.3371.3321.2921.2621.232
    δ0.0800.0700.1720.1560.1490.1410.1210.1010.091
    分布类型正态分布
    注:fyk为钢管强度标准值;fyd为钢管强度设计值;fcd为混凝土轴心抗压强度设计值。
    下载: 导出CSV

    表  7  标准正态变量的估计点和权重

    Table  7.   Sampling points and weights of standard normal variables

    u0 = 0u1+ = −u1− = 1.154u2+ = −u2− = 2.367u3+ = −u3− = 3.750
    P0 = 0.457P1+ = −P1− = 0.240P2+ = −P2− = 3.076×10−2P3+ = −P3− = 5.483×10−4
    下载: 导出CSV
  • [1] 李杰. 论第三代结构设计理论[J]. 同济大学学报(自然科学版), 2017, 45(5): 617 − 624, 632.

    Li Jie. On the third generation of structural design theory [J]. Journal of Tongji University (Natural Science), 2017, 45(5): 617 − 624, 632. (in Chinese)
    [2] 吴瑾, 吴胜兴. 锈蚀钢筋混凝土结构可靠度评估[J]. 工程力学, 2005, 22(1): 118 − 122. doi: 10.3969/j.issn.1000-4750.2005.01.021

    Wu Jin, Wu Shengxing. Reliability assessment of concrete structures with corroded reinforcement [J]. Engineering Mechanics, 2005, 22(1): 118 − 122. (in Chinese) doi: 10.3969/j.issn.1000-4750.2005.01.021
    [3] 林道锦, 秦权. 一座现有拱桥面内失稳的可靠度随机有限元分析[J]. 工程力学, 2005, 22(6): 122 − 126. doi: 10.3969/j.issn.1000-4750.2005.06.021

    Lin Daojin, Qin Quan. Reliability stochastic finite element analysis of in-plane buckling of an existing arch bridge [J]. Engineering Mechanics, 2005, 22(6): 122 − 126. (in Chinese) doi: 10.3969/j.issn.1000-4750.2005.06.021
    [4] 党育, 张辙洵, 李涌涛, 等. 基于概率统计方法的隔震结构可靠度[J]. 工程力学, 2018, 35(11): 146 − 154. doi: 10.6052/j.issn.1000-4750.2017.07.0591

    Dang Yu, Zhang Zhexun, Li Yongtao, et al. Study on aseismic reliability of isolated structures based on probability statistics method [J]. Engineering Mechanics, 2018, 35(11): 146 − 154. (in Chinese) doi: 10.6052/j.issn.1000-4750.2017.07.0591
    [5] Omidali M, Khedmati M R. Reliability-based design of stiffened plates in ship structures subject to wheel eo patch loading [J]. Thin-Walled Structures, 2018, 127: 416 − 424. doi: 10.1016/j.tws.2018.02.022
    [6] 吕大刚, 于晓辉, 王光远. 基于FORM有限元可靠度方法的结构整体概率抗震能力分析[J]. 工程力学, 2012, 29(2): 1 − 8.

    Lü Dagang, Yu Xiaohui, Wang Guangyuan. Global probabilistic seismic capacity analysis of structures based on form finite element reliability method [J]. Engineering Mechanics, 2012, 29(2): 1 − 8. (in Chinese)
    [7] 孟增, 李刚. 基于修正混沌控制的一次二阶矩可靠度算法[J]. 工程力学, 2015, 32(12): 21 − 26. doi: 10.6052/j.issn.1000-4750.2014.05.0360

    Meng Zeng, Li Gang. Modified chaos control-based first order second moment reliability method [J]. Engineering Mechanics, 2015, 32(12): 21 − 26. (in Chinese) doi: 10.6052/j.issn.1000-4750.2014.05.0360
    [8] 蒋水华, 姚池, 杨建华, 等. 基于模型修正的空间变异边坡可靠度分析方法[J]. 工程力学, 2018, 35(8): 154 − 161. doi: 10.6052/j.issn.1000-4750.2017.04.0308

    Jiang Shuihua, Yao Chi, Yang Jianhua, et al. Model correction factor method based approach for reliability analysis of spatially variable slopes [J]. Engineering Mechanics, 2018, 35(8): 154 − 161. (in Chinese) doi: 10.6052/j.issn.1000-4750.2017.04.0308
    [9] Li L, Wu T, He X, et al. Reliability evaluation of vortex-induced vibration for a long-span arch bridge [J]. Journal of Bridge Engineering, 2018, 23(5): 05018002. doi: 10.1061/(ASCE)BE.1943-5592.0001225
    [10] 邹红, 卢朝辉, 余志武. 基于矩法的CRTS Ⅱ型轨道板横向抗弯承载力时变可靠度研究[J]. 铁道学报, 2018, 40(10): 103 − 110. doi: 10.3969/j.issn.1001-8360.2018.10.015

    Zou Hong, Lu Zhaohui, Yu Zhiwu. Time-dependent reliability evaluation of transverse flexural strength of CRTS Ⅱ ballastless track slab using method of moment [J]. Journal of The China Railway Society, 2018, 40(10): 103 − 110. (in Chinese) doi: 10.3969/j.issn.1001-8360.2018.10.015
    [11] Li D, Tang H, Xue S, et al. Reliability analysis of nonlinear dynamic system with epistemic uncertainties using hybrid Kriging-HDMR [J]. Probabilistic Engineering Mechanics, 2019, 58(1): 103001.
    [12] Lu H, Cao S, Zhu Z, et al. An improved high order moment-based saddlepoint approximation method for reliability analysis [J]. Applied Mathematical Modelling, 2020, 82: 836 − 847. doi: 10.1016/j.apm.2020.02.006
    [13] Zhou Q, Li Z, Fan W, et al. System reliability assessment of deteriorating structures subjected to time-invariant loads based on improved moment method [J]. Structural Safety, 2017, 68: 54 − 64. doi: 10.1016/j.strusafe.2017.05.006
    [14] 俞登科, 李正良, 李茂华, 等. 基于矩方法的特高压输电塔抗风可靠度分析[J]. 工程力学, 2013, 30(5): 311 − 316.

    Yu Dengke, Li Zhengliang, Li Maohua, et al. Wind-resistant reliability analysis of UHV transmission tower based on moment methods [J]. Engineering Mechanics, 2013, 30(5): 311 − 316. (in Chinese)
    [15] 范文亮, 王余乐, 魏奇科, 等. 岩土工程可靠度分析的改进四阶矩方法[J]. 岩土力学, 2018, 39(4): 1463 − 1468.

    Fan Wenliang, Wang Yule, Wei Qike, et al. Improved fourth-moment method for reliability analysis of geotechnical engineering [J]. Rock and Soil Mechanics, 2018, 39(4): 1463 − 1468. (in Chinese)
    [16] 杜永峰, 时晨. 多向动力耦合激励下隔震结构连续倒塌性能分析[J]. 工程力学, 2019, 36(6): 248 − 256.

    Du Yongfeng, Shi Chen. Progressive collapse performance of isolated structures subjected to multi-direction coupled dynamic excitation [J]. Engineering Mechanics, 2019, 36(6): 248 − 256. (in Chinese)
    [17] Ding F, Ding X, Liu X, et al. Mechanical behavior of elliptical concrete-filled steel tubular stub columns under axial loading [J]. Steel and Composite Structures, 2017, 25(3): 375 − 388.
    [18] Ding F X, Lei F, Gong Y Z, et al. Behavior of concrete-filled square steel tubular stub columns under axially compressive loading [J]. Journal of Shenzhen University(Science and Engineering), 2014, 31(6): 583 − 592. doi: 10.3724/SP.J.1249.2014.06583
    [19] Ding F X, Lei F, Yu Z W, et al. Mechanical performances of concrete-filled steel tubular stub columns with round ends under axial loading [J]. Thin-Walled Structures, 2015, 97: 22 − 34. doi: 10.1016/j.tws.2015.07.021
    [20] Ding F, Li Z, Cheng S, et al. Composite action of hexagonal concrete-filled steel tubular stub columns under axial loading [J]. Thin-Walled Structures, 2016, 107: 502 − 513. doi: 10.1016/j.tws.2016.07.005
    [21] Ding F, Li Z, Cheng S, et al. Composite action of octagonal concrete-filled steel tubular stub columns under axial loading [J]. Thin-Walled Structures, 2016, 107: 453 − 461. doi: 10.1016/j.tws.2016.07.012
    [22] Ding F, Lu D, Bai Y, et al. Comparative study of square stirrup-confined concrete-filled steel tubular stub columns under axial loading [J]. Thin-Walled Structures, 2016, 98: 443 − 453. doi: 10.1016/j.tws.2015.10.018
    [23] Ding F, Luo L, Zhu J, et al. Mechanical behavior of stirrup-confined rectangular CFT stub columns under axial compression [J]. Thin-Walled Structures, 2018, 124: 136 − 150. doi: 10.1016/j.tws.2017.12.007
    [24] Ding F, Yu Z, Bai Y, et al. Elasto-plastic analysis of circular concrete-filled steel tube stub columns [J]. Journal of Constructional Steel Research, 2011, 67(10): 1567 − 1577. doi: 10.1016/j.jcsr.2011.04.001
    [25] 邵卓民. 建筑结构荷载和抗力的统计特征[J]. 建筑结构, 1981, 1(6): 1 − 7.

    Shao Zhuomin. Statistical characteristics of load and resistance of building structures [J]. Building Structure, 1981, 1(6): 1 − 7. (in Chinese)
    [26] GB 50010−2010, 混凝土结构设计规范[S]. 北京; 中国建筑工业出版社, 2015.

    GB 50010−2010, Code for design of concrete structures [S]. Beijing: China Architecture & Building Press, 2015. (in Chinese)
    [27] 余志武, 贺飒飒. 钢管混凝土短柱极限承载力可靠度分析[J]. 工程力学, 2006, 23(11): 139 − 144. doi: 10.3969/j.issn.1000-4750.2006.11.023

    Yu Zhiwu, He Sasa. Reliability analysis of ultimate bearing capacity of concrete-filled tubular steel stub columns [J]. Engineering Mechanics, 2006, 23(11): 139 − 144. (in Chinese) doi: 10.3969/j.issn.1000-4750.2006.11.023
    [28] Abed F, AlHamaydeh M, Abdalla S. Experimental and numerical investigations of the compressive behavior of concrete filled steel tubes (CFSTs) [J]. Journal of Constructional Steel Research, 2013, 80: 429 − 439. doi: 10.1016/j.jcsr.2012.10.005
    [29] Cai Y, Quach W M, Young B. Experimental and numerical investigation of concrete-filled hot-finished and cold-formed steel elliptical tubular stub columns [J]. Thin-Walled Structures, 2019, 145(106437).
    [30] Du Y, Chen Z, Xiong M X. Experimental behavior and design method of rectangular concrete-filled tubular columns using Q460 high-strength steel [J]. Construction and Building Materials, 2016, 125: 856 − 872. doi: 10.1016/j.conbuildmat.2016.08.057
    [31] Du Y, Chen Z, Yu Y. Behavior of rectangular concrete-filled high-strength steel tubular columns with different aspect ratio [J]. Thin-Walled Structures, 2016, 109: 304 − 318. doi: 10.1016/j.tws.2016.10.005
    [32] Evirgen B, Tuncan A, Taskin K. Structural behavior of concrete filled steel tubular sections (CFT/CFSt) under axial compression [J]. Thin-Walled Structures, 2014, 80: 46 − 56. doi: 10.1016/j.tws.2014.02.022
    [33] Giakoumelis G, Lam D. Axial capacity of circular concrete-filled tube columns [J]. Journal of Constructional Steel Research, 2004, 60(1): 1049 − 1068.
    [34] Han L H, Yao G H, Zhao X L. Tests and calculations for hollow structural steel (HSS) stub columns filled with self-consolidating concrete (SCC) [J]. Journal of Constructional Steel Research, 2005, 61(9): 1241 − 1269. doi: 10.1016/j.jcsr.2005.01.004
    [35] Jamaluddin N, Lam D, Dai X H, et al. An experimental study on elliptical concrete filled columns under axial compression [J]. Journal of Constructional Steel Research, 2013, 87: 6 − 16. doi: 10.1016/j.jcsr.2013.04.002
    [36] Liu D L. Tests on high-strength rectangular concrete-filled steel hollow section stub columns [J]. Journal of Constructional Steel Research, 2005, 61(7): 902 − 911. doi: 10.1016/j.jcsr.2005.01.001
    [37] Liu D L, Gho W M. Axial load behaviour of high-strength rectangular concrete-filled steel tubular stub columns [J]. Thin-Walled Structures, 2005, 43(8): 1131 − 1142. doi: 10.1016/j.tws.2005.03.007
    [38] Liu D, Gho W M, Yuan J. Ultimate capacity of high-strength rectangular concrete-filled steel hollow section stub columns [J]. Journal of Constructional Steel Research, 2003, 59(12): 1499 − 1515. doi: 10.1016/S0143-974X(03)00106-8
    [39] Liu F, Wang Y, Chan T. Behaviour of concrete-filled cold-formed elliptical hollow sections with varying aspect ratios [J]. Thin-Walled Structures, 2017, 110: 47 − 61. doi: 10.1016/j.tws.2016.10.013
    [40] O'Shea M D, Bridge R Q. Design of circular thin-walled concrete filled steel tubes [J]. Journal of Structural Engineering, 2000, 126(11): 1295 − 1303. doi: 10.1061/(ASCE)0733-9445(2000)126:11(1295)
    [41] Piquer Vicent A, Hernández-Figueirido D, Ibáñez Usach C. Concrete-filled round-ended steel tubular stub columns under concentric and eccentric loads [C]// Proceedings of the 12th International Conference on Advances in Steel-Concrete Composite Structures, 2018.
    [42] Sakino K, Nakahara H, Morino S, et al. Behavior of centrally loaded concrete-filled steel-tube short columns [J]. Journal of Structural Engineering, 2004, 130(2): 180 − 188. doi: 10.1061/(ASCE)0733-9445(2004)130:2(180)
    [43] Schneider S P. Axially loaded concrete-filled steel tubes [J]. Journal of Structural Engineering, 1998, 124(10): 1125 − 1138. doi: 10.1061/(ASCE)0733-9445(1998)124:10(1125)
    [44] Tao Z, Han L H, Wang Z B. Experimental behaviour of stiffened concrete-filled thin-walled hollow steel structural (HSS) stub columns [J]. Journal of Constructional Steel Research, 2005, 61(7): 962 − 983. doi: 10.1016/j.jcsr.2004.12.003
    [45] Wang Y, Chen P, Liu C, et al. Size effect of circular concrete-filled steel tubular short columns subjected to axial compression [J]. Thin-Walled Structures, 2017, 120: 397 − 407. doi: 10.1016/j.tws.2017.09.010
    [46] Yang H, Lam D, Gardner L. Testing and analysis of concrete-filled elliptical hollow sections [J]. Engineering Structures, 2008, 30(12): 3771 − 3781. doi: 10.1016/j.engstruct.2008.07.004
    [47] Yu M, Zha X, Ye J, et al. A unified formulation for circle and polygon concrete-filled steel tube columns under axial compression [J]. Engineering Structures, 2013, 49: 1 − 10. doi: 10.1016/j.engstruct.2012.10.018
    [48] Yu Q, Tao Z, Wu Y X. Experimental behaviour of high performance concrete-filled steel tubular columns [J]. Thin-Walled Structures, 2008, 46(4): 362 − 370. doi: 10.1016/j.tws.2007.10.001
    [49] Yu Z, Ding F, Cai C S. Experimental behavior of circular concrete-filled steel tube stub columns [J]. Journal of Constructional Steel Research, 2007, 63(2): 165 − 174. doi: 10.1016/j.jcsr.2006.03.009
    [50] Zhang S, Guo L, Ye Z, et al. Behavior of steel tube and confined high strength concrete for concrete-filled RHS tubes [J]. Advances in Structural Engineering, 2005, 8(2): 101 − 116. doi: 10.1260/1369433054037976
    [51] Zhao X L, Packer J A. Tests and design of concrete-filled elliptical hollow section stub columns [J]. Thin-Walled Structures, 2009, 47(6): 617 − 628.
    [52] Zhu J Y, Chan T M. Experimental investigation on octagonal concrete filled steel stub columns under uniaxial compression [J]. Journal of Constructional Steel Research, 2018, 147: 457 − 467. doi: 10.1016/j.jcsr.2018.04.030
    [53] 丁发兴. 圆钢管混凝土结构受力性能与设计方法研究[D].湖南: 中南大学, 2006.

    Ding Faxing. Behavior and design method of concrete filled circular steel tubular structures [D]. Hunan: Central South University, 2006. (in Chinese)
    [54] 龚明波. 自密实钢管混凝土短柱轴压承载能力研究[D]. 吉林: 吉林大学, 2017.

    Gong Mingbo. Study on axial compression capacity of self compacting concrete filled steel tubular short column [D]. Jilin: Jilin University, 2017. (in Chinese)
    [55] 顾维平, 蔡绍怀, 冯文林. 钢管高强混凝土的性能与极限强度[J]. 建筑科学, 1991, 1(1): 23 − 27.

    Gu Weiping, Cai Shaohuai, Feng Wenlin. Performance and ultimate strength of high strength concrete filled steel tube [J]. Building Science, 1991, 1(1): 23 − 27. (in Chinese)
    [56] 顾维平, 蔡绍怀, 冯文林. 钢管高强混凝土偏压柱性能与承载能力的研究[J]. 建筑科学, 1993, 1(3): 8 − 12.

    Gu Weiping, Cai Shaohuai, Feng Wenlin. Study on the performance and bearing capacity of eccentrically loaded columns of high strength concrete filled steel tube [J]. Building Science, 1993, 1(3): 8 − 12. (in Chinese)
    [57] 郭晓松. 椭圆形钢管混凝土短柱轴压及偏压力学性能研究[D]. 哈尔滨: 哈尔滨工业大学, 2015.

    Guo Xiaosong. Behaviors of axially loaded and eccentrically loaded concrete filled elliptical hollow sections [D]. Harbin: Harbin Institute of Technology, 2015. (in Chinese)
    [58] 韩林海. 钢管混凝土组合柱的研究进展[J]. 工业建筑, 1996, 1(3): 23 − 27, 7. doi: 10.3321/j.issn:1000-8993.1996.03.006

    Han Linhai. Concrete filled steel tubular column-state of the art [J]. Industrial Construction, 1996, 1(3): 23 − 27, 7. (in Chinese) doi: 10.3321/j.issn:1000-8993.1996.03.006
    [59] 韩林海. 钢管高强混凝土轴压力学性能的理论分析与试验研究[J]. 工业建筑, 1997, 1(11): 40 − 43, 45, 14.

    Han Linhai. Theoretical analyses and experimental researches for the behaviors of high strength concrete filled steel tubes subjected to axial compression [J]. Industrial Construction, 1997, 1(11): 40 − 43, 45, 14. (in Chinese)
    [60] 韩林海, 陶忠. 方钢管混凝土轴压力学性能的理论分析与试验研究[J]. 土木工程学报, 2001, 34(2): 17 − 25. doi: 10.3321/j.issn:1000-131X.2001.02.004

    Han Linhai, Tao Zhong. Study on behavior of concrete filled square steel tubes under axial load [J]. China Civil Engineering Journal, 2001, 34(2): 17 − 25. (in Chinese) doi: 10.3321/j.issn:1000-131X.2001.02.004
    [61] 韩林海, 杨有福. 矩形钢管混凝土轴心受压构件强度承载力的试验研究[J]. 土木工程学报, 2001, 34(4): 22 − 31. doi: 10.3321/j.issn:1000-131X.2001.04.004

    Han Linhai, Yang Youfu. Study on axial bearing capacity of concrete-filled-steel-tube columns with rectangular section [J]. China Civil Engineering Journal, 2001, 34(4): 22 − 31. (in Chinese) doi: 10.3321/j.issn:1000-131X.2001.04.004
    [62] 贺锋, 周绪红, 唐昌辉. 钢管高强混凝土轴压短柱承载力性能的试验研究[J]. 工程力学, 2000, 17(4): 61 − 66. doi: 10.3969/j.issn.1000-4750.2000.04.010

    He Feng, Zhou Xuhong, Tang Changhui. Experimental study on bearing capacity of high strength concrete filled steel tubular short columns under axial compression [J]. Engineering Mechanics, 2000, 17(4): 61 − 66. (in Chinese) doi: 10.3969/j.issn.1000-4750.2000.04.010
    [63] 黎玉婷. 不同截面空实心钢管混凝土轴压和复杂静力下统一理论的研究[D]. 哈尔滨: 哈尔滨工业大学, 2010.

    Li Yuting. Research on the hollow and solid concrete filled stell tubes with polygonal and circle section under axial compression and complex stress [D]. Harbin: Harbin Institute of Technology, 2010. (in Chinese)
    [64] 李斌, 闻洋. 钢管混凝土轴压长柱承载力的试验研究[J]. 地震工程与工程振动, 2003, 23(5): 130 − 133. doi: 10.3969/j.issn.1000-1301.2003.05.021

    Li Bin, Wen Yang. Experimental study on bearing capacity of long concrete filled steel tubular columns with axial compression [J]. Earthquake Engineering and Engineering Vibration, 2003, 23(5): 130 − 133. (in Chinese) doi: 10.3969/j.issn.1000-1301.2003.05.021
    [65] 李云飞. 钢管混凝土轴心受压构件受力性能的试验研究[D]. 西安: 西安建筑科技大学, 2003.

    Li Yunfei. Experimental research of the concrete filled steel tubular column subjected to axial compress [D]. Xi’an: Xi’an University of Architecture and Technology, 2003. (in Chinese)
    [66] 刘习超, 查晓雄. 椭圆形钢管混凝土构件性能的研究Ⅰ: 轴压短柱和长柱[J]. 建筑钢结构进展, 2011, 13(1): 8 − 14.

    Liu Xichao, Zha Xiaoxiong. Study on behavior of elliptical concrete filled steel tube members Ⅰ: Stub and long columns under axial compression [J]. Progress in Steel Building Structures, 2011, 13(1): 8 − 14. (in Chinese)
    [67] 吕西林, 余勇, 陈以一, 等. 轴心受压方钢管混凝土短柱的性能研究: I试验[J]. 建筑结构, 1999, 1(10): 41 − 43.

    Lü Xilin, Yu Yong, Chen Yiyi, et al. Study on behavior of concrete filled square steel tubular short columns under axial compression: I test [J]. Building Structure, 1999, 1(10): 41 − 43. (in Chinese)
    [68] 谭克锋. 钢管超高强混凝土的强度及本构关系预测[J]. 四川大学学报(工程科学版), 2003, 35(4): 10 − 13. doi: 10.3969/j.issn.1009-3087.2003.04.003

    Tan Kefeng. Prediction of the strength and constitutive relationship of very high strength concrete filled steel tubular columns [J]. Journal of Sichuan University (Engineering Science Edition), 2003, 35(4): 10 − 13. (in Chinese) doi: 10.3969/j.issn.1009-3087.2003.04.003
    [69] 谭克锋, 蒲心诚, 蔡绍怀. 钢管超高强混凝土的性能与极限承载能力的研究[J]. 建筑结构学报, 1999, 20(1): 3 − 5.

    Tan Kefeng, Pu Xincheng, Cai Shaohuai. Study on the performance and ultimate bearing capacity of super high strength concrete filled steel tube [J]. Journal of Building Structures, 1999, 20(1): 3 − 5. (in Chinese)
    [70] 王力尚, 钱稼茹. 钢管高强混凝土柱轴向受压承载力试验研究[J]. 建筑结构, 2003, 33(7): 46 − 49.

    Wang Lishang, Qian Jiaru. Experimental study on bearing capacity of high strength concrete filled steel tubular columns under axial compression [J]. Building Structure, 2003, 33(7): 46 − 49. (in Chinese)
    [71] 王志滨, 陈靖, 谢恩普, 等. 圆端形钢管混凝土柱轴压性能研究[J]. 建筑结构学报, 2014, 35(7): 123 − 130.

    Wang Zhibin, Chen Jing, Xie Enpu, et al. Behavior of concrete-filled round-end steel tubular stub columns under axial compression [J]. Journal of Building Structures, 2014, 35(7): 123 − 130. (in Chinese)
    [72] 尧国皇, 韩林海. 钢管自密实高性能混凝土压弯构件力学性能研究[J]. 建筑结构学报, 2004, 25(4): 34 − 42. doi: 10.3321/j.issn:1000-6869.2004.04.005

    Yao Guohuang, Han Linhai. Research on behavior of self-consolidation concrete filled steel tubular beam-columns [J]. Journal of Building Structures, 2004, 25(4): 34 − 42. (in Chinese) doi: 10.3321/j.issn:1000-6869.2004.04.005
    [73] 余志武, 丁发兴, 林松. 钢管高性能混凝土短柱受力性能研究[J]. 建筑结构学报, 2002, 23(2): 41 − 47. doi: 10.3321/j.issn:1000-6869.2002.02.006

    Yu Zhiwu, Ding Faxing. Lin Song. Researches on behavior of high-performance concrete filled tubular steel short column [J]. Journal of Building Structures, 2002, 23(2): 41 − 47. (in Chinese) doi: 10.3321/j.issn:1000-6869.2002.02.006
    [74] 张素梅, 郭兰慧, 叶再利, 等. 方钢管高强混凝土轴压短柱的试验研究[J]. 哈尔滨工业大学学报, 2004, 36(12): 1610 − 1614. doi: 10.3321/j.issn:0367-6234.2004.12.007

    Zhang Sumei, Guo Lanhui, Ye Zaili, et al. Experimental research on high strength concrete-filled SHS stub columns subjected to axial compressive load [J]. Journal of Harbin Institute of Technology, 2004, 36(12): 1610 − 1614. (in Chinese) doi: 10.3321/j.issn:0367-6234.2004.12.007
    [75] 张素梅, 王玉银. 圆钢管高强混凝土轴压短柱的破坏模式[J]. 土木工程学报, 2004, 37(9): 1 − 10. doi: 10.3321/j.issn:1000-131X.2004.09.001

    Zhang Sumei, Wang Yuyin. Failure modes of short columns of high-strength concrete-filled steel tubes [J]. China Civil Engineering Journal, 2004, 37(9): 1 − 10. (in Chinese) doi: 10.3321/j.issn:1000-131X.2004.09.001
    [76] 张素梅, 周明. 方钢管约束下混凝土的抗压强度[C]// 中国钢协钢-混凝土组合结构协会第七次年会, 中国黑龙江哈尔滨, 1999.

    Zhang Sumei, Zhou Ming. Compressive strength of concrete confined by square steel tube [C]// Proceedings of the 7th annual meeting of steel-concrete composite structure association of China Steel Association. Harbin China, Science Press, 1999. (in Chinese)
    [77] 张耀春, 王秋萍, 毛小勇, 等. 薄壁钢管混凝土短柱轴压力学性能试验研究[J]. 建筑结构, 2005, 35(1): 22 − 27.

    Zhang Yaochun, Wang Qiuping, Mao Xiaoyong, et al. Research on mechanics behavior of stub-column of concrete-filled thin-walled steel tube under axial load [J]. Building Structure, 2005, 35(1): 22 − 27. (in Chinese)
    [78] 刘红梁. 混合交错桁架结构性能与可靠性研究[D]. 哈尔滨: 哈尔滨工业大学, 2005.

    Liu Hongliang. Study on performance and Reliability of staggered integrated-truss structure [D]. Harbin: Harbin Institute of Technology, 2005. (in Chinese)
    [79] Zhao Y G, Ono T. New point estimates for probability moments [J]. Journal of Engineering Mechanics, 2000, 126(4): 433 − 436. doi: 10.1061/(ASCE)0733-9399(2000)126:4(433)
    [80] Fan W, Wei J, Ang A H S, et al. Adaptive estimation of statistical moments of the responses of random systems [J]. Probabilistic Engineering Mechanics, 2016, 43(1): 50 − 67.
    [81] Hohenbichler M, Rackwitz R. Non-normal dependent vectors in structural safety [J]. Journal of the Engineering Mechanics Division, 1981, 107(6): 1127 − 1138.
    [82] Salzer H, Zucker R, Capuano R. Table of the zeros and weight factors of the first twenty hermite polynomials [J]. Journal of Research of the National Bureau of Standards, 1952, 48(2): 111 − 116. doi: 10.6028/jres.048.016
    [83] Zhao Y G, Ono T. Moment methods for structural reliability [J]. Structural Safety, 2001, 23(1): 47 − 75. doi: 10.1016/S0167-4730(00)00027-8
    [84] Zhao Y G, Lu Z H. Fourth-moment standardization for structural reliability assessment [J]. Journal of Structural Engineering, 2007, 133(7): 916 − 924. doi: 10.1061/(ASCE)0733-9445(2007)133:7(916)
    [85] 饶守丰. 可靠度分析的高阶矩法及其应用[D]. 重庆: 重庆大学, 2016.

    Rao Shoufeng. High order moment method for reliability and its application [D]. Chongqing: Chongqing University, 2016. (in Chinese)
    [86] GB 50068−2018, 建筑结构可靠性设计统一标准[S]. 北京: 中国建筑工业出版社, 2018.

    GB 50068−2018, Unified standard for reliability design of building structures [S]. Beijing: China Architecture & Building Press, 2018. (in Chinese)
  • 加载中
图(8) / 表(7)
计量
  • 文章访问数:  125
  • HTML全文浏览量:  23
  • PDF下载量:  18
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-09-16
  • 修回日期:  2020-12-22
  • 网络出版日期:  2021-04-07
  • 刊出日期:  2021-09-13

目录

    /

    返回文章
    返回