留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

双相型不锈钢S22053循环本构关系研究

骆晶 施刚 毛灵涛 郑云

骆晶, 施刚, 毛灵涛, 郑云. 双相型不锈钢S22053循环本构关系研究[J]. 工程力学, 2021, 38(9): 171-181. doi: 10.6052/j.issn.1000-4750.2020.09.0659
引用本文: 骆晶, 施刚, 毛灵涛, 郑云. 双相型不锈钢S22053循环本构关系研究[J]. 工程力学, 2021, 38(9): 171-181. doi: 10.6052/j.issn.1000-4750.2020.09.0659
LUO Jing, SHI Gang, MAO Ling-tao, ZHENG Yun. CONSTITUTIVE RELATION OF DUPLEX STAINLESS STEEL S22053 UNDER CYCLIC LOADING[J]. Engineering Mechanics, 2021, 38(9): 171-181. doi: 10.6052/j.issn.1000-4750.2020.09.0659
Citation: LUO Jing, SHI Gang, MAO Ling-tao, ZHENG Yun. CONSTITUTIVE RELATION OF DUPLEX STAINLESS STEEL S22053 UNDER CYCLIC LOADING[J]. Engineering Mechanics, 2021, 38(9): 171-181. doi: 10.6052/j.issn.1000-4750.2020.09.0659

双相型不锈钢S22053循环本构关系研究

doi: 10.6052/j.issn.1000-4750.2020.09.0659
基金项目: 国家重点研发计划资助项目(2018YFC0705500,2018YFC0705501)
详细信息
    作者简介:

    骆 晶(1977−),女,天津人,博士生,主要从事钢结构的研究(Email: lizzyluo@tsinghua.edu.cn)

    毛灵涛(1974−),男,新疆石河子人,教授,博士,博导,主要从事实验力学研究(E-mail: mlt@cumtb.edu.cn)

    郑 云(1976−),男,江西丰城人,教授级高工,博士,主要从事钢结构和组合结构研究(E-mail: 18811051632@139.com)

    通讯作者:

    施 刚(1977−),男,安徽铜陵人,教授,博士,博导,主要从事钢结构的研究(Email: shigang@tsinghua.edu.cn)

  • 中图分类号: TU391

CONSTITUTIVE RELATION OF DUPLEX STAINLESS STEEL S22053 UNDER CYCLIC LOADING

  • 摘要: 为研究国产双相型不锈钢S22053在循环荷载下材料的力学性能和本构关系,该文采用S22053热轧钢板加工成母材试件,进行单调和循环加载试验,得到14种加载制度下的应力-应变曲线。基于单调加载试验曲线,分析了单调荷载下的材料性能;利用等应变幅加载试验曲线拟合了Chaboche混合强化参数,并用有限元软件ABAQUS对试验进行模拟计算,对比、验证了拟合效果。结果表明:双相型不锈钢S22053延性较好,没有明显的屈服平台和屈服点,比例极限较低;循环骨架曲线可以采用Ramberg-Osgood模型进行拟合;采用不同分量模型标定的3组混合强化参数均能较好的模拟材料的循环受力特征,其中三背应力分量模型(N2L1)拟合效果最好。研究结果可用于分析计算双相型不锈钢结构在地震作用下的受力性能。
  • 图  1  循环加载试件尺寸 /mm

    Figure  1.  Dimensions of coupons under cyclic loading

    图  2  试验加载装置

    Figure  2.  Test equipment

    图  3  试件破坏形式

    Figure  3.  Failure models of coupons

    图  4  S22053单调加载曲线

    Figure  4.  Monotonic curves of S22053

    图  5  S22053循环滞回曲线

    Figure  5.  Cyclic curves of S22053

    图  6  S22053循环峰值应力

    Figure  6.  Cyclic peak stress of S22053

    图  7  S22053循环骨架曲线

    Figure  7.  Cyclic backbone curves of S22053

    图  8  Chaboche混合强化模型

    Figure  8.  Chaboche combined hardening model

    图  9  单调荷载作用下有限元模拟曲线与试验曲线对比

    Figure  9.  Comparison between fitting curves and test curves under monotonic load

    图  10  循环荷载作用下有限元模拟曲线与试验曲线对比

    Figure  10.  Comparison between fitting curves and test curves under cyclic load

    图  11  N2L1模型拟合曲线与试验曲线对比

    Figure  11.  Comparison between fitting curves and test curves of N2L1 model

    表  1  双相型不锈钢S22053化学成分表 /(质量分数%)

    Table  1.   Chemical composition of DSS S22053 /(wt.%)

    化学成分CSiMnCrNiMo
    S220530.0180.521.0722.75.53.2
    GB/T 20878−2007[25]0.0301.002.0022~234.5~6.53.0~3.5
    下载: 导出CSV

    表  2  加载制度

    Table  2.   Loading spectrum

    制度编号加载制度说明
    a-1单调拉伸
    a-2单调压缩
    a-3拉压对称加载,从±0.2%以0.2%等应变增量逐级加载至±3.0%,先拉后压,每级循环1次
    a-4拉压对称加载,从±0.2%以0.2%等应变增量逐级加载至±3.0%,先拉后压,每级循环3次
    a-5以应变1%等幅拉压对称加载,先拉后压,循环10圈
    a-6以应变2%等幅拉压对称加载,先拉后压,循环10圈
    a-7以应变3%等幅拉压对称加载,先拉后压,循环6圈
    a-8拉压对称加载,从±3%以−0.2%等应变降幅逐级减小,先拉后压,每级循环1次
    a-9压应变固定为−0.4%,拉应变以0.2%等应变增量逐级加载至3%,先拉后压,每级循环1次
    a-10以拉应变1.0%为中心点,等应变增量0.2%逐级加载至拉应变达到3%
    a-11固定应变幅度为1.6%,从±0.8%开始,以0.2%为应变变化量逐级加载至拉应变达到3%
    a-12拉应变固定为0.4%,压应变以−0.2%等应变降幅逐级加载至−3%,先拉后压,每级循环1次
    a-13随机加载
    a-14随机加载
    下载: 导出CSV

    表  3  试件单调力学性能

    Table  3.   monotonic mechanical properties of coupons

    试件编号E0/MPaσ0.01/MPaσ0.2/MPaε0.2/(%)σu/MPaεu/(%)屈强比
    a-1a207 2353836110.49579122.070.772
    a-1b237 6943636490.47383423.420.778
    a-2233 4503125790.448
    下载: 导出CSV

    表  4  S22053主要循环强化参数

    Table  4.   Main cyclic hardening parameters of S22053

    试件编号循环强化系数K′/MPa循环强化指数n
    a-3 1122.3 0.094
    a-4 899.8 0.046
    a-9 1149.7 0.102
    a-10 1234.5 0.116
    a-12 1176.2 0.106
    平均值 1116.5 0.093
    下载: 导出CSV

    表  5  S22053循环本构模型参数

    Table  5.   Cyclic constitutive model parameters of S22053

    模型参数N2L1N4L0N3L1
    E0/MPa215 497215 497215 497
    $ {\left.\sigma \right|}_{0} {\rm{/MPa}}$361361361
    Q/MPa16.23016.23016.230
    b35.10835.10835.108
    C1/MPa26 00226 00226 002
    γ1144.5153.6142.4
    C2/MPa184 221184 221184 221
    γ21066.4987.1973.5
    C3/MPa223522352235
    γ30510.2548.8
    C4/MPa11191119
    γ4841.70
    下载: 导出CSV

    表  6  Chaboche模型模拟效果对比

    Table  6.   Comparison of fitting effect of Chaboche models

    试件编号参数A/(%)最优
    N2L1N4L0N3L1
    a-3 −1.191 1.750 1.538 N2L1
    a-4 −0.089 2.665 2.675 N2L1
    a-5 17.464 20.870 19.337 N2L1
    a-6 −4.808 −1.753 −2.065 N4L0
    a-7 −4.623 −1.909 −1.607 N3L1
    a-8 −1.789 1.153 0.936 N3L1
    a-9 1.452 4.366 3.428 N2L1
    a-10 1.856 4.867 4.100 N2L1
    a-11 10.338 12.463 11.339 N2L1
    a-12 −1.029 1.369 0.654 N3L1
    a-13 −5.149 −2.268 −2.713 N4L0
    a-14 0.789 2.858 3.062 N2L1
    $ \overline {\left| A \right|} $ 4.215 4.858 4.454 N2L1
    下载: 导出CSV
  • [1] 王元清, 袁焕鑫, 石永久, 等. 不锈钢结构构件稳定性的研究进展[J]. 工业建筑, 2012, 42(5): 1 − 11.

    Wang Yuanqing, Yuan Huanxin, Shi Yongjiu, et al. Research advances in stability of stainless steel structural members [J]. Industrial Construction, 2012, 42(5): 1 − 11. (in Chinese)
    [2] 董永涛, 张耀春. 建筑用钢循环塑性本构模型[J]. 哈尔滨建筑工程学院学报, 1993, 26(5): 106 − 112.

    Dong Yongtao, Zhang Yaochun. Cyclic plasticity constitutive model of structural steel [J]. Journal of Harbin Architecture and Civil Engineering Institute, 1993, 26(5): 106 − 112. (in Chinese)
    [3] Ramberg W, Osgood W R. Description of stress-strain curves by three parameters [R]. Washington, D. C., USA: National Advisory Committee for Aeronautics, TN 902, 1943.
    [4] Prager W. The theory of plasticity: A survey of recent achievements [J]. Proceedings of the Institute of Mechanical Engineers, 1955, 169(1955): 41 − 57.
    [5] Mróz Z. An attempt to describe the behavior of metals under cyclic loads using a more general work hardening model [J]. Acta Mechanica, 1969, 7(2/3): 199 − 212. doi: 10.1007/BF01176668
    [6] Armstrong P J, Frederick C O. A mathematical representation of the multiaxial Bauschinger effect. CEGB Report RD/B/N 731, Central Electricity Generating Board. the report is reproduced as a paper: 2007 [J]. Materials at High Temperatures, 1966, 24(1): 1 − 26.
    [7] Chaboche J L. Time-independent constitutive theories for cyclic plasticity [J]. International Journal of Plasticity, 1986, 2(2): 149 − 188. doi: 10.1016/0749-6419(86)90010-0
    [8] Chaboche J L. On some modifications of kinematic hardening to improve the description of ratchetting effects [J]. International Journal of Plasticity, 1991, 7(7): 661 − 678. doi: 10.1016/0749-6419(91)90050-9
    [9] Shi Y, Wang M, Wang Y. Experimental and constitutive model study of structural steel under cyclic loading [J]. Steel Construction, 2011, 67(8): 1185 − 1197. doi: 10.1016/j.jcsr.2011.02.011
    [10] Shi G, Wang M, Bai Y, et al. Experimental and modeling study of high-strength structural steel under cyclic loading [J]. Engineering Structures, 2012, 37: 1 − 13. doi: 10.1016/j.engstruct.2011.12.018
    [11] Jia L, Kuwamura H. Prediction of cyclic behaviors of mild steel at large plastic strain using coupon test results [J]. Journal of Structural Engineering, 2014, 140(2): 04013056. doi: 10.1061/(ASCE)ST.1943-541X.0000848
    [12] Hu F, Shi G, Shi Y. Constitutive model for full-range elasto-plastic behavior of structural steels with yield plateau: Calibration and validation [J]. Engineering Structures, 2016, 118: 210 − 227. doi: 10.1016/j.engstruct.2016.03.060
    [13] Hu F, Shi G. Constitutive model for full-range cyclic behavior of high strength steels without yield plateau [J]. Construction and Building Materials, 2018, 162: 596 − 607. doi: 10.1016/j.conbuildmat.2017.11.128
    [14] 王宇航, 余洁, 吴强. 复杂循环路径下钢材弹塑性屈曲行为研究[J]. 工程力学, 2018, 35(7): 24 − 38. doi: 10.6052/j.issn.1000-4750.2017.07.0525

    Wang Yuhang, Yu Jie, Wu Qiang. Elastic-plastic buckling behavior of steel material under complex cyclic loading paths [J]. Engineering Mechanics, 2018, 35(7): 24 − 38. (in Chinese) doi: 10.6052/j.issn.1000-4750.2017.07.0525
    [15] Shi G, Gao Y, Wang X, et al. Mechanical properties and constitutive models of low yield point steels [J]. Construction & Building Materials, 2018, 175: 570 − 587.
    [16] 于敦吉. 奥氏体不锈钢循环塑性的微观机理和宏观本构描述[D]. 天津: 天津大学, 2014.

    Yu Dunji. A study of micro-mechanisms and macro-constitutive modeling of the cyclic plasticity of austenitic stainless steels [D]. Tianjin: Tianjin University, 2014. (in Chinese)
    [17] Wang Y, Chang T, Shi Y, et al. Experimental study on the constitutive relation of austenitic stainless steel S31608 under monotonic and cyclic loading [J]. Thin-Walled Structures, 2014, 83: 19 − 27. doi: 10.1016/j.tws.2014.01.028
    [18] 王萌, 杨维国, 王元清, 等. 奥氏体不锈钢滞回本构模型研究[J]. 工程力学, 2015, 32(11): 107 − 114. doi: 10.6052/j.issn.1000-4750.2014.04.0354

    Wang Meng, Yang Guowei, Wang Yuanqing, et al. Study on hysteretic constitutive model of austenitic stainless steel [J]. Engineering Mechanics, 2015, 32(11): 107 − 114. (in Chinese) doi: 10.6052/j.issn.1000-4750.2014.04.0354
    [19] 杨璐, 卫璇, 张有振, 等. 不锈钢母材及其焊缝金属材料单拉本构关系研究[J]. 工程力学, 2018, 35(5): 125 − 130, 151. doi: 10.6052/j.issn.1000-4750.2017.01.0055

    Yang Lu, Wei Xuan, Zhang Youzhen, et al. Research on the tensile stress-strain relation of stainless steel base material and its weld metal material [J]. Engineering Mechanics, 2018, 35(5): 125 − 130, 151. (in Chinese) doi: 10.6052/j.issn.1000-4750.2017.01.0055
    [20] 常笑, 杨璐, 王萌, 等. 循环荷载下奥氏体型和双相型不锈钢材料本构关系研究[J]. 工程力学, 2019, 36(5): 137 − 147. doi: 10.6052/j.issn.1000-4750.2018.03.0184

    Chang Xiao, Yang Lu, Wang Meng, et al. Study on constitutive model of austenitic stainless steel and duplex stainless steel under cyclic loading [J]. Engineering Mechanics, 2019, 36(5): 137 − 147. (in Chinese) doi: 10.6052/j.issn.1000-4750.2018.03.0184
    [21] Yin F, Yang L, Wang M, et al. Study on ultra-low cycle fatigue behavior of austenitic stainless steel [J]. Thin-Walled Structures, 2019, 143: 106205.1 − 106205.11.
    [22] Chang X, Yang L, Zong L, et al. Study on cyclic constitutive model and ultra low cycle fracture prediction model of duplex stainless steel [J]. Journal of Constructional Steel Research, 2019, 152: 105 − 116. doi: 10.1016/j.jcsr.2018.05.001
    [23] Xie X, Jiang W, Chen J, et al. Cyclic hardening/softening behavior of 316L stainless steel at elevated temperature including strain-rate and strain-range dependence: Experimental and damage-coupled constitutive modeling [J]. International Journal of Plasticity, 2019, 114: 196 − 214. doi: 10.1016/j.ijplas.2018.11.001
    [24] CECS 410: 2015, 不锈钢结构技术规程[S]. 北京: 中国计划出版社, 2015.

    CECS 410: 2015, Technical specification for stainless steel structures [S]. Beijing: China Planning Press, 2015. (in Chinese)
    [25] GB/T 20878−2007, 不锈钢和耐热钢 牌号及化学成分[S]. 北京: 中国标准出版社, 2007.

    GB/T 20878−2007, Stainless steel and heat-resisting steels-Designation and chemical composition [S]. Beijing: Standards Press of China, 2007. (in Chinese)
    [26] ASTM E606/E606M-19. Standard test method for strain-controlled fatigue testing [S]. West Conshohochen, PA: ASTM International, 2020.
    [27] Westeel R. Análisis comparativo de expresiones analíticas para modelizar el comportamiento tenso-deformacional no lineal del acero inoxidable [D]. Barcelona: Universitat Politècnica de Catalunya, 2012.
    [28] 陈惠发. 土木工程材料的本构方程(第二卷 塑性与建模)[M]. 武汉: 华中科技大学出版社, 2001.

    Chen W F. Constitutive equations for Engineering Materials (Volume II Plasticity and Modeling) [M]. Wuhan: Huazhong University of Science & Technology Press, 2001. (in Chinese)
    [29] 王鹰宇. Abaqus分析用户手册-材料卷[M]. 北京: 机械工业出版社, 2018.

    Wang Yingyu. Abaqus analysis user's Guide: Materials Volum [M]. Beijing: China Machine Press, 2018. (in Chinese)
  • 加载中
图(11) / 表(6)
计量
  • 文章访问数:  90
  • HTML全文浏览量:  33
  • PDF下载量:  35
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-09-14
  • 修回日期:  2021-01-07
  • 网络出版日期:  2021-01-26
  • 刊出日期:  2021-09-13

目录

    /

    返回文章
    返回