留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

连续排水边界下考虑起始坡降的软黏土固结解

陈余 李传勋

陈余, 李传勋. 连续排水边界下考虑起始坡降的软黏土固结解[J]. 工程力学, 2021, 38(9): 161-170. doi: 10.6052/j.issn.1000-4750.2020.09.0656
引用本文: 陈余, 李传勋. 连续排水边界下考虑起始坡降的软黏土固结解[J]. 工程力学, 2021, 38(9): 161-170. doi: 10.6052/j.issn.1000-4750.2020.09.0656
CHEN Yu, LI Chuan-xun. CONSOLIDATION ANALYSIS OF SOFT CLAY CONSIDERING THE THRESHOLD HYDRAULIC GRADIENT AND A CONTINUOUS DRAINAGE BOUNDARY[J]. Engineering Mechanics, 2021, 38(9): 161-170. doi: 10.6052/j.issn.1000-4750.2020.09.0656
Citation: CHEN Yu, LI Chuan-xun. CONSOLIDATION ANALYSIS OF SOFT CLAY CONSIDERING THE THRESHOLD HYDRAULIC GRADIENT AND A CONTINUOUS DRAINAGE BOUNDARY[J]. Engineering Mechanics, 2021, 38(9): 161-170. doi: 10.6052/j.issn.1000-4750.2020.09.0656

连续排水边界下考虑起始坡降的软黏土固结解

doi: 10.6052/j.issn.1000-4750.2020.09.0656
基金项目: 国家自然科学基金项目(51878320)
详细信息
    作者简介:

    陈 余(1996−),男,江苏盐城人,硕士生,主要从事排水固结方面的研究工作(E-mail: 2211823022@stmail.ujs.edu.cn)

    通讯作者:

    李传勋(1978−),男,吉林榆树人,教授,博士,主要从事地基处理方面的教学和研究工作(E-mail: lichuanxun@yeah.net)

  • 中图分类号: TU470

CONSOLIDATION ANALYSIS OF SOFT CLAY CONSIDERING THE THRESHOLD HYDRAULIC GRADIENT AND A CONTINUOUS DRAINAGE BOUNDARY

  • 摘要: Terzaghi一维固结理论中边界条件和初始条件相矛盾的逻辑问题以及软黏土中水的渗流在低水力坡降下可忽略均已逐渐被认识。但在连续排水边界条件下能考虑起始水力坡降的黏性土一维固结理论,尤其是固结模型的解析解还鲜见报道。基于此,该文引入了连续排水边界,并同时考虑黏性土中渗流存在的起始水力坡降,建立了均质地基的单面排水一维固结模型。采用有限傅里叶变换方法求解了所建立固结模型的孔压、固结度以及沉降解析解答,分析了土层在恒载下同时考虑连续排水边界和起始水力坡降的一维固结性状。结果表明:考虑起始水力坡降后,连续排水界面参数b对固结性状的影响与达西定律下相同,即b值越大,排水面透水情况越好,孔压消散速率越快,固结完成时间越短;相反b值越小,排水面透水情况越差,孔压消散越慢,固结完成时间越长。连续排水条件下无量纲R(起始水力坡降、水的重度与土层厚度的乘积除以外荷载)对固结性状影响与完全透水边界下相比无明显改变。R值越大,渗流前锋到达土层底部的时间越长,固结完成时土中超静孔压残留值越大,土层按孔压定义的平均固结度越小,最终沉降量也越小。
  • 图  1  软土地基一维固结模型

    Figure  1.  One-dimensional consolidation model of soft ground

    图  2  已有文献解与本文解析解的对比(B=100 000)

    Figure  2.  Comparison between existing solution in literature and analytical solution (B=100 000)

    图  3  黏性土层的边界条件

    Figure  3.  Boundary conditions of cohesive soil

    图  4  R对移动边界的影响

    Figure  4.  Influence of R on moving boundary

    图  5  Rz/H -u/q0曲线的影响(Tv=0.3)

    Figure  5.  Influence of R on z/H -u/q0(Tv=0.3)

    图  6  Ru/q0-Tv曲线的影响(z/H=0.5)

    Figure  6.  Influence of R on u/q0-Tv(z/H=0.5)

    图  7  R对固结度Up的影响

    Figure  7.  Influence of R on average consolidation degree Up

    图  8  B对渗流移动边界的影响

    Figure  8.  Influence of B on moving boundary

    图  9  Bz/H-u/q0曲线的影响(Tv=0.8)

    Figure  9.  Influence of B on z/H-u/q0(Tv=0.8)

    图  10  Bu/q0-Tv曲线的影响(z/H=0.1)

    Figure  10.  Influence of B on u/q0(z/H=0.1)

    图  11  B对固结度Up的影响

    Figure  11.  Influence of B on average consolidation degree Up

    表  1  计算分析所用参数

    Table  1.   Parameters adopted in the following analysis

    参数符号取值单位
    恒载q0100kPa
    界面参数b0.0054d−1
    起始水力坡降i00.001
    无量纲参数BbH2/cv10
    无量纲参数Ri0γwH/q00.001
    下载: 导出CSV
  • [1] 梅国雄, 夏君, 梅岭. 基于不对称连续排水边界的 Terzaghi一维固结方程及其解答[J]. 岩土工程学报, 2011(1): 28 − 31.

    Mei Guoxiong, Xia Jun, Mei Ling. Terzaghi's one-dimensional consolidation equation and its solution based on asymmetric continuous drainage boundary [J]. Journal of Geotechnical Engineering, 2011(1): 28 − 31. (in Chinese)
    [2] 张国英, 李勇义, 李康. 连续排水边界下一维均质地基的固结性状分析[J]. 现代矿业, 2018, 34(4): 205 − 207, 209. doi: 10.3969/j.issn.1674-6082.2018.04.058

    Zhang Guoying, Li Yongyi, Li Kang. Analysis of consolidation behavior of one-dimensional homogeneous foundation under continuous drainage boundary [J]. Modern Mining, 2018, 34(4): 205 − 207, 209. (in Chinese) doi: 10.3969/j.issn.1674-6082.2018.04.058
    [3] 蔡烽, 何利军, 周小鹏, 等. 连续排水边界下成层地基一维固结问题的有限元分析[J]. 中南大学学报(自然科学版), 2013, 44(1): 315 − 323. doi: 10.11817/j.issn.1672-7207.2013.01.038

    Cai Feng, He Lijun, Zhou Xiaopeng, et al. Finite element analysis of one-dimensional consolidation problem with continuous drainage boundaries in layered ground [J]. Journal of Central South University (Natural Science Edition), 2013, 44(1): 315 − 323. (in Chinese) doi: 10.11817/j.issn.1672-7207.2013.01.038
    [4] 冯健雪, 陈征, 李勇义, 等. 连续排水边界条件下线性加载地基一维固结解析解[J]. 工程力学, 2019, 36(6): 219 − 226. doi: 10.6052/j.issn.1000-4750.2018.05.0294

    Feng Jianxue, Chen Zheng, Li Yiyong, et al. Analytical solution for one-dimensional consolidation of soft clayey soil with a continuous drainage boundary under linear loading [J]. Engineering Mechanics, 2019, 36(6): 219 − 226. (in Chinese) doi: 10.6052/j.issn.1000-4750.2018.05.0294
    [5] Feng J X, Ni P P, Mei G X. One‐dimensional self‐weight consolidation with continuous drainage boundary conditions [J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2019, 43(8): 1634 − 1652. doi: 10.1002/nag.2928
    [6] 宗梦繁, 吴文兵, 梅国雄, 等. 连续排水边界条件下土体一维非线性固结解析解[J]. 岩石力学与工程学报, 2018, 37(12): 2829 − 2838.

    Zong Mengfan, Wu Wenbing, Mei Guoxiong, et al. An analytical solution for one-dimensional nonlinear consolidation of soils with continuous drainage boundary [J]. Journal of Rock Mechanics and Engineering, 2018, 37(12): 2829 − 2838. (in Chinese)
    [7] 宗梦繁, 吴文兵, 梅国雄, 等. 连续排水边界条件下土体一维流变固结解析解[J]. 工程力学, 2019, 36(9): 79 − 88. doi: 10.6052/j.issn.1000-4750.2018.06.0349

    Zong Mengfan, Wu Wenbing, Mei Guoxiong, et al. Analytical solution for one-dimensional rheological consolidation of soil based on continuous drainage boundary [J]. Engineering Mechanics, 2019, 36(9): 79 − 88. (in Chinese) doi: 10.6052/j.issn.1000-4750.2018.06.0349
    [8] 田乙, 吴文兵, 蒋国盛, 等. 连续排水边界下分数阶黏弹性饱和土体一维固结分析[J]. 岩土力学, 2019, 40(8): 3054 − 3061, 3070.

    Tian Yi, Wu Wenbing, Jiang Guosheng, et al. One-dimensional consolidation of viscoelastic saturated soils with fractional order derivative based on continuous drainage boundary [J]. Geotechnical Mechanics, 2019, 40(8): 3054 − 3061, 3070. (in Chinese)
    [9] 李称, 吴文兵, 梅国雄, 等. 不同排水条件下城市固废一维降解固结解析解[J]. 岩土力学, 2019, 40(8): 3071 − 3080, 3089.

    Li Cheng, Wu Wenbing, Mei Guoxiong, et al. Analytical solution for 1D degradation-consolidation of municipal solid waste under different drainage conditions [J]. Geotechnical Mechanics, 2019, 40(8): 3071 − 3080, 3089. (in Chinese)
    [10] 江文豪, 詹良通, 杨策. 连续排水边界条件下饱和软土一维大变形固结解析解[J]. 中南大学学报(自然科学版), 2020, 51(5) − 1298. doi: 10.11817/j.issn.1672-7207.2020.05.001

    Jiang Wenhao, Zhan Liangtong, Yang Ce. Analytical solution for one-dimensional large strain consolidation of saturated soft soils with continuous drainage boundary [J]. Journal of Central South University (Natural Science Edition), 2020, 51(5) − 1298. (in Chinese) doi: 10.11817/j.issn.1672-7207.2020.05.001
    [11] Zhang Y, Wu W B, Mei G X, et al. Three-dimensional consolidation theory of vertical drain based on continuous drainage boundary [J]. Journal of Civil Engineering and Management, 2019, 25(2): 145 − 155. doi: 10.3846/jcem.2019.8071
    [12] Tian Y, Wu W B, Jiang G S, et al. One‐dimensional consolidation of soil under multistage load based on continuous drainage boundary [J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2020: 1 − 14.
    [13] Dubin B, Moulin G. Influence of a critical gradient on the consolidation of clays [C]// Consolidation of soils: Testing and evaluation (STP 892). West Conshohocken (PA): American Society for Testing and Materials, 1985: 354 − 377.
    [14] Mitchell J, Younger J. Abnormalities in hydraulic flow through fine-grained soils [J]. ASTM Special Publication 417, American Society for Testing and Materials, Philadelphia, 1967: 106 − 141.
    [15] Hansbo S. Aspects of vertical drain design: Darcian or non-Darcian flow [J]. Geotechnique, 1997, 47(5): 983 − 992. doi: 10.1680/geot.1997.47.5.983
    [16] Hansbo S. Deviation from Darcy’s law observed in one-dimensional consolidation [J]. Geotechnique, 2003, 53(6): 601 − 605. doi: 10.1680/geot.2003.53.6.601
    [17] 齐添, 谢康和, 胡安峰, 等. 萧山黏土非达西渗流性状的试验研究[J]. 浙江大学学报(工学版), 2007, 41(6): 1023 − 1028. doi: 10.3785/j.issn.1008-973X.2007.06.030

    Qi Tian, Xie Kanghe, Hu Anfeng, et al. Laboratorial study on non-Darcy seepage in Xiaoshan clay [J]. Journal of Zhejiang University (Engineering), 2007, 41(6): 1023 − 1028. (in Chinese) doi: 10.3785/j.issn.1008-973X.2007.06.030
    [18] Miller R J, Low P E. Threshold gradient for water flow in clay systems [J]. Soil Science Society of American Journal, 1963, 27(6): 605 − 609. doi: 10.2136/sssaj1963.03615995002700060013x
    [19] Pascal F, Pascal H, Murray D W. Consolidation with threshold gradients [J]. International Journal for Numerical and Analytical Methods in Geomechanics, 1981, 5(3): 247 − 261. doi: 10.1002/nag.1610050303
    [20] 刘慈群. 有起始比降固结问题的近似解[J]. 岩土工程学报, 1982, 4(3): 107 − 109. doi: 10.3321/j.issn:1000-4548.1982.03.010

    Liu Ciqun. Approximate solutions for one-dimensional consolidation with a threshold gradient [J]. Chinese Journal of Geotechnical Engineering, 1982, 4(3): 107 − 109. (in Chinese) doi: 10.3321/j.issn:1000-4548.1982.03.010
    [21] Xie K H, Wang K, Wang Y L, et al. Analytical solution for one-dimensional consolidation of clayey soils with a threshold gradient [J]. Computers and Geotechnics, 2010, 37(4): 487 − 493. doi: 10.1016/j.compgeo.2010.02.001
    [22] 李传勋, 谢康和. 考虑非达西渗流和变荷载影响的软土大变形固结分析[J]. 岩土工程学报, 2015, 37(6): 1002 − 1009. doi: 10.11779/CJGE201506005

    Li Chuanxun, Xie Kanghe. Large-strain consolidation of soft clay with non-Darcian flow by considering time-dependent load [J]. Journal of Geotechnical Engineering, 2015, 37(6): 1002 − 1009. (in Chinese) doi: 10.11779/CJGE201506005
    [23] 黄杰卿, 谢新宇, 王文军, 等. 考虑起始比降的饱和土体一维复杂非线性固结研究[J]. 岩土工程学报, 2013, 35(2): 355 − 363.

    Huang Jieqing, Xie Xinyu, Wang Wenjun, et al. Study on one-dimensional nonlinear consolidation behavior for saturated soils with threshold gradient [J]. Chinese Journal of Geotechnical Engineering, 2013, 35(2): 355 − 363. (in Chinese)
    [24] 王坤. 考虑起始比降的软土地基一维固结理论研究 [D]. 杭州: 浙江大学, 2011.

    Wang Kun. Studies on one dimensional consolidation for soft soils with threshold gradient [D]. Hangzhou: Zhejiang University, 2011. (in Chinese)
    [25] 李传勋, 王坤. 考虑起始水力坡降的软土一维非线性固结分析[J]. 江苏大学学报(自然科学版), 2014, 35(6): 732 − 737.

    Li Chuanxun, Wang Kun. Analysis of one-dimensional non-linear consolidation for soft soils with threshold gradient [J]. Journal of Jiangsu University (Natural Science Edition), 2014, 35(6): 732 − 737. (in Chinese)
    [26] 刘忠玉, 刘忠广, 马崇武. 考虑起始水力梯度时饱和黏土一维固结[J]. 郑州大学学报(工学版), 2006(3): 21 − 24.

    Liu Zhongyu, Liu Zhongguang, Ma Chongwu. One dimensional consolidation of saturated clay with time-varying load considering initial hydraulic gradient [J]. Journal of Zhengzhou University (Engineering Edition), 2006(3): 21 − 24. (in Chinese)
    [27] 刘忠玉, 张天航, 马崇武. 起始水力梯度对饱和黏土一维固结的影响[J]. 岩土力学, 2007(3): 467 − 470. doi: 10.3969/j.issn.1000-7598.2007.03.007

    Liu Zhongyu, Zhang Tianhang, Ma Chongwu. Effect of initial hydraulic gradient on one-dimensional consolidation of saturated clays [J]. Geotechnical Mechanics, 2007(3): 467 − 470. (in Chinese) doi: 10.3969/j.issn.1000-7598.2007.03.007
    [28] 冯健雪. 连续排水边界条件下成层地基一维固结理论研究[D]. 南宁: 广西大学, 2019.

    Feng Jianxue. One-dimensional consolidation theory of layered foundations under continuous drainage boundary conditions [D]. Nanning: Guangxi University, 2019. (in Chinese)
  • 加载中
图(11) / 表(1)
计量
  • 文章访问数:  128
  • HTML全文浏览量:  33
  • PDF下载量:  28
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-09-12
  • 修回日期:  2021-01-12
  • 网络出版日期:  2021-04-17
  • 刊出日期:  2021-09-13

目录

    /

    返回文章
    返回