留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

吊顶系统抗震性能研究综述

郑山锁 杨松 郑跃 董立国 明铭

郑山锁, 杨松, 郑跃, 董立国, 明铭. 吊顶系统抗震性能研究综述[J]. 工程力学, 2021, 38(9): 1-14. doi: 10.6052/j.issn.1000-4750.2020.09.0655
引用本文: 郑山锁, 杨松, 郑跃, 董立国, 明铭. 吊顶系统抗震性能研究综述[J]. 工程力学, 2021, 38(9): 1-14. doi: 10.6052/j.issn.1000-4750.2020.09.0655
ZHENG Shan-suo, YANG Song, ZHENG Yue, DONG Li-guo, MING Ming. RESEARCH REVIEW ON SEISMIC PERFORMANCE OF SUSPENDED CEILING SYSTEMS[J]. Engineering Mechanics, 2021, 38(9): 1-14. doi: 10.6052/j.issn.1000-4750.2020.09.0655
Citation: ZHENG Shan-suo, YANG Song, ZHENG Yue, DONG Li-guo, MING Ming. RESEARCH REVIEW ON SEISMIC PERFORMANCE OF SUSPENDED CEILING SYSTEMS[J]. Engineering Mechanics, 2021, 38(9): 1-14. doi: 10.6052/j.issn.1000-4750.2020.09.0655

吊顶系统抗震性能研究综述

doi: 10.6052/j.issn.1000-4750.2020.09.0655
基金项目: 国家重点研发计划课题项目(2019YFC1509302);陕西省重点研发计划项目(2021ZDXM-SF-093);西安市科技计划项目(2019113813CXSF016SF026)
详细信息
    作者简介:

    郑山锁(1960−),男,陕西人,教授,博士,博导,主要从事结构工程与工程抗震研究(E-mail: zhengshansuo@263.net)

    郑 跃(1993−),男,河北人,博士生,主要从事结构工程与工程抗震研究(E-mail: zhengyue1993@163.com)

    董立国(1990−),男,山西人,博士生,主要从事结构工程与工程抗震研究(E-mail: dlg_15@163.com)

    明 铭(1993−),男,陕西人,博士生,主要从事结构工程与工程抗震研究(E-mail: 583564977@qq.com)

    通讯作者:

    杨 松(1996−),男,陕西人,硕士生,主要从事结构抗震和防灾减灾研究(E-mail: yangsong1115@163.com)

  • 中图分类号: TU973+.31

RESEARCH REVIEW ON SEISMIC PERFORMANCE OF SUSPENDED CEILING SYSTEMS

  • 摘要: 地震后吊顶系统破坏会造成严重经济损失,并影响建筑物震后正常使用及功能快速恢复。为充分了解吊顶系统复杂的构造形式、动力响应及抗震性能,该文从试验研究、数值模拟方法及易损性分析等方面综述了吊顶系统抗震性能研究现状。归纳总结了吊顶系统的震害形式与地震响应特征、抗震性能影响因素、薄弱部位及抗震加固措施等;详细介绍了不同精细程度的吊顶系统数值分析方法、易损性研究方法及相关破坏指标的选用;对当前吊顶系统抗震性能研究中存在的不足及进一步研究趋势进行了分析。总结既有研究成果表明:吊顶数值模型参数标定方法、影响吊顶抗震性能关键因素分析及通用性吊顶抗震性能等级的建立是未来研究的重点。此外,吊顶与其他非结构物间的相互作用研究,对完善吊顶系统抗震性能研究理论体系同样具有重要意义。
  • 图  1  吊顶系统结构布置图 /mm

    Figure  1.  Structural layout of the ceiling system

    图  2  吊顶系统典型破坏形式

    Figure  2.  Typical failure modes of the ceiling system

    图  3  不同吊顶系统竖向振动

    Figure  3.  Vertical vibration of different ceiling system

    图  4  加强拉索加固吊顶系统

    Figure  4.  Reinforcing ceiling systems by stiffening cable

    图  5  龙骨节点力学性能试验加载装置

    Figure  5.  Loading equipment for mechanical property test of grid joint

    图  6  吊顶周边连接件力学性能试验加载装置

    Figure  6.  Loading equipment for mechanical property test of connectors around ceiling

    图  7  不同吊顶系统周边连接件的失效模式

    Figure  7.  Failure mode of different connectors around ceiling system

    图  8  三种周边连接件滞回曲线

    Figure  8.  Hysteresis curves of three kinds of connectors around ceiling

    图  9  Pinching4材料恢复力模型

    Figure  9.  Hysteretic model of Pinching4 material

    图  10  单向质量-弹簧模型

    Figure  10.  Unidirectional mass-spring model general

    图  11  吊顶系统有限元模型

    Figure  11.  Finite element model of the ceiling system

    图  12  吊顶系统各组件有限元模型

    Figure  12.  Finite element model of components of the ceiling system

    图  13  经验易损性曲线与PACT、HAZUS-MH软件推荐易损性曲线对比

    Figure  13.  Comparison between empirical fragility curves and those recommended by PACT and HAZUS-MH

    表  1  龙骨节点不同失效模式的破坏现象

    Table  1.   Destruction phenomena of different failure modes of grid joints

    破坏现象主轴次轴
    剪切垂直方向龙骨撕裂弯曲变形过大
    弯曲端板撕裂端板撕裂
    下载: 导出CSV

    表  2  常用损伤指标及强度参数

    Table  2.   Common damage indexes and demand parameters

    学者损失状态强度参数
    Gilani等[56] 坠板率:0、<5%、5%~20%、
    20%~50%和>50%
    李戚齐等[53] 坠板率:0、<5%、5%~30%和>30% PFA
    Soroushian等[20] 等效坠板率:0、<5%、
    5%~30%、30%~50%和>50%
    PFA
    Ryu等[11-12] 10%坠板率或10%龙骨损伤率
    (倒塌损伤)
    PFA
    Soroushian等[51] 坠板率:0、<5%、
    5%~20%、>20%
    PFA/水平
    惯性力
    Echevarria等[42] 龙骨损伤率或坠板率:0、<5%、
    5%~30%、30%~70%和>70%
    PFA
    Badillo等[22] 坠板率:1%、1%~10%、10%~33%
    和龙骨网格崩溃
    PFA/楼面
    反应谱
    下载: 导出CSV
  • [1] Miranda E, Mosqueda G, Retamales R, et al. Performance of nonstructural components during the 27 February 2010 Chile earthquake [J]. Earthquake Spectra, 2012, 28(Suppl 1): 453 − 471. doi: 10.1193/1.4000032
    [2] 王多智, 戴君武. 基于芦山7.0级地震吊顶系统震害调查与分析[C]. 兰州: 第23届全国结构工程学术会议论文集(第Ⅱ册), 2014: 148 − 153.

    Wang Duozhi, Dai Junwu. Investigation and analysis on seismic damage of ceiling system based Lu Shan Ms 7.0 earthquake [C]. Lanzhou: Proceedings of the 23rd National Conference on Structural Engineering(Volume II), 2014: 148 − 153. (in Chinese)
    [3] Perrone D, Calvi P M, Nascimbene R, et al. Seismic performance of non-structural elements during the 2016 Central Italy earthquake [J]. Bulletin of Earthquake Engineering, 2019, 17(10): 5655 − 5677. doi: 10.1007/s10518-018-0361-5
    [4] 翟长海, 刘文, 谢礼立. 城市抗震韧性评估研究进展[J]. 建筑结构学报, 2018, 39(9): 1 − 9.

    Zhai Changhai, Liu Wen, Xie Lili. Progress of research on city seismic resilience evaluation [J]. Journal of Building Structures, 2018, 39(9): 1 − 9. (in Chinese)
    [5] ANCO. Seismic hazard assessment of nonstructural ceiling components - Phase I [R]. Culver City, CA: ANCO Engineering, Inc., 1983.
    [6] Wang D, Dai J, Qu Z, et al. Shake table tests of suspended ceilings to simulate the observed damage in the Ms 7.0 Lushan earthquake, China [J]. Earthquake Engineering and Engineering Vibration, 2016, 15(2): 239 − 249. doi: 10.1007/s11803-016-0319-z
    [7] Soroushian S, Rahmanishamsi E, Ryu K P, et al. A comparative study of sub-system and system level experiments of suspension ceiling systems [C]// Tenth US National Conference on Earthquake Engineering. Anchorage, USA, 2014.
    [8] Fiorin L. Seismic assessment of suspended ceilings through cyclic quasi-static tests [D]. Padova: Università Degli Studi di Padova, 2018.
    [9] MacRae G A, Hair J, Dhakal R P. Ceiling damage in the 2010 Canterbury earthquake [C]// Eighth International Conference on Urban Earthquake Engineering. Tokyo, Japan: IAEE, 2011: 6 − 7.
    [10] Ryu K P, Reinhorn A M. Experimental study of large area suspended ceilings [J]. Journal of Earthquake Engineering, 2019, 23(6): 1001 − 1032. doi: 10.1080/13632469.2017.1342294
    [11] Ryu K P, Reinhorn A M. Analytical Study of Large-Area Suspended Ceilings [J]. Journal of Earthquake Engineering, 2019, 23(4): 592 − 624. doi: 10.1080/13632469.2017.1326416
    [12] Ryu K P, Reinhorn A M, Filiatrault A. Full scale dynamic testing of large area suspended ceiling system [C]// Proceedings of the 15th World Conference on Earthquake Engineering. Lisbon, Portugal: WCEE, 2012: 5474.
    [13] Pourali A, Dhakal R P, MacRae G A, et al. Shake table tests of perimeter-fixed type suspended ceilings [C]// Proceeding of the New Zealand Society for Earthquake Engineering Conference. Rotorua, 2015: 648 − 659.
    [14] Yao G C. Seismic performance of direct hung suspended ceiling systems [J]. Journal of Architectural Engineering, 2000, 6(1): 6 − 11. doi: 10.1061/(ASCE)1076-0431(2000)6:1(6)
    [15] Pourali A, Dhakal R P, MacRae G A, et al. Fully-floating suspended ceiling system: experimental evaluation of the effect of mass and elastic isolation [C]// IAFE Engineering. Proceedings of the World Conference on Earthquake Engineering. Santiago, Chile: Bulletin of the Seismological Society of America, 2017: 32.
    [16] 韩庆华, 赵一峰, 芦燕. 吊顶系统自振特性分析及试验研究[J]. 建筑结构学报, 2018, 39(7): 95 − 103.

    Han Qinghua, Zhao Yifeng, Lu Yan. Natural vibration characteristic analysis and experimental research of suspended ceiling systems [J]. Journal of Building Structures, 2018, 39(7): 95 − 103. (in Chinese)
    [17] Yao G C, Chen W C. Vertical motion effects on suspended ceilings [C]// IAFE Engineering. Proceedings of the World Conference on Earthquake Engineering. Santiago, Chile: Bulletin of the Seismological Society of America, 2017: 3353.
    [18] 李戚齐. 明架矿棉板吊顶的地震损伤特征研究[D]. 哈尔滨: 中国地震局工程力学研究所, 2019.

    Li Qiqi. Study on the seismic damage characteristics of suspended ceilings of exposed runners and mineral wool boards [D]. Harbin: Institute of Engineering Mechanics, China Earthquake Administration, 2019. (in Chinese)
    [19] Soroushian S, Maragakis E M, Ryan K L, et al. Seismic simulation of an integrated ceiling-partition wall-piping system at E-Defense. II: evaluation of nonstructural damage and fragilities [J]. Journal of Structural Engineering, 2016, 142(2): 04015131. doi: 10.1061/(ASCE)ST.1943-541X.0001385
    [20] Soroushian S, Rahmanishamsi E, Jenkins C, et al. Fragility analysis of suspended ceiling systems in a full-scale experiment [J]. Journal of Structural Engineering, 2019, 145(4): 04019005. doi: 10.1061/(ASCE)ST.1943-541X.0002273
    [21] Badillo A H, Whittaker A S, Reinhorn A M. Seismic qualification and fragility testing of suspended ceiling systems [C]// 13th World Conference on Earthquake Engineering Conference Proceedings. Vancouver, 2004: 1053 − 1065.
    [22] Badillo A H, Whittaker A S, Reinhorn A M. Seismic fragility of suspended ceiling systems [J]. Earthquake Spectra, 2007, 23(1): 21 − 40. doi: 10.1193/1.2357626
    [23] ASCE/SEI 7-05, Minimum design loads for buildings and other structures [S]. Reston, VA: American Society of Civil Engineers, 2005.
    [24] ASTM-E580/E580M-09, Standard practice for installation of ceiling suspension systems for acoustical tile and lay-in panels in areas subject to earthquake ground motions [S]. Reston, VA: American Society of Testing Materials International, 2009.
    [25] AS/NZS 2785: 2000, Suspended ceilings-design and installation [S]. Wellington, NZ: Standards New Zealand, 2000.
    [26] 12J502-2, 国家建筑标准设计图集 《内装修-室内吊顶》[S]. 北京: 中国计划出版社, 2013.

    J502-2, The national building standard design atlas “interior decoration - the ceiling of the room” [S]. Beijing: China Planning Press, 2013. (in Chinese)
    [27] Gilani A, Reihorn A, Ingratta T, et al. Earthquake simulator testing and evaluation of suspended ceilings: Standard and alternate perimeter installations [C]// Structures Congress 2008: Crossing Borders. 2008: 1 − 10.
    [28] Takhirov S M, Gilani A S J, Straight Y. Seismic evaluation of lay-in panel suspended ceilings using static and dynamic and an assessment of the us building code requirements [M]// Improving the Seismic Performance of Existing Buildings and Other Structures 2015. California America: ASCE, 2015: 483 − 496.
    [29] Masuzawa Y, Kanai T, Hisada Y, et al. Study on aseismic performance of integrated ceiling system and anti-fall measures of ceiling [C]// IAFE Engineering. Proceedings of the World Conference on Earthquake Engineering. Santiago: Bulletin of the Seismological Society of America, 2017: 4689.
    [30] Nakaso Y, Kawaguchi K, Ogi Y, et al. Seismic control with tensioned cables for suspended ceilings [C]// Proceedings of IASS Annual Symposia. International Association for Shell and Spatial Structures (IASS). Amsterdam: IASS., 2015: 1− 11.
    [31] Lu Y, Mosqueda G, Han Q, et al. Shaking table tests examining seismic response of suspended ceilings attached to large-span spatial structures [J]. Journal of Structural Engineering, 2018, 144(9): 04018152. doi: 10.1061/(ASCE)ST.1943-541X.0002140
    [32] 王勃. 大跨建筑结构中吊顶系统的动力特性及其试验研究[D]. 天津: 天津大学建筑工程学院, 2015.

    Wang Bo. Theoretical analysis and experimental research on ceiling system for large span building structure [D]. Tianjin: Architectural and Civil Engineering Institute, Tianjin University, 2015. (in Chinese)
    [33] Pourali A, Dhakal R P, MacRae G A, et al. Fully Floating Suspended Ceiling System: Experimental Evaluation of Structural Feasibility and Challenges [J]. Earthquake Spectra, 2017, 33(4): 1627 − 1654. doi: 10.1193/092916eqs163m
    [34] Gilani A S J, Takhirov S M, Tedesco L. Seismic evaluation procedure for suspended ceilings and components, new experimental pproach [C]// Proceedings of the 15th World Conference on Earthquake Engineering. Lisbon, Portugal: WCEE, 2012: 0326.
    [35] Dhakal R P, MacRae G A, Pourali A, et al. Seismic fragility of suspended ceiling systems used in NZ based on component tests [J]. Bulletin of the New Zealand Society for Earthquake Engineering, 2016, 49(1): 45 − 63. doi: 10.5459/bnzsee.49.1.45-63
    [36] Pourali A. Seismic performance of suspended ceilings [D]. Canterbuy: University of Canterbury Christchurch, 2017.
    [37] Soroushian S, Maragakis E M, Jenkins C. Capacity evaluation of suspended ceiling components, part 1: experimental studies [J]. Journal of Earthquake Engineering, 2015, 19(5): 784 − 804. doi: 10.1080/13632469.2014.998354
    [38] Soroushian S, Maragakis M, Jenkins C. Axial capacity evaluation for typical suspended ceiling joints [J]. Earthquake Spectra, 2016, 32(1): 547 − 565. doi: 10.1193/123113EQS301M
    [39] Soroushian S, Maragakis M, Jenkins C. Capacity evaluation of suspended ceiling-perimeter attachments [J]. Journal of Structural Engineering, 2016, 142(2): 04015124. doi: 10.1061/(ASCE)ST.1943-541X.0001355
    [40] OpenSEES 用户指南网站[EB/OL]. http://OpenSEES.berkeley.edu, 2020-8-21.

    User guide website of OpenSEES EB/OL]. http://OpenSEES.berkeley.edu, 2020-8-21. (in Chinese)
    [41] 刘小娟, 蒋欢军. 非结构构件基于性能的抗震研究进展[J]. 地震工程与工程振动, 2013, 33(6): 53 − 62.

    Liu Xiaojuan, Jiang Huanjun. State-of-the-art of performance-based seismic research on nonstructural components [J]. Journal of Earthquake Engineering and Engineering Vibration, 2013, 33(6): 53 − 62. (in Chinese)
    [42] Echevarria A, Zaghi A E, Soroushian S, et al. Seismic fragility of suspended ceiling systems [C]// roceedings of the 15th World Conference on Earthquake Engineering, Lisbon, Portugal: WCEE, 2012: 24 − 28.
    [43] CSI Analysis Reference Manual for SAP2000, ETABS, and SAFE [M]. California, USA: Berkeley, 2007.
    [44] Zaghi A E, Soroushian S, Echevarria Heiser A, et al. Development and validation of a numerical model for suspended-ceiling systems with acoustic tiles [J]. Journal of Architectural Engineering, 2016, 22(3): 04016008. doi: 10.1061/(ASCE)AE.1943-5568.0000213
    [45] Zaghi A E, Maragakis E, Itani A, et al. Experimental and analytical studies of hospital piping assemblies subjected to seismic loading [J]. Earthquake Spectra, 2012, 28(1): 367 − 384. doi: 10.1193/1.3672911
    [46] Reinhorn A M, Ryu K P, Capacity evaluation of suspended ceiling system [DB/OL]. Network for Earthquake Engineering Simulation, 2016-5-12.
    [47] 寇苗苗. 非结构构件的抗震性能研究[D]. 天津: 天津大学, 2014.

    Kou Miaomaio. Research on seismic performance of nonstructural components [D]. Tianjin: Tianjin University, 2014. (in Chinese)
    [48] 张鹏, 芦燕. 框架结构中吊顶的地震响应分析[C]. 天津大学、天津市钢结构协会. 第十四届全国现代结构工程学术研讨会论文集, 2014: 1467 − 1473.

    Zhang Peng, Lu Yan. Seismic response analysis of suspended ceiling in frame structure [C]. Tianjin University and Tianjin Steel Structure Association. Proceedings of the 14th National Symposium on Modern Structural Engineering, 2014: 1467 − 1473. (in Chinese)
    [49] Porter K, Kennedy R, Bachman R. Creating fragility functions for performance-based earthquake engineering [J]. Earthquake Spectra, 2007, 23(2): 471 − 489. doi: 10.1193/1.2720892
    [50] 于晓辉. 钢筋混凝土框架结构的概率地震易损性与风险分析[D]. 哈尔滨: 哈尔滨工业大学, 2012.

    Yu Xiaohui. Probabilistic seismic fragility and risk analysis of reinforced concrete frame structures [D]. Harbin: Harbin Institute of Technology, 2012. (in Chinese)
    [51] Soroushian S, Rahmanishamsi E, Ryu K P, et al. Experimental fragility analysis of suspension ceiling systems [J]. Earthquake Spectra, 2016, 32(2): 881 − 908. doi: 10.1193/071514eqs109m
    [52] Badillo A H. Seismic fragility testing of suspended ceiling systems [J]. Student Research Accomplishments 2002–2003, 2003: 67 − 72.
    [53] 李戚齐, 曲哲, 解全才, 等. 我国公共建筑中吊顶的震害特征及其易损性分析[J]. 工程力学, 2019, 36(7): 207 − 215.

    Li Qiqi, Qu Zhe, Xie Quancai, et al. Seismic damage characteristics and fragility of suspended ceiling in chinese public buildings [J]. Engineering Mechanics, 2019, 36(7): 207 − 215. (in Chinese)
    [54] Soroushian S, Zaghi A E, Rahmanishamsi E, et al. Response of a 2-story test-bed structure for the seismic evaluation of nonstructural systems [J]. Earthquake Engineering and Engineering Vibration, 2016, 15(1): 19 − 29. doi: 10.1007/s11803-016-0302-8
    [55] Federal Emergency Management Agency. NEHRP recommended provisions for seismic regulations for new buildings and other structures FEMA302/303 Part 1 and Part 2 [R]. Washington DC: Federal Emergency Management Agency, 2010.
    [56] Gilani A S J, Takhirov S, Tedesco L. Seismic evaluation of suspended ceiling systems using static and dynamic procedures [C]// Structures Congress 2013: Bridging Your Passion with Your Profession. Pennsylvania, USA: ASCE, 2013: 1523 − 1532.
    [57] Glasgow B, Gilani A S J, Miyamoto H K. Resilient suspended ceilings for sustainable design of buildings [C]// Structures Congress 2010. Florida, USA: ASCE, 2010: 2575 − 2587.
    [58] Gilani A S J, Reinhorn A M, Glasgow B, et al. Earthquake simulator testing and seismic evaluation of suspended ceilings [J]. Journal of architectural Engineering, 2010, 16(2): 63 − 73. doi: 10.1061/(ASCE)1076-0431(2010)16:2(63)
    [59] 宁晓晴. 重要建筑地震安全性及韧性评价方法研究[D]. 哈尔滨: 中国地震局工程力学研究所, 2018.

    Ning Xiaoqing. Research on evaluation methodology of seismic safety and resilience for significant buildings [D]. Harbin: Institute of Engineering Mechanics, China Earth-quake Administration, 2018. (in Chinese)
    [60] Qi L, Kunitomo K, Kurata M, et al. Investigating the vibration properties of integrated ceiling systems considering interactions with surrounding equipment [J]. Earthquake Engineering & Structural Dynamics, 2020, 49(8): 772 − 793.
  • 加载中
图(13) / 表(2)
计量
  • 文章访问数:  224
  • HTML全文浏览量:  47
  • PDF下载量:  95
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-09-12
  • 修回日期:  2021-03-10
  • 网络出版日期:  2021-04-06
  • 刊出日期:  2021-09-13

目录

    /

    返回文章
    返回