留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

箱形柱芯筒式双法兰刚性连接节点平面框架拟静力试验研究

张爱林 王杰 张艳霞 刘安然

张爱林, 王杰, 张艳霞, 刘安然. 箱形柱芯筒式双法兰刚性连接节点平面框架拟静力试验研究[J]. 工程力学, 2021, 38(9): 146-160. doi: 10.6052/j.issn.1000-4750.2020.09.0649
引用本文: 张爱林, 王杰, 张艳霞, 刘安然. 箱形柱芯筒式双法兰刚性连接节点平面框架拟静力试验研究[J]. 工程力学, 2021, 38(9): 146-160. doi: 10.6052/j.issn.1000-4750.2020.09.0649
ZHANG Ai-lin, WANG Jie, ZHANG Yan-xia, LIU An-ran. QUASI-STATIC TESTING OF CORE-TUBE BOX-COLUMN STEEL FRAMES WITH DOUBLE FLANGED RIGID CONNECTIONS[J]. Engineering Mechanics, 2021, 38(9): 146-160. doi: 10.6052/j.issn.1000-4750.2020.09.0649
Citation: ZHANG Ai-lin, WANG Jie, ZHANG Yan-xia, LIU An-ran. QUASI-STATIC TESTING OF CORE-TUBE BOX-COLUMN STEEL FRAMES WITH DOUBLE FLANGED RIGID CONNECTIONS[J]. Engineering Mechanics, 2021, 38(9): 146-160. doi: 10.6052/j.issn.1000-4750.2020.09.0649

箱形柱芯筒式双法兰刚性连接节点平面框架拟静力试验研究

doi: 10.6052/j.issn.1000-4750.2020.09.0649
基金项目: 国家自然科学基金项目(51778036);北京未来城市设计高精尖创新中心项目(UDC2019033124);长江学者和创新团队发展计划项目(IRT_17R06)
详细信息
    作者简介:

    张爱林(1961−),男,山东莱西人,教授,博士,博导,长期从事大跨度预应力与高层装配式钢结构的研究(E-mail: zhangailin@bucea.edu.cn)

    王 杰(1996−),男,山东临沂人,硕士生,主要从事高层装配式钢结构研究(E-mail: buceawangjie@163.com)

    刘安然(1992−),女,北京人,硕士生,主要从事高层装配式钢结构研究(E-mail: appleanran@163.com)

    通讯作者:

    张艳霞(1970−),女,北京人,教授,博士,博导,主要从事装配式、自复位及大跨钢结构的性能研究(E-mail: zhangyanxia@bucea.edu.cn)

  • 中图分类号: TU391

QUASI-STATIC TESTING OF CORE-TUBE BOX-COLUMN STEEL FRAMES WITH DOUBLE FLANGED RIGID CONNECTIONS

  • 摘要: 提出一种箱形柱芯筒式双法兰刚性连接节点平面纯框架及减震框架,设计了两榀5层原型结构,对两榀原型结构试验子结构进行0.7倍缩尺,完成拟动力试验之后继续进行拟静力试验,该文对拟静力试验中两榀框架的滞回性能、各典型部位应变变化、刚度退化及耗能能力等进行对比研究。试验结果表明,当层间位移角为0.005 rad(1/200)时,纯框架和减震框架整体均保持弹性状态,中间柱型摩擦阻尼器开始摩擦耗能,占结构总耗能的71.3%;当层间位移角为钢结构弹塑性位移角限值0.02 rad(1/50)时,两榀试验结构滞回曲线均呈双线性,节点域均无塑性产生,减震框架柱脚塑性发展较纯框架更小;当层间位移角为0.04 rad(1/25)时,滞回曲线均更为饱满,节点域仍无塑性产生,纯框架柱脚屈曲更为明显。拟静力试验中两榀框架连接节点可靠,中间柱型摩擦阻尼器通过摩擦耗能,有效延缓减震框架主体结构塑性发展,减震框架结构刚度、耗能能力、抗震性能优于纯框架。
  • 图  1  芯筒式双法兰刚性连接节点构造

    Figure  1.  Construction details of double flange rigid connection with core-tube

    图  2  原型结构平面图

    Figure  2.  Plane of prototype structure

    图  3  芯筒式双法兰刚性连接节点纯框架构造详图 /mm

    Figure  3.  Details of flanged rigid connection with core-tube

    图  4  芯筒式双法兰刚性连接节点减震框架构造详图 /mm

    Figure  4.  Details of damping frame flanged rigid connection with core-tube

    图  5  纯框架加载装置示意图 /mm

    Figure  5.  Test setup of the frame

    图  6  纯框架加载试验

    Figure  6.  Loading test of plane frame

    图  7  减震框架加载装置示意图 /mm

    Figure  7.  Test setup of damped frame

    图  8  减震框架加载试验

    Figure  8.  Loading test of damped frame

    图  9  柱座螺栓测点布置

    Figure  9.  Arrangement of measuring points for high-strength bolts at column base

    图  10  摩擦阻尼器耗能螺栓测点布置

    Figure  10.  Arrangement of measuring points for high-strength bolts on friction damper

    图  11  减震框架电阻位移计布置示意图

    Figure  11.  Layout of resistance displacement parameter in damped frame

    图  12  减震框架应变片布置示意图

    Figure  12.  Layout of strain gauges arrangement of damped frame

    图  13  静力推覆加载历程

    Figure  13.  Loading history of static pushover

    图  14  层间位移角为0.04 rad(1/25)时结构整体照片

    Figure  14.  Test photograph of test structure for inter-story drift ratio of 0.04 rad (1/25)

    图  15  不同层间位移角下两榀框架标准柱座节点试验照片

    Figure  15.  Test photos of standard column base joints of both frames under different inter-story drifts

    图  16  不同层间位移角下两榀框架柱脚试验照片

    Figure  16.  Test photograph of column base of both frames under different inter-story drifts

    图  17  低周往复荷载下试验结构滞回曲线

    Figure  17.  Hysteresis loops of test structure under low-cycle loading

    图  18  等效粘滞阻尼系数曲线

    Figure  18.  Equivalent viscous damping coefficients

    图  19  低周往复荷载下试验结构骨架曲线

    Figure  19.  Skeleton curve of test structure under low-cycle loading

    图  20  东柱南侧柱脚应变变化

    Figure  20.  Strain variation of south side of east column base

    图  21  东柱东侧柱脚应变变化

    Figure  21.  Strain variation of east side of east column base

    图  22  梁翼缘应变变化

    Figure  22.  Strain variation of beam flanges

    图  23  柱座法兰板滑移

    Figure  23.  Slippage of column base flanges

    图  24  高强螺栓预拉力最大损失变化对比

    Figure  24.  Preload variation of high-strength bolts under various loadings

    图  25  刚度退化曲线

    Figure  25.  Stiffness degradation curves

    图  26  承载力退化曲线

    Figure  26.  Strength degradation of structures

    图  27  0.003 75 rad(1/267)时中间柱型摩擦阻尼器滑移情况

    Figure  27.  Slippage of middle column friction damper when displacement angle is 0.003 75 rad (1/267)

    图  28  0.005 rad(1/200)时中间柱型摩擦阻尼器滑移情况

    Figure  28.  Slippage of middle column friction damper when displacement angle is 0.005 rad (1/200)

    图  29  0.01 rad(1/100)时中间柱型摩擦阻尼器滑移情况

    Figure  29.  Slippage of middle column friction damper when displacement angle is 0.01 rad (1/100)

    图  30  0.02 rad(1/50)时中间柱型摩擦阻尼器滑移情况

    Figure  30.  Slippage of middle column friction damper when displacement angle is 0.02 rad (1/50)

    图  31  0.03 rad(1/33)时中间柱型摩擦阻尼器滑移情况

    Figure  31.  Slippage of middle column friction damper when displacement angle is 0.03 rad (1/33)

    图  32  0.04 rad(1/25)时中间柱型摩擦阻尼器滑移情况

    Figure  32.  Slippage of middle column friction damper when displacement angle is 0.04 rad (1/25)

    图  33  中间柱滑移量

    Figure  33.  Strain variation of test sub-structure

    图  34  中间柱高强螺栓预拉力损失

    Figure  34.  Preload loss of high-strength bolts

    图  35  阻尼力-位移曲线

    Figure  35.  Damping force-displacement curve

    表  1  原型结构主要构件尺寸

    Table  1.   Dimensions of prototypestructural components

    主要构件构件尺寸/mm
    边跨框架梁H600×300×18×22
    中跨框架梁H500×300×18×22
    框架柱□500×500×25
    法兰板厚28
    框架梁剪切板厚14
    框架梁翼缘盖板厚18
    法兰、梁腹板及翼缘螺栓10.9级M24
    下载: 导出CSV

    表  2  试验结构主要构件尺寸

    Table  2.   Dimensions of test structural components

    框架杆件截面构件尺寸/mm
    芯筒式双法兰刚性
    连接节点纯框架
    框架梁H340×250×12×14
    框架梁剪切板330×290×12
    梁翼缘外侧盖板470×250×10
    梁翼缘内侧盖板470×100×10
    框架柱□300×300×14
    芯筒板825×114×14
    法兰板450×450×14
    芯筒式双法兰刚性
    连接节点减震框架
    框架梁H340×250×12×14
    框架梁剪切板330×290×12
    梁翼缘外侧盖板470×250×10
    梁翼缘内侧盖板470×100×10
    框架柱□300×300×14
    芯筒板825×114×14
    加腋板310×250×14
    中间柱H300×240×12×14
    法兰板螺栓10.9S级 M24
    梁腹板及翼缘螺栓10.9S级 M20
    阻尼耗能装置螺栓10.9s级 M16
    下载: 导出CSV

    表  3  标准板状试样拉伸试验数据

    Table  3.   Material properties of standard plate coupons

    厚度/
    mm
    屈服强度/
    (N·mm−2)
    抗拉强度/
    (N·mm−2)
    弹性模量/
    (×105 N·mm−2)
    10432.8559.02.05
    12451.4574.52.06
    14377.3494.92.08
    20339.6545.92.13
    下载: 导出CSV

    表  4  等效粘滞阻尼系数、各加载级耗能比、累积耗能比

    Table  4.   Equivalent viscous damping coefficient, energy dissipating ratio and accumulated energy dissipating ratio at various loading stages

    指标
    试验结构等效粘滞
    阻尼系数
    各加载级
    耗能比/(%)
    累积耗能比/(%)
    纯框架减震框架纯框架减震框架纯框架减震框架
    层间
    位移角/
    rad
    0.003 750.0240.0170.070.080.070.08
    0.005 000.0320.0280.240.380.300.47
    0.007 500.0830.1151.062.581.363.05
    0.010 000.1180.1732.723.654.096.69
    0.015 000.1850.2156.918.8010.9915.49
    0.020 000.2430.23917.0413.5128.0429.01
    0.030 000.2730.27427.0626.9055.1055.91
    0.040 000.2850.28844.9044.09100.00100.00
    下载: 导出CSV

    表  5  不同加载级典型部位应变峰值

    Table  5.   Maximum strain of typical parts under different loadings

    典型部位各加载级典型部位应变峰值/με
    0.003 75 rad0.005 rad0.0075 rad0.01 rad0.015 rad0.02 rad0.03 rad0.04 rad
    节点域 纯框架 −504.0 −575.5 −601.7 −609.1 −660.73 −618.33 −721.6 −812.4
    减震框架 −606.0 −713.4 −628.5 −659.0 −568.6 −602.3 −656.2 −773.8
    芯筒 纯框架 631.1 1551.2 1994.2 2364.0 2376.4 2393.1 2400.0 2439.9
    减震框架 113.7 146.3 173.9 183.5 259.3 275.3 501.2 1294.8
    梁腹板 纯框架 −234.1 411.5 −475.4 −548.5 −663.4 679.9 −1001.6 1258.9
    减震框架 −349.7 −419.4 −410.7 −420.4 −465.8 −554.9 −676.0 −1099.9
    下载: 导出CSV

    表  6  各加载级柱拼接节点高强螺栓预拉力最大损失值

    Table  6.   Maximum preload loss of high-strength bolts of column-column connection at various loading stages

    螺栓力测点初始螺栓预拉力/kN不同加载级柱拼接节点高强螺栓预拉力最大损失值/kN
    0.003 75 rad0.005 rad0.0075 rad0.01 rad0.015 rad0.02 rad0.03 rad0.04 rad
    测点1平面框架223.300.400.400.400.270.670.942.976.47
    减震框架222.00−0.68−0.54−0.95−1.35−1.48−2.43−2.97−6.21
    测点2平面框架229.901.131.261.001.001.131.001.131.40
    减震框架221.311.771.501.213.377.828.87
    测点3平面框架221.200.140.270.270.68
    减震框架228.050.400.53
    测点4平面框架220.900.140.410.410.410.281.242.884.25
    减震框架224.460.270.270.270.270.130.270.130.27
    下载: 导出CSV

    表  7  试验结构各级最大刚度及刚度比

    Table  7.   Stiffness and its ratio to initial stiffness under various loading stages

    试验结构指标方向层间位移角/rad
    0.003 750.0050.00750.010.0150.020.030.04
    纯框架 刚度/(kN·mm−1) 26.66 26.42 21.37 18.40 14.87 13.31 10.09 8.09
    24.88 24.27 22.09 19.82 15.91 13.77 9.80 8.36
    刚度比 0.98 0.97 0.79 0.68 0.55 0.49 0.37 0.30
    0.92 0.89 0.81 0.73 0.59 0.51 0.36 0.31
    减震框架 刚度/(kN·mm−1) 40.28 36.07 30.17 26.54 19.78 15.67 13.36 10.92
    38.16 37.21 30.23 25.95 19.46 15.52 11.55 10.58
    刚度比 1.00 0.89 0.75 0.66 0.49 0.39 0.33 0.27
    0.95 0.92 0.75 0.64 0.48 0.38 0.29 0.26
    刚度差${\varDelta _{\rm{k} } }$/(kN·mm−1) 13.62 9.65 8.80 8.14 4.91 2.36 3.27 2.83
    13.28 12.94 8.14 6.13 3.55 1.75 1.75 2.22
    刚度提高率${\eta _{\rm k}}$/(%) 51.09 36.53 41.18 44.24 33.02 17.73 32.41 34.98
    53.38 53.32 36.85 30.93 22.31 12.71 17.86 26.56
    下载: 导出CSV

    表  8  试验结构及中间柱型阻尼器耗能

    Table  8.   Dissipated energy of test structure and intermediate column with friction dampers

    指标对象加载级/rad
    0.003 750.0050.00750.010.0150.020.030.04
    耗能/J 减震框架 713.5 3086.7 6995.9 14 003.4 0.015 0.02 0.03 0.04
    中间柱型摩擦阻尼器 2200.2 3688.0 4991.9 8528.700 11 418.90 14 578.40 14 580.20
    中间柱型摩擦阻尼器
    耗能占比/(%)
    71.3 52.7 35.6 30.000 20.60 14.10 5.90
    下载: 导出CSV
  • [1] 张爱林, 张艳霞. 工业化装配式高层钢结构新体系关键问题研究和展望[J]. 北京建筑大学学报, 2016, 32(3): 21 − 28. doi: 10.3969/j.issn.1004-6011.2016.03.005

    Zhang Ailin, Zhang Yanxia. Study and overview of critical problems for the new system of industrialized prefabricated tall steel structure [J]. Journal of Beijing University of Civil Engineering and Architecture, 2016, 32(3): 21 − 28. (in Chinese) doi: 10.3969/j.issn.1004-6011.2016.03.005
    [2] Lee J, Goldsworthy H M, Gad E F. Blind bolted moment connection to unfilled hollow section columns using extended T-stub with back face support [J]. Engineering Structures, 2011, 33(5): 1710 − 1722. doi: 10.1016/j.engstruct.2011.02.008
    [3] Van-Long H, Jean-Pierre J, Jean-François D. Extended end-plate to concrete-filled rectangular column joint using long bolts [J]. Journal of Constructional Steel Research, 2015, 113: 156 − 168. doi: 10.1016/j.jcsr.2015.06.001
    [4] Zhang Z J, Wu C, Nie X, et al. Bonded sleeve connections for joining tubular GFRP beam to steel member: Numerical investigation with experimental validation [J]. Composite Structures, 2016, 157: 51 − 61. doi: 10.1016/j.compstruct.2016.08.016
    [5] 李黎明, 李宁, 蔡玉春, 等. 新型外套管式节点试验研究及简化设计[J]. 工业建筑, 2011, 41(5): 120 − 125.

    Li Liming, Li Ning, Cai Yuchun, et al. Experimental study on outer-shell connection and ITS simplified design [J]. Industrial Construction, 2011, 41(5): 120 − 125. (in Chinese)
    [6] 杨松森, 王燕, 马强强, 等. 装配式外套筒-加强式外伸端板组件梁柱连接节点抗震性能试验研究[J]. 土木工程学报, 2017, 50(11): 76 − 86.

    Yang Songsen, Wang Yan, Ma Qiangqiang. Experimental study on seismic behavior of prefabricated outer sleeve-overhang plate joint between column and beam [J]. China Civil Engineering Journal, 2017, 50(11): 76 − 86. (in Chinese)
    [7] 张爱林, 郭志鹏, 刘学春, 等. 带Z字形悬臂梁段拼接的装配式钢框架节点抗震性能试验研究[J]. 工程力学, 2017, 34(8): 31 − 41. doi: 10.6052/j.issn.1000-4750.2016.03.0220

    Zhang Ai-lin, Guo Zhi-peng, Liu Xue-chun, et al. Experimental study on aseismic behavior of prefabricated steel-frame-joints with Z-shaped cantilever-beam splicing [J]. Engineering Mechanics, 2017, 34(8): 31 − 41. (in Chinese) doi: 10.6052/j.issn.1000-4750.2016.03.0220
    [8] 李国强, 段炼, 陆烨等. H型钢梁与矩形钢管柱外伸式端板单向螺栓连接节点承载力试验与理论研究[J]. 建筑结构学报, 2015, 36(9): 91 − 100.

    Li Guoqiang, Duan Lian, Lu Ye. Seismic performance of outer-shell connection of cold-formed square tubular column and H-shaped steel beam [J]. Journal of Building Structures, 2015, 36(9): 91 − 100. (in Chinese)
    [9] 王元清, 宗亮, 石永久. 钢管结构法兰连接节点抗弯承载性能的试验研究[J]. 湖南大学学报(自然科学版), 2011, 38(7): 13 − 19.

    Wang Yuanqing, Zong Liang, Shi Yongjiu. Experimental Study on Flange-plate Connections of Steel Tubular Structures under Bending Moments [J]. Journal of Hunan University (Natural Sciences), 2011, 38(7): 13 − 19. (in Chinese)
    [10] 刘康, 杨晓杰, 刘玉姝, 李国强等. 方钢管柱对穿螺栓柱-柱拼接节点轴压承载性能试验研究[J]. 建筑钢结构进展, 2014, 16(3): 18 − 23. doi: 10.3969/j.issn.1671-9379.2014.03.004

    Liu Kang, Yang Xiaojie, Liu Yushu, Li Guoqiang, et al. Experimental Study on Load-bearing Capacity of Square Steel Tube Columns Spliced with through High-Strength Bolts under Axial Compression [J]. Progress in Steel Building Structures, 2014, 16(3): 18 − 23. (in Chinese) doi: 10.3969/j.issn.1671-9379.2014.03.004
    [11] Li D, Uy B, Aslani F, et al. Behaviour and design of demountable CFST column-column connections under tension [J]. Journal of Constructional Steel Research, 2017,138: 761 − 773.
    [12] Li D, Uy B, Patel V, et al. Behaviour and design of demountable CFST column-column connections subjected to compression [J]. Journal of Constructional Steel Research, 2018, 141: 262 − 274. doi: 10.1016/j.jcsr.2017.11.021
    [13] Liu X C, He X N, Wang H X, et al. Bending-shear performance of column-to-column bolted-flange connections in prefabricated multi-high-rise steel structures [J]. Journal of Constructional Steel Research, 2018, 145: 28 − 48. doi: 10.1016/j.jcsr.2018.02.017
    [14] Liu X C, He X N, Wang H X, et al. Compression-bend-shearing performance of column-to-column bolted-flange connections in prefabricated multi-high-rise steel structures [J]. Engineering Structures, 2018, 160: 439 − 460. doi: 10.1016/j.engstruct.2018.01.026
    [15] 王宇强, 张大长, 李步辉, 等. 圆管刚性法兰加劲肋角焊缝受力特性及强度计算理论[J]. 工程力学, 2015, 32(7): 143 − 148. doi: 10.6052/j.issn.1000-4750.2013.12.1238

    Wang Yuqiang, Zhang Dachang, Li Buhui, et al. Mechanical behavior and strength calculation theory of stiffener fillet weld in circle rigid flange [J]. Engineering Mechanics, 2015, 32(7): 143 − 148. (in Chinese) doi: 10.6052/j.issn.1000-4750.2013.12.1238
    [16] 张艳霞, 黄威振, 郑明召, 王彦, 宁广. 箱形柱芯筒式全螺栓拼接节点拟静力试验研究[J]. 工业建筑, 2018, 48(5): 37 − 44.

    Zhang Yanxia, Huang Weizhen, Zheng Mingzhao, Wang Yan, Ning Guang. Quasi-static experimental research on box-section all-bolted column connection with inner sleeve [J]. Industrial Construction, 2018, 48(5): 37 − 44. (in Chinese)
    [17] 金眞佑, 桑原進, 宮川和明, 等. 低降伏点円形鋼管を用いたせん断履歴型ダンパーの力学性状[J]. 日本建築学会構造系論文集, 2016, 81(719): 101 − 110.

    Jinwoo Kim, Susumu Kuwahara, Kazuaki Yasui, et al. Elasto-plastic behavior of shear type damper using low yield strength circular hollow section [J]. Japan Structural Construction Engineering, 2016, 81(719): 101 − 110. (in Japanese)
    [18] 屈俊童, 卢飞, 吴洋洋, 刘超. 新型筒式自复位SMA-摩擦阻尼器的减震性能分析[J]. 噪声与振动控制, 2020, 40(3): 213 − 218, 269. doi: 10.3969/j.issn.1006-1355.2020.03.037

    Qu Juntong, Lu Fei, Wu Yangyang, et al. Analysis of vibration attenuation performance of a new circular tube re-centering SMA-friction damper [J]. Noise and Vibration Control, 2020, 40(3): 213 − 218, 269. (in Chinese) doi: 10.3969/j.issn.1006-1355.2020.03.037
    [19] Ailin Zhang, Yanxia Zhang, Anran Liu, et al. Performance study of self-centering steel frame with intermediate columns containing friction dampers [J]. Engineering Structures, 2019, 186: 382 − 398. doi: 10.1016/j.engstruct.2019.02.023
    [20] 张爱林, 张艳霞, 陈媛媛, 等. 中间柱摩擦阻尼器预应力钢框架静力推覆试验研究[J]. 建筑结构学报, 2016, 37(3): 125 − 133.

    Zhang Ailin, Zhang Yanxia, Chen Yuanyuan, et al. Static pushover test on resilient prestressed steel frame with intermediate column containing friction dampers [J]. Journal of Building Structures, 2016, 37(3): 125 − 133. (in Chinese)
    [21] 张爱林, 王庆博, 张艳霞, 上官广浩, 刘安然. 芯筒式双法兰刚性连接平面及减震框架试验对比分析[J]. 工程力学, 2020, 37(12): 18 − 33. doi: 10.6052/j.issn.1000-4750.2020.01.0032

    Zhang Ailin, Wang Qingbo, Zhang Yanxia, et al. Comparative analysis of experiments on plane steel frame and damper steel frame with double flange rigid connections containing core tube [J]. Engineering Mechanics, 2020, 37(12): 18 − 33. (in Chinese) doi: 10.6052/j.issn.1000-4750.2020.01.0032
    [22] GB/T 2975−1998, 钢及钢产品力学性能试验取样位置及试样制备[S]. 北京: 中国标准出版社, 1998.

    GB/T 2975−1998, Sample location and sample preparation for mechanical properties test of steel and steel products [S]. Beijing: China Standard Press, 1998. (in Chinese)
    [23] GB/T 228−2002, 金属材料拉伸试验方法[S]. 北京: 中国标准出版社, 2002.

    GB/T 228−2002, Metallic tensile test method [S]. Beijing: China Standard Press, 2002. (in Chinese)
    [24] FEMA-350, Recommended Seismic Design Criteria for New Steel Moment-Frame Buildings [S]. Washington D. C.: Federal Emergency Management Agency, 2000.
  • 加载中
图(35) / 表(8)
计量
  • 文章访问数:  154
  • HTML全文浏览量:  37
  • PDF下载量:  37
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-09-10
  • 修回日期:  2021-01-12
  • 网络出版日期:  2021-04-21
  • 刊出日期:  2021-09-13

目录

    /

    返回文章
    返回