QUASI-STATIC TESTING OF CORE-TUBE BOX-COLUMN STEEL FRAMES WITH DOUBLE FLANGED RIGID CONNECTIONS
-
摘要: 提出一种箱形柱芯筒式双法兰刚性连接节点平面纯框架及减震框架,设计了两榀5层原型结构,对两榀原型结构试验子结构进行0.7倍缩尺,完成拟动力试验之后继续进行拟静力试验,该文对拟静力试验中两榀框架的滞回性能、各典型部位应变变化、刚度退化及耗能能力等进行对比研究。试验结果表明,当层间位移角为0.005 rad(1/200)时,纯框架和减震框架整体均保持弹性状态,中间柱型摩擦阻尼器开始摩擦耗能,占结构总耗能的71.3%;当层间位移角为钢结构弹塑性位移角限值0.02 rad(1/50)时,两榀试验结构滞回曲线均呈双线性,节点域均无塑性产生,减震框架柱脚塑性发展较纯框架更小;当层间位移角为0.04 rad(1/25)时,滞回曲线均更为饱满,节点域仍无塑性产生,纯框架柱脚屈曲更为明显。拟静力试验中两榀框架连接节点可靠,中间柱型摩擦阻尼器通过摩擦耗能,有效延缓减震框架主体结构塑性发展,减震框架结构刚度、耗能能力、抗震性能优于纯框架。
-
关键词:
- 箱形柱 /
- 芯筒式双法兰刚性连接节点 /
- 平面框架 /
- 拟静力试验 /
- 中间柱型摩擦阻尼器
Abstract: This paper proposes two types of box-column steel frames with double flanged rigid connections, namely, the plane core-tube frame and the damped core-tube frame. Correspondingly, two prototypes of 5-story structures were designed. Quasi-static testing on 0.7-scale subsystems was conducted following a pseudo-dynamic test of the subsystems. Structural properties including the hysteretic performance, strain variations of typical members, degradation of structural stiffness, energy dissipation are analyzed and compared. The results indicate that both frames remain elastic while the intermediate columns with friction dampers consume 71.3% of the dissipated energy in the building at the stage of 0.005 rad. (1/200) interfloor drift. As the drift reaches the threshold of 0.02 rad. (1/50) of the elastoplastic angles of steel structures, the hysteretic curves of the two substructures are bilinear. The panel zones of the connections remain elastic. Plasticity of a column base of the damped frame develops more slowly than that of the plane frame. As the drift ratio goes to 0.04 rad. (1/25), the areas of the hysteretic curves are enlarged without plastic deformation in the panel zones. The base buckling of the plane frame is severer than that of the damped frame. The connections of the two frames are reliable. The intermediate column with friction dampers effectively restrains the plasticity development in the damped frame through frictional energy dissipation in the quasi-static test. The stiffness, energy-dissipation capacity and seismic performance of the damped frame are much better than those of the plane frame. -
表 1 原型结构主要构件尺寸
Table 1. Dimensions of prototypestructural components
主要构件 构件尺寸/mm 边跨框架梁 H600×300×18×22 中跨框架梁 H500×300×18×22 框架柱 □500×500×25 法兰板厚 28 框架梁剪切板厚 14 框架梁翼缘盖板厚 18 法兰、梁腹板及翼缘螺栓 10.9级M24 表 2 试验结构主要构件尺寸
Table 2. Dimensions of test structural components
框架 杆件截面 构件尺寸/mm 芯筒式双法兰刚性
连接节点纯框架框架梁 H340×250×12×14 框架梁剪切板 330×290×12 梁翼缘外侧盖板 470×250×10 梁翼缘内侧盖板 470×100×10 框架柱 □300×300×14 芯筒板 825×114×14 法兰板 450×450×14 芯筒式双法兰刚性
连接节点减震框架框架梁 H340×250×12×14 框架梁剪切板 330×290×12 梁翼缘外侧盖板 470×250×10 梁翼缘内侧盖板 470×100×10 框架柱 □300×300×14 芯筒板 825×114×14 加腋板 310×250×14 中间柱 H300×240×12×14 法兰板螺栓 10.9S级 M24 梁腹板及翼缘螺栓 10.9S级 M20 阻尼耗能装置螺栓 10.9s级 M16 表 3 标准板状试样拉伸试验数据
Table 3. Material properties of standard plate coupons
厚度/
mm屈服强度/
(N·mm−2)抗拉强度/
(N·mm−2)弹性模量/
(×105 N·mm−2)10 432.8 559.0 2.05 12 451.4 574.5 2.06 14 377.3 494.9 2.08 20 339.6 545.9 2.13 表 4 等效粘滞阻尼系数、各加载级耗能比、累积耗能比
Table 4. Equivalent viscous damping coefficient, energy dissipating ratio and accumulated energy dissipating ratio at various loading stages
指标 试验结构 等效粘滞
阻尼系数各加载级
耗能比/(%)累积耗能比/(%) 纯框架 减震框架 纯框架 减震框架 纯框架 减震框架 层间
位移角/
rad0.003 75 0.024 0.017 0.07 0.08 0.07 0.08 0.005 00 0.032 0.028 0.24 0.38 0.30 0.47 0.007 50 0.083 0.115 1.06 2.58 1.36 3.05 0.010 00 0.118 0.173 2.72 3.65 4.09 6.69 0.015 00 0.185 0.215 6.91 8.80 10.99 15.49 0.020 00 0.243 0.239 17.04 13.51 28.04 29.01 0.030 00 0.273 0.274 27.06 26.90 55.10 55.91 0.040 00 0.285 0.288 44.90 44.09 100.00 100.00 表 5 不同加载级典型部位应变峰值
Table 5. Maximum strain of typical parts under different loadings
典型部位 各加载级典型部位应变峰值/με 0.003 75 rad 0.005 rad 0.0075 rad 0.01 rad 0.015 rad 0.02 rad 0.03 rad 0.04 rad 节点域 纯框架 −504.0 −575.5 −601.7 −609.1 −660.73 −618.33 −721.6 −812.4 减震框架 −606.0 −713.4 −628.5 −659.0 −568.6 −602.3 −656.2 −773.8 芯筒 纯框架 631.1 1551.2 1994.2 2364.0 2376.4 2393.1 2400.0 2439.9 减震框架 113.7 146.3 173.9 183.5 259.3 275.3 501.2 1294.8 梁腹板 纯框架 −234.1 411.5 −475.4 −548.5 −663.4 679.9 −1001.6 1258.9 减震框架 −349.7 −419.4 −410.7 −420.4 −465.8 −554.9 −676.0 −1099.9 表 6 各加载级柱拼接节点高强螺栓预拉力最大损失值
Table 6. Maximum preload loss of high-strength bolts of column-column connection at various loading stages
螺栓力测点 初始螺栓预拉力/kN 不同加载级柱拼接节点高强螺栓预拉力最大损失值/kN 0.003 75 rad 0.005 rad 0.0075 rad 0.01 rad 0.015 rad 0.02 rad 0.03 rad 0.04 rad 测点1 平面框架 223.30 0.40 0.40 0.40 0.27 0.67 0.94 2.97 6.47 减震框架 222.00 −0.68 −0.54 −0.95 −1.35 −1.48 −2.43 −2.97 −6.21 测点2 平面框架 229.90 1.13 1.26 1.00 1.00 1.13 1.00 1.13 1.40 减震框架 221.31 1.77 1.50 − − 1.21 3.37 7.82 8.87 测点3 平面框架 221.20 0.14 0.27 0.27 0.68 − − − − 减震框架 228.05 0.40 0.53 − − − − − − 测点4 平面框架 220.90 0.14 0.41 0.41 0.41 0.28 1.24 2.88 4.25 减震框架 224.46 0.27 0.27 0.27 0.27 0.13 0.27 0.13 0.27 表 7 试验结构各级最大刚度及刚度比
Table 7. Stiffness and its ratio to initial stiffness under various loading stages
试验结构 指标 方向 层间位移角/rad 0.003 75 0.005 0.0075 0.01 0.015 0.02 0.03 0.04 纯框架 刚度/(kN·mm−1) 正 26.66 26.42 21.37 18.40 14.87 13.31 10.09 8.09 负 24.88 24.27 22.09 19.82 15.91 13.77 9.80 8.36 刚度比 正 0.98 0.97 0.79 0.68 0.55 0.49 0.37 0.30 负 0.92 0.89 0.81 0.73 0.59 0.51 0.36 0.31 减震框架 刚度/(kN·mm−1) 正 40.28 36.07 30.17 26.54 19.78 15.67 13.36 10.92 负 38.16 37.21 30.23 25.95 19.46 15.52 11.55 10.58 刚度比 正 1.00 0.89 0.75 0.66 0.49 0.39 0.33 0.27 负 0.95 0.92 0.75 0.64 0.48 0.38 0.29 0.26 刚度差${\varDelta _{\rm{k} } }$/(kN·mm−1) 正 13.62 9.65 8.80 8.14 4.91 2.36 3.27 2.83 负 13.28 12.94 8.14 6.13 3.55 1.75 1.75 2.22 刚度提高率${\eta _{\rm k}}$/(%) 正 51.09 36.53 41.18 44.24 33.02 17.73 32.41 34.98 负 53.38 53.32 36.85 30.93 22.31 12.71 17.86 26.56 表 8 试验结构及中间柱型阻尼器耗能
Table 8. Dissipated energy of test structure and intermediate column with friction dampers
指标 对象 加载级/rad 0.003 75 0.005 0.0075 0.01 0.015 0.02 0.03 0.04 耗能/J 减震框架 713.5 3086.7 6995.9 14 003.4 0.015 0.02 0.03 0.04 中间柱型摩擦阻尼器 − 2200.2 3688.0 4991.9 8528.700 11 418.90 14 578.40 14 580.20 中间柱型摩擦阻尼器
耗能占比/(%)− 71.3 52.7 35.6 30.000 20.60 14.10 5.90 -
[1] 张爱林, 张艳霞. 工业化装配式高层钢结构新体系关键问题研究和展望[J]. 北京建筑大学学报, 2016, 32(3): 21 − 28. doi: 10.3969/j.issn.1004-6011.2016.03.005Zhang Ailin, Zhang Yanxia. Study and overview of critical problems for the new system of industrialized prefabricated tall steel structure [J]. Journal of Beijing University of Civil Engineering and Architecture, 2016, 32(3): 21 − 28. (in Chinese) doi: 10.3969/j.issn.1004-6011.2016.03.005 [2] Lee J, Goldsworthy H M, Gad E F. Blind bolted moment connection to unfilled hollow section columns using extended T-stub with back face support [J]. Engineering Structures, 2011, 33(5): 1710 − 1722. doi: 10.1016/j.engstruct.2011.02.008 [3] Van-Long H, Jean-Pierre J, Jean-François D. Extended end-plate to concrete-filled rectangular column joint using long bolts [J]. Journal of Constructional Steel Research, 2015, 113: 156 − 168. doi: 10.1016/j.jcsr.2015.06.001 [4] Zhang Z J, Wu C, Nie X, et al. Bonded sleeve connections for joining tubular GFRP beam to steel member: Numerical investigation with experimental validation [J]. Composite Structures, 2016, 157: 51 − 61. doi: 10.1016/j.compstruct.2016.08.016 [5] 李黎明, 李宁, 蔡玉春, 等. 新型外套管式节点试验研究及简化设计[J]. 工业建筑, 2011, 41(5): 120 − 125.Li Liming, Li Ning, Cai Yuchun, et al. Experimental study on outer-shell connection and ITS simplified design [J]. Industrial Construction, 2011, 41(5): 120 − 125. (in Chinese) [6] 杨松森, 王燕, 马强强, 等. 装配式外套筒-加强式外伸端板组件梁柱连接节点抗震性能试验研究[J]. 土木工程学报, 2017, 50(11): 76 − 86.Yang Songsen, Wang Yan, Ma Qiangqiang. Experimental study on seismic behavior of prefabricated outer sleeve-overhang plate joint between column and beam [J]. China Civil Engineering Journal, 2017, 50(11): 76 − 86. (in Chinese) [7] 张爱林, 郭志鹏, 刘学春, 等. 带Z字形悬臂梁段拼接的装配式钢框架节点抗震性能试验研究[J]. 工程力学, 2017, 34(8): 31 − 41. doi: 10.6052/j.issn.1000-4750.2016.03.0220Zhang Ai-lin, Guo Zhi-peng, Liu Xue-chun, et al. Experimental study on aseismic behavior of prefabricated steel-frame-joints with Z-shaped cantilever-beam splicing [J]. Engineering Mechanics, 2017, 34(8): 31 − 41. (in Chinese) doi: 10.6052/j.issn.1000-4750.2016.03.0220 [8] 李国强, 段炼, 陆烨等. H型钢梁与矩形钢管柱外伸式端板单向螺栓连接节点承载力试验与理论研究[J]. 建筑结构学报, 2015, 36(9): 91 − 100.Li Guoqiang, Duan Lian, Lu Ye. Seismic performance of outer-shell connection of cold-formed square tubular column and H-shaped steel beam [J]. Journal of Building Structures, 2015, 36(9): 91 − 100. (in Chinese) [9] 王元清, 宗亮, 石永久. 钢管结构法兰连接节点抗弯承载性能的试验研究[J]. 湖南大学学报(自然科学版), 2011, 38(7): 13 − 19.Wang Yuanqing, Zong Liang, Shi Yongjiu. Experimental Study on Flange-plate Connections of Steel Tubular Structures under Bending Moments [J]. Journal of Hunan University (Natural Sciences), 2011, 38(7): 13 − 19. (in Chinese) [10] 刘康, 杨晓杰, 刘玉姝, 李国强等. 方钢管柱对穿螺栓柱-柱拼接节点轴压承载性能试验研究[J]. 建筑钢结构进展, 2014, 16(3): 18 − 23. doi: 10.3969/j.issn.1671-9379.2014.03.004Liu Kang, Yang Xiaojie, Liu Yushu, Li Guoqiang, et al. Experimental Study on Load-bearing Capacity of Square Steel Tube Columns Spliced with through High-Strength Bolts under Axial Compression [J]. Progress in Steel Building Structures, 2014, 16(3): 18 − 23. (in Chinese) doi: 10.3969/j.issn.1671-9379.2014.03.004 [11] Li D, Uy B, Aslani F, et al. Behaviour and design of demountable CFST column-column connections under tension [J]. Journal of Constructional Steel Research, 2017,138: 761 − 773. [12] Li D, Uy B, Patel V, et al. Behaviour and design of demountable CFST column-column connections subjected to compression [J]. Journal of Constructional Steel Research, 2018, 141: 262 − 274. doi: 10.1016/j.jcsr.2017.11.021 [13] Liu X C, He X N, Wang H X, et al. Bending-shear performance of column-to-column bolted-flange connections in prefabricated multi-high-rise steel structures [J]. Journal of Constructional Steel Research, 2018, 145: 28 − 48. doi: 10.1016/j.jcsr.2018.02.017 [14] Liu X C, He X N, Wang H X, et al. Compression-bend-shearing performance of column-to-column bolted-flange connections in prefabricated multi-high-rise steel structures [J]. Engineering Structures, 2018, 160: 439 − 460. doi: 10.1016/j.engstruct.2018.01.026 [15] 王宇强, 张大长, 李步辉, 等. 圆管刚性法兰加劲肋角焊缝受力特性及强度计算理论[J]. 工程力学, 2015, 32(7): 143 − 148. doi: 10.6052/j.issn.1000-4750.2013.12.1238Wang Yuqiang, Zhang Dachang, Li Buhui, et al. Mechanical behavior and strength calculation theory of stiffener fillet weld in circle rigid flange [J]. Engineering Mechanics, 2015, 32(7): 143 − 148. (in Chinese) doi: 10.6052/j.issn.1000-4750.2013.12.1238 [16] 张艳霞, 黄威振, 郑明召, 王彦, 宁广. 箱形柱芯筒式全螺栓拼接节点拟静力试验研究[J]. 工业建筑, 2018, 48(5): 37 − 44.Zhang Yanxia, Huang Weizhen, Zheng Mingzhao, Wang Yan, Ning Guang. Quasi-static experimental research on box-section all-bolted column connection with inner sleeve [J]. Industrial Construction, 2018, 48(5): 37 − 44. (in Chinese) [17] 金眞佑, 桑原進, 宮川和明, 等. 低降伏点円形鋼管を用いたせん断履歴型ダンパーの力学性状[J]. 日本建築学会構造系論文集, 2016, 81(719): 101 − 110.Jinwoo Kim, Susumu Kuwahara, Kazuaki Yasui, et al. Elasto-plastic behavior of shear type damper using low yield strength circular hollow section [J]. Japan Structural Construction Engineering, 2016, 81(719): 101 − 110. (in Japanese) [18] 屈俊童, 卢飞, 吴洋洋, 刘超. 新型筒式自复位SMA-摩擦阻尼器的减震性能分析[J]. 噪声与振动控制, 2020, 40(3): 213 − 218, 269. doi: 10.3969/j.issn.1006-1355.2020.03.037Qu Juntong, Lu Fei, Wu Yangyang, et al. Analysis of vibration attenuation performance of a new circular tube re-centering SMA-friction damper [J]. Noise and Vibration Control, 2020, 40(3): 213 − 218, 269. (in Chinese) doi: 10.3969/j.issn.1006-1355.2020.03.037 [19] Ailin Zhang, Yanxia Zhang, Anran Liu, et al. Performance study of self-centering steel frame with intermediate columns containing friction dampers [J]. Engineering Structures, 2019, 186: 382 − 398. doi: 10.1016/j.engstruct.2019.02.023 [20] 张爱林, 张艳霞, 陈媛媛, 等. 中间柱摩擦阻尼器预应力钢框架静力推覆试验研究[J]. 建筑结构学报, 2016, 37(3): 125 − 133.Zhang Ailin, Zhang Yanxia, Chen Yuanyuan, et al. Static pushover test on resilient prestressed steel frame with intermediate column containing friction dampers [J]. Journal of Building Structures, 2016, 37(3): 125 − 133. (in Chinese) [21] 张爱林, 王庆博, 张艳霞, 上官广浩, 刘安然. 芯筒式双法兰刚性连接平面及减震框架试验对比分析[J]. 工程力学, 2020, 37(12): 18 − 33. doi: 10.6052/j.issn.1000-4750.2020.01.0032Zhang Ailin, Wang Qingbo, Zhang Yanxia, et al. Comparative analysis of experiments on plane steel frame and damper steel frame with double flange rigid connections containing core tube [J]. Engineering Mechanics, 2020, 37(12): 18 − 33. (in Chinese) doi: 10.6052/j.issn.1000-4750.2020.01.0032 [22] GB/T 2975−1998, 钢及钢产品力学性能试验取样位置及试样制备[S]. 北京: 中国标准出版社, 1998.GB/T 2975−1998, Sample location and sample preparation for mechanical properties test of steel and steel products [S]. Beijing: China Standard Press, 1998. (in Chinese) [23] GB/T 228−2002, 金属材料拉伸试验方法[S]. 北京: 中国标准出版社, 2002.GB/T 228−2002, Metallic tensile test method [S]. Beijing: China Standard Press, 2002. (in Chinese) [24] FEMA-350, Recommended Seismic Design Criteria for New Steel Moment-Frame Buildings [S]. Washington D. C.: Federal Emergency Management Agency, 2000. -