留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于模态参数及BAS-PSO优化算法的软基水闸有限元模型参数修正方法

李火坤 王刚 余杰 魏博文 黄伟 黄锦林

李火坤, 王刚, 余杰, 魏博文, 黄伟, 黄锦林. 基于模态参数及BAS-PSO优化算法的软基水闸有限元模型参数修正方法[J]. 工程力学, 2021, 38(9): 246-256. doi: 10.6052/j.issn.1000-4750.2020.09.0638
引用本文: 李火坤, 王刚, 余杰, 魏博文, 黄伟, 黄锦林. 基于模态参数及BAS-PSO优化算法的软基水闸有限元模型参数修正方法[J]. 工程力学, 2021, 38(9): 246-256. doi: 10.6052/j.issn.1000-4750.2020.09.0638
LI Huo-kun, WANG Gang, YU Jie, WEI Bo-wen, HUANG Wei, HUANG Jin-lin. FINITE ELEMENT MODEL PARAMETER UPDATING OF SLUICES ON A SOFT FOUNDATION BASED ON MODAL PARAMETERS AND BAS-PSO OPTIMIZATION ALGORITHM[J]. Engineering Mechanics, 2021, 38(9): 246-256. doi: 10.6052/j.issn.1000-4750.2020.09.0638
Citation: LI Huo-kun, WANG Gang, YU Jie, WEI Bo-wen, HUANG Wei, HUANG Jin-lin. FINITE ELEMENT MODEL PARAMETER UPDATING OF SLUICES ON A SOFT FOUNDATION BASED ON MODAL PARAMETERS AND BAS-PSO OPTIMIZATION ALGORITHM[J]. Engineering Mechanics, 2021, 38(9): 246-256. doi: 10.6052/j.issn.1000-4750.2020.09.0638

基于模态参数及BAS-PSO优化算法的软基水闸有限元模型参数修正方法

doi: 10.6052/j.issn.1000-4750.2020.09.0638
基金项目: 国家自然科学基金项目(52079061,51879126,51869011,51779115,51909115);江西省杰出青年基金项目(2018ACB21018,20192ACB21022);江西省研究生创新专项资金项目(YC2019-S097)
详细信息
    作者简介:

    李火坤(1981−),男,湖南人,教授,博士,博导,主要从事泄流结构动力安全与健康诊断研究(E-mail: lihuokun@ncu.edu.cn)

    王 刚(1996−),男,江西人,硕士生,主要从事泄流结构健康诊断及反问题研究(E-mail: wanggang1390@163.com)

    余 杰(1995−),男,江西人,硕士生,主要从事水闸底板脱空研究(E-mail: 2061312382@qq.com)

    黄 伟(1990−),男,江西人,讲师,博士,主要从事水利水电工程健康诊断研究(E-mail: huangwei0214@ncu.edu.cn)

    黄锦林(1971−),男,江西人,教授级高工,博士,主要从事水利水电工程及防洪减灾研究工作(E-mail: 1657826640@qq.com)

    通讯作者:

    魏博文(1981−),男,江西人,教授,博士,博导,主要从事大坝安全监控与健康诊断研究(E-mail: bwwei@ncu.edu.cn)

  • 中图分类号: O242.21

FINITE ELEMENT MODEL PARAMETER UPDATING OF SLUICES ON A SOFT FOUNDATION BASED ON MODAL PARAMETERS AND BAS-PSO OPTIMIZATION ALGORITHM

  • 摘要: 正确合理的有限元模型对于软基水闸结构健康监测及性能评估至关重要,但水闸有限元模型参数的不确定性使得建立的水闸有限元模型难以准确地反映水闸结构真实的动力学特性,该文结合模态参数和基于天牛须搜索算法的粒子群(BAS-PSO)优化算法,提出了一种软基水闸有限元模型参数修正方法。选择对水闸模态参数影响较大的弹性模量和密度作为待修正参数,建立反映软基水闸待修正参数和模态参数之间非线性关系的基于遗传算法的支持向量回归(GA-SVR)代理模型;提出基于GA-SVR代理模型计算模态参数与水闸振动模态参数之间相对偏差最小的目标函数,构建软基水闸有限元模型参数修正的最优化数学模型;提出一种BAS-PSO优化算法来求解最优化数学模型,克服了局部最优和收敛速度慢的问题。通过软基水闸物理模型实例表明,修正的有限元模型计算的模态参数与水闸识别模态参数在数值上比较吻合,该文方法合理可靠且具有良好的可行性,可为软基水闸有限元模型参数修正提供一条新思路。
  • 图  1  软基水闸有限元模型参数修正流程图

    Figure  1.  Flow chart of parameter updating of finite element model of sluice on soft foundation

    图  2  软基水闸模型示意图

    Figure  2.  Schematic diagram of sluice

    图  3  软基水闸物理模型

    Figure  3.  Physical model of sluice

    图  4  传感器布置图

    Figure  4.  Sensor arrangement

    图  5  BY-S07传感器

    Figure  5.  BY-S07 sensor

    图  6  B7测点信号分量时程线

    Figure  6.  Time history of signal components of B7

    图  7  B7测点降噪前后时程线

    Figure  7.  Time history before and after de-noising of B7

    图  8  B7测点降噪前后功率谱密度曲线

    Figure  8.  Power spectrums before and after de-noising of B7

    图  9  软基水闸有限元模型

    Figure  9.  Finite element model of sluice

    图  10  优化算法对比

    Figure  10.  Comparison of optimization algorithms

    图  11  振型对比结果

    Figure  11.  Comparison of mode shape

    表  1  B7测点信号分量的NMIC值

    Table  1.   NMIC of signal components of B7

    IMFu1u2u3u4
    NMIC值0.804310.76960.8952
    下载: 导出CSV

    表  2  水闸振动模态参数识别结果

    Table  2.   Modal parameter identification results of sluice

    阶次固有频率/Hz振型阻尼比/(%)
    120.43同向振动3.11
    224.78反向振动0.68
    360.85同向扭动1.50
    470.41反向扭动0.55
    下载: 导出CSV

    表  3  弹性模量和密度取值范围

    Table  3.   Ranges of elastic modulus and density

    分区编号弹性模量/GPa密度/(kg/m3)
    水闸A[17,25][2300,2800]
    B[17,25][2200,2800]
    C[17,25][2200,2800]
    地基E[0.05,0.15][1200,1800]
    F[0.05,0.15][1200,1800]
    G[0.10,0.20][1400,2000]
    下载: 导出CSV

    表  4  频率评价指标

    Table  4.   Evaluation index of frequency

    阶次拟合模型预测模型
    MSE/(×10−5)MAPE/(×10−3)R2MSE/(×10−4)MAPE/(×10−3)R2
    17.5431.0790.9993.7802.0920.996
    27.2850.8250.9993.4701.4000.998
    39.3991.1660.9985.8351.1520.996
    48.9691.0910.9994.7100.7690.997
    下载: 导出CSV

    表  5  典型测点归一化振型系数评价指标

    Table  5.   Evaluation index of mode shape normalized coefficients of type measuring point

    阶次拟合模型预测模型
    MSE/(×10−3)MAPE/(×10−3)R2MSE/(×10−3)MAPE/(×10−3)R2
    10.0990.5000.9990.6331.0100.995
    20.0750.5940.9990.4731.2190.996
    31.0491.0790.9940.6911.7770.995
    40.0991.2110.9995.7451.6420.987
    下载: 导出CSV

    表  6  模型参数修正计算结果

    Table  6.   Calculation results of model updated parameters

    分区编号水闸地基
    ABCEFG
    弹性模量/GPa24.1719.4922.000.130.130.19
    密度/(kg/m3)2228.032432.752213.061611.091792.911513.39
    下载: 导出CSV

    表  7  频率对比结果

    Table  7.   Comparison of frequency

    阶次识别值/Hz计算值/Hz相对误差/(%)
    120.4321.40−4.75
    224.7823.853.75
    360.8559.441.41
    470.4170.48−0.10
    下载: 导出CSV

    表  8  测点归一化振型系数对比结果

    Table  8.   Comparison of mode shape normalized coefficients of measuring points

    测点 第一阶 第二阶 第三阶 第四阶
    识别值 计算值 相对误差/(%) 识别值 计算值 相对误差/(%) 识别值 计算值 相对误差/(%) 识别值 计算值 相对误差/(%)
    B1 0.9337 0.9767 −4.61 0.9459 0.9736 −2.93 −1.0000 −1.0000 0.00 1.0000 1.0000 0.00
    B2 0.9527 0.9902 −3.93 0.9673 0.9892 −2.27 −0.2383 −0.2363 0.86 0.2355 0.2630 −11.68
    B3 0.9764 0.9979 −2.20 0.9824 0.9979 −1.57 0.5375 0.5564 −3.51 −0.5313 −0.5125 3.53
    B4 1.0000 1.0000 0.00 1.0000 1.0000 0.00 0.9657 0.9456 2.08 −0.9124 −0.8922 2.21
    B5 0.8889 0.8876 0.15 0.8995 0.8740 2.84 0.8920 0.8861 0.65 −0.7999 −0.8275 −3.45
    B6 0.7433 0.7476 −0.58 0.7072 0.7172 −1.40 0.8056 0.8010 0.57 −0.7067 −0.7330 −3.72
    B7 0.5936 0.6106 −2.85 0.5348 0.5642 −5.50 0.7056 0.7025 0.43 −0.6095 −0.6219 −2.03
    B8 0.4826 0.4796 0.63 0.3982 0.4191 −5.24 0.5719 0.5925 −3.60 −0.4902 −0.4967 −1.34
    B9 0.3286 0.3588 −9.17 0.2759 0.2871 −4.04 0.4033 0.4249 −5.34 −0.3219 −0.3629 −12.73
    B10 0.1904 0.2227 −16.95 0.1455 0.1541 −5.91 0.2989 0.3362 −12.47 −0.2152 −0.2294 −6.60
    B11 0.9447 0.9792 −3.65 −0.9342 −0.9765 −4.53 −1.0000 −1.0000 0.00 −1.0000 −1.0000 0.00
    B12 0.9704 0.9865 −1.65 −1.0000 −0.9842 1.58 −0.2487 −0.2386 4.07 −0.2477 −0.2612 −5.46
    B13 0.9717 0.9952 −2.42 −0.9896 −0.9942 −0.47 0.5672 0.5643 0.51 0.5435 0.5306 2.36
    B14 1.0000 1.0000 0.00 −0.9644 −1.0000 −3.69 0.9794 0.9560 2.39 0.9262 0.9149 1.22
    B15 0.8837 0.8776 0.69 −0.8622 −0.8618 0.04 0.8760 0.8982 −2.53 0.8580 0.8500 0.93
    B16 0.7392 0.7254 1.86 −0.7034 −0.6903 1.87 0.7889 0.8145 −3.25 0.7143 0.7544 −5.63
    B17 0.5911 0.5768 2.41 −0.5271 −0.5234 0.70 0.6836 0.7160 −4.74 0.6172 0.6402 −3.73
    B18 0.4878 0.4357 10.69 −0.3947 −0.3662 7.22 0.5672 0.6047 −6.61 0.4864 0.5102 −4.88
    B19 0.3163 0.3066 3.04 −0.2528 −0.2246 11.15 0.4412 0.4845 −9.82 0.3147 0.3599 −14.38
    B20 0.1884 0.1952 −3.63 −0.1759 −0.1355 22.93 0.3283 0.3245 1.16 0.2205 0.2285 −3.66
    下载: 导出CSV
  • [1] 中华人民共和国水利部. 全国水利发展统计公报[M]. 北京: 中国水利水电出版社, 2018.

    Ministry of Water Resources of the People's Republic of China. statistical bulletin on China water activities[M]. Beijing: China Water Power Press, 2018. (in Chinese)
    [2] Zhang J W, Hou G, Wang H, et al. Operation feature extraction of flood discharge structure based on improved variational mode decomposition and variance dedication rate [J]. Journal of vibration and control, 2020, 26(3/4): 229 − 240.
    [3] Fan X F, Wu Z Y, Liu L J, et al. Analysis of sluice foundation seepage using monitoring data and numerical simulation [J]. Advances in Civil Engineering, 2019, 2019(3): 1 − 15.
    [4] Li H K, Zhong Y W, Wei B W, et al. Beat vibration mechanism of a sluice pier under high-speed flood discharge excitation [J]. Journal of Low Frequency Noise Vibration and Active Control, 2020, 39(1): 28 − 43. doi: 10.1177/1461348419834115
    [5] 蒋伟, 刘纲. 基于多链差分进化的贝叶斯有限元模型修正方法[J]. 工程力学, 2019, 36(6): 101 − 108. doi: 10.6052/j.issn.1000-4750.2018.04.0229

    Jiang Wei, Liu Gang. Bayesian finite element model update method based on multi-chain differential evolution [J]. Engineering Mechanics, 2019, 36(6): 101 − 108. (in Chinese) doi: 10.6052/j.issn.1000-4750.2018.04.0229
    [6] Giagopoulos D, Arailopoulos A, Dertimanis V, et al. Structural health monitoring and fatigue damage estimation using vibration measurements and finite element model updating [J]. Structural Health Monitoring, 2019, 18(4): 1189 − 1206. doi: 10.1177/1475921718790188
    [7] 李晰, 张德义, 闫维明, 等. 基于环境激励的钢管混凝土拱桥工作模态识别及修正[J]. 工程力学, 2013, 30(9): 81 − 88, 94. doi: 10.6052/j.issn.1000-4750.2012.04.0275

    Li Xi, Zhang Deyi, Yan Weiming, et al. Operational model identification and calibration of CFST arch bridge based on ambient excitation [J]. Engineering Mechanics, 2013, 30(9): 81 − 88, 94. (in Chinese) doi: 10.6052/j.issn.1000-4750.2012.04.0275
    [8] Chen H P, Tee K. Structural finite element model updating using incomplete ambient vibration modal data [J]. Science China Technological Sciences, 2014, 57(9): 1677 − 1688. doi: 10.1007/s11431-014-5619-9
    [9] Girardi M, Padovani C, Pellegrini D, et al. Finite element model updating for structural applications [J]. Journal of Computational and Applied Mathematics, 2020, 370: 112675. doi: 10.1016/j.cam.2019.112675
    [10] Hofmeister B, Bruns M, Rolfes R. Finite element model updating using deterministic optimisation: A global pattern search approach [J]. Engineering Structures, 2019, 195: 373 − 381. doi: 10.1016/j.engstruct.2019.05.047
    [11] Kang J T, Zhang X Q, Cao H Y, et al. Research on multi-alternatives problem of finite element model updating based on IAFSA and Kriging model [J]. Sensors, 2020, 20(15): 4274. doi: 10.3390/s20154274
    [12] Shan D S, Li Q, Khan I, et al. A novel finite element model updating method based on substructure and response surface model [J]. Engineering Structures, 2015, 103: 147 − 156. doi: 10.1016/j.engstruct.2015.09.006
    [13] Xia Z Y, Li A Q, Li J H, et al. Model updating of an existing bridge with high-dimensional variables using modified particle swarm optimization and ambient excitation data [J]. Measurement, 2020, 159: 107754. doi: 10.1016/j.measurement.2020.107754
    [14] Wu H, Wu P B, Xu K, et al. Finite element model updating using crow search algorithm with Levy flight [J]. International Journal for Numerical Methods in Engineering, 2020, 121(13): 2916 − 2928. doi: 10.1002/nme.6338
    [15] Naranjo-Perez J, Jimenez-Alonso JF, Pavic A, et al. Finite-element-model updating of civil engineering structures using a hybrid UKF-HS algorithm [J]. Structure and Infrastructure Engineering, 2020. DOI: 10.1080/15732479.2020.1760317.
    [16] 何浩祥, 闫维明, 王卓. 基于子结构和遗传神经网络的递推模型修正方法[J]. 工程力学, 2008, 25(4): 99 − 105.

    He Haoxiang, Yan Weiming, Wang Zhuo. Stepwise model updating method based on substructures and GA-ANN [J]. Engineering Mechanics, 2008, 25(4): 99 − 105. (in Chinese)
    [17] 夏志远, 李爱群, 李建慧, 等. 基于GMPSO的有限元模型修正方法验证[J]. 工程力学, 2019, 36(10): 66 − 74. doi: 10.6052/j.issn.1000-4750.2018.09.0506

    Xia Zhiyuan, Li Aiqun, Li Jianhui, et al. Validation of finite element model updating methodology based on GMPSO [J]. Engineering Mechanics, 2019, 36(10): 66 − 74. (in Chinese) doi: 10.6052/j.issn.1000-4750.2018.09.0506
    [18] 张建伟, 华薇薇, 侯鸽, 等. AVMD-KELM方法在水闸结构振动趋势预测中的应用[J]. 振动、测试与诊断, 2019, 5: 947 − 952, 1128.

    Zhang Jianwei, Hua Weiwei, Hou Ge, et al. Prediction of vibration trend of sluice structure with AVMD-KELM [J]. Journal of Vibration, Measurement & Diagnosis, 2019, 5: 947 − 952, 1128. (in Chinese)
    [19] 袁爱民. 基于灵敏度分析的有限元模型修正技术若干关键问题研究[D]. 南京: 东南大学, 2006: 28 − 55.

    Yuan Aimin. Studies on several key problems of finite element model updating based on the sensitivity analysis [D]. Nanjing: Southeast University, 2006: 28 − 55. (in Chinese)
    [20] 马斌. 高拱坝及反拱水垫塘结构泄洪安全分析与模拟[D]. 天津: 天津大学, 2007: 18 − 24.

    Ma Bin. Safety analysis and simulation of flood discharge of high arch dam and counter-arch plunge pool [D]. Tianjin: Tianjin University, 2007: 18 − 24. (in Chinese)
    [21] 沈怀至, 金峰, 张楚汉. 基于性能的重力坝-地基系统地震易损性分析[J]. 工程力学, 2008, 25(12): 86 − 91.

    Shen Huaizhi, Jin Feng, Zhang Chuhan. Erformance-based seismic fragility analysis of concrete gravity-foundation system [J]. Engineering Mechanics, 2008, 25(12): 86 − 91. (in Chinese)
    [22] 冯新, 周晶, 范颖芳. 基于模态观测的混凝土坝反演分析[J]. 水利学报, 2004, 2: 101 − 105. doi: 10.3321/j.issn:0559-9350.2004.04.018

    Feng Xin, Zhou Jing, Fan Yingfang. Inverse analysis of concrete dam with modal measurements [J]. Journal of Hydraulic Engineering, 2004, 2: 101 − 105. (in Chinese) doi: 10.3321/j.issn:0559-9350.2004.04.018
    [23] 陈维江. 大坝安全监测及厂房动力反演分析模型研究[D]. 大连: 大连理工大学, 2002: 72 − 90.

    Chen Weijiang. Mathematical model for dam safety monitoring and dynamic inverse model for power house [D]. Dalian: Dalian University of Technology, 2002: 72 − 90. (in Chinese)
    [24] Jiang X Y, Li S. BAS: Beetle antennae search algorithm for optimization problems [J]. International Journal of Robotics and Control, 2018, 1(1): 1 − 5. doi: 10.5430/ijrc.v1n1p1
    [25] 卢廷浩. 土力学[M]. 南京: 河海大学出版社, 2002.

    Lu Tinghao. Soil mechanics [M]. Nanjing: Hohai University Press, 2002. (in Chinese)
    [26] 韩江洪, 李正荣, 魏振春. 一种自适应粒子群优化算法及其仿真研究[J]. 系统仿真学报, 2006, 18(10): 2969 − 2971. doi: 10.3969/j.issn.1004-731X.2006.10.070

    Han Jianghong, Li Zhengrong, Wei Zhenchun. Adaptive particle swarm optimization algorithm and simulation [J]. Journal of System Simulation, 2006, 18(10): 2969 − 2971. (in Chinese) doi: 10.3969/j.issn.1004-731X.2006.10.070
  • 加载中
图(11) / 表(8)
计量
  • 文章访问数:  69
  • HTML全文浏览量:  19
  • PDF下载量:  14
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-09-04
  • 修回日期:  2020-12-04
  • 网络出版日期:  2021-01-16
  • 刊出日期:  2021-09-13

目录

    /

    返回文章
    返回