留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

T型内芯防屈曲支撑的拟静力滞回性能试验研究

曾聪 张翼飞 许国山 王涛 潘天林 王德弘

曾聪, 张翼飞, 许国山, 王涛, 潘天林, 王德弘. T型内芯防屈曲支撑的拟静力滞回性能试验研究[J]. 工程力学, 2021, 38(9): 124-132, 181. doi: 10.6052/j.issn.1000-4750.2020.09.0635
引用本文: 曾聪, 张翼飞, 许国山, 王涛, 潘天林, 王德弘. T型内芯防屈曲支撑的拟静力滞回性能试验研究[J]. 工程力学, 2021, 38(9): 124-132, 181. doi: 10.6052/j.issn.1000-4750.2020.09.0635
ZENG Cong, ZHANG Yi-fei, XU Guo-shan, WANG Tao, PAN Tian-lin, WANG De-hong. QUASI-STATIC CYCLIC TESTS ON THE HYSTERETIC BEHAVIOR OF BUCKLING-RESTRAINED BRACES WITH A T-SECTION CORE[J]. Engineering Mechanics, 2021, 38(9): 124-132, 181. doi: 10.6052/j.issn.1000-4750.2020.09.0635
Citation: ZENG Cong, ZHANG Yi-fei, XU Guo-shan, WANG Tao, PAN Tian-lin, WANG De-hong. QUASI-STATIC CYCLIC TESTS ON THE HYSTERETIC BEHAVIOR OF BUCKLING-RESTRAINED BRACES WITH A T-SECTION CORE[J]. Engineering Mechanics, 2021, 38(9): 124-132, 181. doi: 10.6052/j.issn.1000-4750.2020.09.0635

T型内芯防屈曲支撑的拟静力滞回性能试验研究

doi: 10.6052/j.issn.1000-4750.2020.09.0635
基金项目: 国家自然科学基金项目(51778190,51978213,51808101,51878128);吉林省教育厅科学研究项目(JJKH20190712KJ)
详细信息
    作者简介:

    张翼飞(1994−),男,吉林人,硕士生,主要从事结构抗震研究(E-mail: yifeizhangvalue@163.com)

    许国山(1980−),男,辽宁人,副教授,博士,博导,主要从事结构试验技术方面研究(E-mail: xuguoshan@hit.edu.cn)

    王 涛(1978−),男,黑龙江人,教授,博士,硕导,主要从事结构抗震实验方法与技术研究(E-mail: hitwangtao@126.com)

    潘天林(1984−),男,辽宁人,副教授,博士,硕导,主要从事结构抗震研究(E-mail: pantianlin202@126.com)

    王德弘(1985−),男,河南人,副教授,博士,硕导,主要从事结构抗震研究(E-mail: hitwdh@126.com)

    通讯作者:

    曾 聪(1981−),男,吉林人,副教授,博士,硕导,主要从事工程减隔震与结构动力实验技术研究(E-mail: zc_1113@126.com)

  • 中图分类号: TU352.1+1

QUASI-STATIC CYCLIC TESTS ON THE HYSTERETIC BEHAVIOR OF BUCKLING-RESTRAINED BRACES WITH A T-SECTION CORE

  • 摘要: 提出了一种内芯与约束构件均为型钢的全钢装配式防屈曲支撑,该支撑具有全装配、内芯可更换、工艺简单、造价低廉和可用于既有构件加固等优点。钢内芯由2个角钢与加劲板组成T型截面,外约束构件由角钢和盖板通过螺栓连接形成。对6个该支撑试件进行拟静力试验,讨论其滞回性能、抗震性能及破坏机理,并分析内芯上设置填板、内芯与约束构件的间隙、内芯双角钢之间的间距以及限位方式对滞回性能的影响。结果表明,该支撑的实际性能与设计性能基本一致,具有稳定的滞回性能;在支撑中间设置填板对支撑的滞回性能基本没有影响;内芯与约束构件的间隙及内芯双角钢之间的间距过大会降低支撑的滞回性能;采用中部限位方式的支撑滞回性能优于端部限位方式。对试件的抗震性能分析表明,该支撑具有较好的延性和累积塑性变形能力,可作为阻尼器应用于结构中。通过分析破坏模式发现,加劲板末端的焊缝应力集中会造成支撑的断裂位置由屈服段转移至止焊处;设置中部限位卡可以减小摩擦力的不利影响。
  • 图  1  TBRB的构造组成

    Figure  1.  Configuration of TBRB

    图  2  支撑内芯尺寸及构造

    Figure  2.  Dimensions and configuration of steel core

    图  3  支撑构件尺寸及构造

    Figure  3.  Dimensions and configuration of TBRB specimens

    图  4  试验装置

    Figure  4.  Testing device

    图  5  位移计布置示意图

    Figure  5.  Arrangement of displacement transducers

    图  6  TBRB试件滞回曲线

    Figure  6.  Hysteretic curves of TBRB specimens

    图  7  各试件的残余变形

    Figure  7.  Residual deformation of specimens

    图  8  命名规则

    Figure  8.  Labeling rule

    图  9  内芯轴力分布示意图

    Figure  9.  Axial force distribution in core member

    图  10  断裂处的典型特征

    Figure  10.  Typical features of rupture

    表  1  试件主要几何参数

    Table  1.   Geometric parameters of specimens

    试件编号加强段
    长度
    $ {L_{\rm{s}}} {\rm{/mm}}$
    过渡段
    长度
    ${L_{\rm{t}}}/{\rm{mm}} $
    屈服段
    长度$ {L_{\rm{y}}} /{\rm{mm}}$
    约束段
    长度
    $ {L_{\rm{r}}}/{\rm{mm}}$
    总长$L/{\rm{mm}}$约束角钢
    边宽${B_{\rm{a}}} /{\rm{mm}} $
    加强段
    宽度
    ${B_{\rm{s}}} /{\rm{mm}}$
    约束盖板
    厚度${T_{\rm{p}}} /{\rm{mm}}$
    屈服段
    宽度
    $ b/{\rm{mm}}$
    内芯厚度$ t/{\rm{mm}}$间隙$ c/{\rm{mm}}$间距$ d/{\rm{mm}}$限位方式中间截面
    设置填板
    TBRB110010080011401200807085051.56中部限位
    TBRB21.56中部限位1
    TBRB31.54中部限位
    TBRB41.58中部限位
    TBRB52.56中部限位
    TBRB61.56两端点焊
    垫片限位
    下载: 导出CSV

    表  2  主要钢材的力学性能

    Table  2.   Mechanical properties of major steel materials

    型号用途钢号屈服强度/
    ${\rm{MPa}}$
    抗拉强度/
    ${\rm{MPa}}$
    弹性模量/
    ${\rm{MPa}}$
    ∟70×5内芯Q235-B2704301.76×105
    ∟80×8外包角钢Q235-B2904201.64×105
    外包盖板Q235-B3104251.98×105
    下载: 导出CSV

    表  3  各试件的主要抗震性能参数

    Table  3.   Major parameters of seismic performance of specimens

    试件编号轴向弹性刚度
    实测值
    ${K_{\rm{e}}} {\rm{/(kN/mm)}}$
    轴向弹性刚度理论
    计算值/实测值
    ${K_{\rm{c}}}/{K_{\rm{e}}}$
    轴向屈服力
    实测值
    $ {P_{\rm{y}}} /{\rm{kN}} $
    轴向屈服力理论
    计算值/实测值
    ${P_{\rm{yc}}}/{P_{\rm{y}}}$
    轴向屈服位移
    理论计算值
    $ {\delta _{\rm{yc}}} /{\rm{mm}} $
    受压承载力
    调整系数
    $\beta $
    受拉延性
    系数峰值
    ${\mu _{\rm{t}}} $
    受压延性
    系数峰值
    ${\mu _{\rm{c}}} $
    累积塑性
    变形能力
    $CPD$
    TBRB1140.861.11255.041.011.741.339.2110.12457.07
    TBRB2140.591.14249.051.031.701.319.429.42435.85
    TBRB3133.571.16262.220.981.761.2010.0111.83523.21
    TBRB4138.151.15249.341.031.711.249.369.36432.56
    TBRB5145.131.08261.310.981.741.219.219.21358.59
    TBRB6140.131.12253.691.011.741.239.219.21358.59
    下载: 导出CSV

    表  4  试件的破坏模式

    Table  4.   Failure modes of specimens

    序号典型失效模式失效模式说明
    1内芯上构件发生局部失稳,外约束构件未发生任何形式破外
    2疲劳断裂,断裂位置位于焊缝末端
    3疲劳断裂,断裂位置在耗能段内,
    近加载端
    下载: 导出CSV

    表  5  各试件的主要结果

    Table  5.   Main test results of specimens

    试件
    编号
    破坏
    模式
    破坏
    形式
    破坏位置屈服段内屈曲
    幅值分布特征
    近加载端/
    近固定端
    翼缘/
    腹板
    翼缘腹板
    TBRB11,2塑性
    破坏
    近固
    定端
    全部TBRB1~TBRB5:
    中部:微幅
    两端:小幅值
    TBRB1~TBRB5:
    中部:小幅值
    两端:大幅值
    TBRB21,2塑性
    破坏
    近加
    载端
    全部
    TBRB31,2塑性
    破坏
    近加
    载端
    全部
    TBRB41,2塑性
    破坏
    近固
    定端
    全部
    TBRB51,2塑性
    破坏
    近固
    定端
    全部
    TBRB61,3塑性
    破坏
    近加
    载端
    腹板完全
    断裂
    翼缘部分
    断裂
    近加载端:
    小幅值
    近固定端:
    微幅
    近加载端:
    小幅值
    近固定端:
    微幅
    下载: 导出CSV
  • [1] David J M, Larry A F, Matthew R E. Development and experimental validation of a nickel-titanium shape memory alloy self-centering buckling-restrained brace [J]. Engineering Structures, 2012, 40: 288 − 298. doi: 10.1016/j.engstruct.2012.02.037
    [2] Xie Q. State of the art of buckling-restrained braces in Asia [J]. Journal of Construction Steel Restrained, 2005, 61(6): 727 − 748. doi: 10.1016/j.jcsr.2004.11.005
    [3] 韩强, 贾振雷, 王晓强, 等. 内嵌碟簧型自复位防屈曲支撑性能试验及其恢复力模型研究[J]. 工程力学, 2018, 35(6): 144 − 150, 190.

    Han Qiang, Jia Zhenlei, Wang Xiaoqiang, et al. Behavior test and restoring force model of disc-spring self-centering buckling-restrained braces [J]. Engineering Mechanics, 2018, 35(6): 144 − 150, 190. (in Chinese)
    [4] 朱博莉, 郭彦林. 梭形空间桁架约束型防屈曲支撑的性能研究[J]. 工程力学, 2020, 37(7): 35 − 46. doi: 10.6052/j.issn.1000-4750.2019.07.0424

    Zhu Boli, Guo Yanlin. Investigation on the performance of spatial-truss confined brbs with shuttle shape longitudinally [J]. Engineering Mechanics, 2020, 37(7): 35 − 46. (in Chinese) doi: 10.6052/j.issn.1000-4750.2019.07.0424
    [5] 杨璐, 卫璇, 施刚, 等. LY315钢屈曲约束支撑耗能性能试验研究[J]. 工程力学, 2019, 36(1): 200 − 206. doi: 10.6052/j.issn.1000-4750.2017.11.0879

    Yang Lu, Wei Xuan, Shi Gang, et al. Experiment on energy dissipation performance of LY315 steel buckling-restrained braces [J]. Engineering Mechanics, 2019, 36(1): 200 − 206. (in Chinese) doi: 10.6052/j.issn.1000-4750.2017.11.0879
    [6] Guo Y L, Zhou P, Fu P P, et al. Experimental test and hysteretic behavior of single cross-arm PCS-BRBs [J]. Journal of Constructional Steel Research, 2019, 160: 223 − 239. doi: 10.1016/j.jcsr.2019.05.036
    [7] Guo Y L, Fu P P, Zhou P, et al. Elastic buckling and load resistance of a single cross-arm pre-tensioned cable stayed buckling-restrained brace [J]. Engineering Structures, 2016, 126: 516 − 530. doi: 10.1016/j.engstruct.2016.08.013
    [8] Mochizuki S, Murata Y, Andou N, et al. Experimental study on buckling of unbonded braces under axial forces: Part 4 [C]// Summaries of Technical Papers of Annual Meeting, Architectural Institute of Japan, 1982: 2263 − 2264. (in Japanese)
    [9] Chou C, Chen S Y. Subassemblage tests and finite element analyses of sandwiched buckling-restrained braces [J]. Engineering Structures, 2010, 32: 2108 − 2121. doi: 10.1016/j.engstruct.2010.03.014
    [10] 郭彦林, 童精中, 周鹏. 防屈曲支撑的型式、设计理论与应用研究进展[J]. 工程力学, 2016, 33(9): 1 − 14. doi: 10.6052/j.issn.1000-4750.2016.04.ST01

    Guo Yanlin, Tong Jingzhong, Zhou Peng. Research progress of buckling restrained braces: Types, design methods and applications [J]. Engineering Mechanics, 2016, 33(9): 1 − 14. (in Chinese) doi: 10.6052/j.issn.1000-4750.2016.04.ST01
    [11] Tremblay R, Bolduc P, Neville R, et al. Seismic testing and performance of buckling-restrained bracing systems [J]. Canadian Journal of Civil Engineering, 2006, 33(2): 183 − 198. doi: 10.1139/l05-103
    [12] 郭彦林, 王小安. 一种四角钢组合约束型防屈曲支撑外围连接的设计方法研究: 理论推导[J]. 工程力学, 2014, 31(1): 56 − 63. doi: 10.6052/j.issn.1000-4750.2013.01.0004

    Guo Yanlin, Wang Xiaoan. Bolt connection behavior and design of a four-angle assembled steel buckling restrained brace: Theoretical analysis [J]. Engineering Mechanics, 2014, 31(1): 56 − 63. (in Chinese) doi: 10.6052/j.issn.1000-4750.2013.01.0004
    [13] Black C J, Makris N, Aiken I D. Component testing, seismic evaluation and characterization of buckling-restrained braces [J]. Journal of Structural Engineering-ASCE, 2004, 130(6): 880 − 894. doi: 10.1061/(ASCE)0733-9445(2004)130:6(880)
    [14] 梅洋, 吴斌, 赵俊贤, 等. 组合钢管混凝土式防屈曲支撑[J]. 哈尔滨工业大学学报, 2011, 43(增刊 2): 179 − 185.

    Mei Yang, Wu Bin, Zhao Junxian, et al. A new type of buckling-restrained braces with combined concrete-filled steel tubes [J]. Journal of Harbin Institute of Technology, 2011, 43(Suppl 2): 179 − 185. (in Chinese)
    [15] Zhao Junxian, Wu Bin, Li Wei, et al. Local buckling behavior of steel angle core members in buckling-restrained braces: Cyclic tests, theoretical analysis, and design recommendations [J]. Engineering Structures, 2014, 66: 129 − 145. doi: 10.1016/j.engstruct.2014.02.008
    [16] 马宁, 吴斌, 赵俊贤, 等. 十字形内芯全钢防屈曲支撑构件及子系统足尺试验[J]. 土木工程学报, 2010, 43(4): 1 − 7.

    Ma Ning, Wu Bin, Zhao Junxian, et al. Full scale uniaxial and subassemblage tests on the seismic behavior of all-steel buckling-resistant brace [J]. China Civil Engineering Journal, 2010, 43(4): 1 − 7. (in Chinese)
    [17] 金城陽介, 木下智裕, 聲高裕治, 吹田 啓一郎, 宮川和明. ピン接合形式二重鋼管ブレースの座屈防止設計法[J]. 日本建築学会構造系論文集, 2016, 81(725): 1133 − 1141.

    Yosuke Kaneshiro, Tomohiro Kinoshita, Yuji Koetaka, et al. Design method for buckling prevention of pin-ended tube-in-tube braces [J]. Journal of structural and Construction Engineering, 2016, 81(725): 1133 − 1141. (in Japanese)
    [18] Li W, Wu B, Ding Y, et al. Experimental performance of buckling-restrained braces with steel cores of H-section and half-wavelength evaluation of higher-order local buckling [J]. Advances in Structural Engineering, 2016, 20(4): 641 − 657.
    [19] Oda H, Usami T. Fabricating buckling-restrained braces from existing H-section bracing members-experimental study [J]. Journal of Structural Engineering, 2010, 56(A): 499 − 510.
    [20] 吕西林, 陈云, 毛苑君. 结构抗震设计的新概念—可恢复功能结构[J]. 同济大学学报(自然科学版), 2011, 39(7): 941 − 948. doi: 10.3969/j.issn.0253-374x.2011.07.001

    Lü Xilin, Chen Yun, Mao Yuanjun. New concept of structural seismic design: Earthquake resilient strucstures [J]. Journal of Tongji University (Natural Science), 2011, 39(7): 941 − 948. (in Chinese) doi: 10.3969/j.issn.0253-374x.2011.07.001
    [21] 蔡克铨, 黄彦智, 翁崇兴, 等. 双管式挫屈束制(屈曲约束)支撑之耐震行为与应用[J]. 建筑钢结构进展, 2005, 7(3): 1 − 8. doi: 10.3969/j.issn.1671-9379.2005.03.001

    Tsai Keh-chyuan, Hwang Yean-chih, Weng Chung-shing, et al. Seismic performance and applications of double-tube buckling-restrained braces [J]. Progress in Steal Building Structures, 2005, 7(3): 1 − 8. (in Chinese) doi: 10.3969/j.issn.1671-9379.2005.03.001
    [22] Guo Y L, Zhang B H, Jiang Z Q, et al. Critical load and application of core-separated buckling-restrained braces [J]. Journal of Constructional Steel Research, 2015, 106(3): 1 − 10.
    [23] Guo Y L, Tong J Z, Zhang B H, et al. Theoretical and experimental investigation of core-separated buckling-restrained braces [J]. Journal of Constructional Steel Research, 2017, 135: 137 − 149. doi: 10.1016/j.jcsr.2017.04.019
    [24] 刘学武, 夏开全, 高燕, 等. 构件并联法加固输电塔的试验研究及设计建议[J]. 西安建筑科技大学学报(自然科学版), 2011, 43(6): 838 − 844.

    Liu Xuewu, Xia Kaiquan, Gao Yan, et al. Study on strengthening the structure and its design for the transmission tower [J]. Journal of Xi'an University of Architecture & Technology (Natural Science Edition), 2011, 43(6): 838 − 844. (in Chinese)
    [25] 郭彦林, 江磊鑫. 型钢组合装配式防屈曲支撑性能及设计方法研究[J]. 建筑结构, 2010, 40(1): 30 − 37.

    Guo Yanlin, Jiang Leixin. Behavior and application of buckling-restrained braces assembled with section steels [J]. Building Structure, 2010, 40(1): 30 − 37. (in Chinese)
    [26] Wang C L, Usami T, Funayama J. Improving low-cycle fatigue performance of high-performance buckling-restrained braces by toe-finished method [J]. Journal of Earthquake Engineering, 2012, 16(8): 1248 − 1268. doi: 10.1080/13632469.2012.703385
    [27] ANSI/AISC 341-16, Seismic provisions for structural steel buildings[S]. Chicago, USA: American Institute of Steel Construction, 2016.
    [28] Iwata M, Katoh T, Wada A. Performance evaluation of buckling-restrained braces on damage controlled structure [J]. Journal of Structural and Construction Engineering (Transactions of AIJ), 2002, 67: 101 − 108.
    [29] Tsutomu Usami, Wang Chunlin, Jyunki Funayama. Developing high-performance aluminum alloy buckling-restrained braces based on series of low-cycle fatigue tests [J]. Earthquake Engineering and Structural Dynamics, 2012, 41: 643 − 661. doi: 10.1002/eqe.1149
  • 加载中
图(10) / 表(5)
计量
  • 文章访问数:  193
  • HTML全文浏览量:  47
  • PDF下载量:  48
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-09-04
  • 修回日期:  2020-12-08
  • 网络出版日期:  2021-03-20
  • 刊出日期:  2021-09-13

目录

    /

    返回文章
    返回