留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

寒区水塘冰温度应力原型观测及分析

丁法龙 茅泽育

丁法龙, 茅泽育. 寒区水塘冰温度应力原型观测及分析[J]. 工程力学, 2021, 38(9): 239-245, 256. doi: 10.6052/j.issn.1000-4750.2020.09.0624
引用本文: 丁法龙, 茅泽育. 寒区水塘冰温度应力原型观测及分析[J]. 工程力学, 2021, 38(9): 239-245, 256. doi: 10.6052/j.issn.1000-4750.2020.09.0624
DING Fa-long, MAO Ze-yu. STUDY ON THERMAL ICE STRESSES OF A POND IN COLD REGION[J]. Engineering Mechanics, 2021, 38(9): 239-245, 256. doi: 10.6052/j.issn.1000-4750.2020.09.0624
Citation: DING Fa-long, MAO Ze-yu. STUDY ON THERMAL ICE STRESSES OF A POND IN COLD REGION[J]. Engineering Mechanics, 2021, 38(9): 239-245, 256. doi: 10.6052/j.issn.1000-4750.2020.09.0624

寒区水塘冰温度应力原型观测及分析

doi: 10.6052/j.issn.1000-4750.2020.09.0624
基金项目: 国家重点研发计划项目(2016YFC0402504)
详细信息
    作者简介:

    丁法龙(1991−),男,山东人,博士生,主要从事冰力学研究(E-mail: dflaizy@163.com)

    通讯作者:

    茅泽育(1962−),男,浙江人,教授,博士,博导,主要从事淡水冰力学研究(E-mail: maozeyu@tsinghua.edu.cn)

  • 中图分类号: P332.8

STUDY ON THERMAL ICE STRESSES OF A POND IN COLD REGION

  • 摘要: 冰体内温度应力引起的膨胀压力可导致结构物不同程度的破坏,其值是寒区水工建筑物的关键设计参数。为探究静冰温度应力的时空分布特性,采用原型观测研究手段,结合理论分析及计算,以黑龙江省大庆市青花湖6号水塘为研究对象,对水塘淡水冰层内部温度场和应力场进行了观测及分析。结果表明:冰温变化主要取决于上部气温的波动情况,表层冰温与气温呈良好的线性关系,且斜率在0.38~0.56;深度30 cm以上的冰温对气温变化的响应较为敏感,30 cm以下的冰温沿垂向基本呈线性分布;基于冰的Bergdahl粘弹性本构关系提出了一种冰温度应力计算模型,并结合实测数据回归分析确定模型中的参数,参数的拟合值明显依赖于测点位置;温度应力模型计算结果与观测结果吻合良好;从距离侧边挡墙较远的测点1到较近的测点4,随着周边围岸约束作用的增强,整体冰应力水平呈递增趋势;冰应力沿垂向呈非单调分布,即冰层表面产生的应力稍小,最大应力值出现在冰深10 cm~30 cm处,其下随深度逐渐减小,且冰应力只在0.7 m以内的冰层上部产生。
  • 图  1  原型观测布置图

    Figure  1.  Sketch of prototype observation layout

    图  2  2017年11月−2018年4月观测地日平均气温变化

    Figure  2.  Daily mean air temperature from Nov. 2017 to Apr. 2018

    图  3  2018年3月1日观测点1处不同深度冰层冰温与气温日变化

    Figure  3.  Diurnal variation of ice temperature of different depths and air temperature at station 1 on March 1, 2018

    图  4  冰表面以下5 cm处的冰温与气温关系

    Figure  4.  The relationship between ice temperature at 5 cm depth and air temperature

    图  5  观测点3处2018年2月21日不同时刻的冰温垂向分布

    Figure  5.  Vertical distribution of ice temperature at different times at station 3 on Feb 21, 2018

    图  6  不同测点位置在冰深5 cm处的静冰温度应力观测值与计算值对照

    Figure  6.  Observed and calculated ice stress at 5 cm deep at different stations

    图  7  2018年2月21日冰深10 cm处冰温度应力水平分布

    Figure  7.  Horizontal distribution of ice stresses at 10 cm depth at different times on February 21, 2018

    图  8  测点3处,2018年2月21日不同时刻冰温度应力垂向分布

    Figure  8.  Vertical distribution of ice stress at station 3 and different times on February 21, 2018

  • [1] 徐伯孟. 冰层膨胀压力的设计取值[J]. 冰川冻土, 1987(增刊 1): 79 − 84.

    Xu Bomeng. Numerical design of the ice expansive pressure [J]. Journal of Glaciology and Geocryology, 1987(Suppl 1): 79 − 84. (in Chinese)
    [2] 刘晓洲, 檀永刚, 李洪升, 等. 水库护坡静冰压力及断裂韧度测试研究[J]. 工程力学, 2013, 30(5): 112 − 117. doi: 10.6052/j.issn.1000-4750.2011.12.0855

    Liu Xiaozhou, Tan Yonggang, Li Hongsheng, et al. Test and fracture toughness analysis for static ice pressure of reservoir slope [J]. Engineering Mechanics, 2013, 30(5): 112 − 117. (in Chinese) doi: 10.6052/j.issn.1000-4750.2011.12.0855
    [3] 张社荣, 李升, 彭敏瑞. 冰温度膨胀力对渡槽结构影响的有限元分析[J]. 天津大学学报, 2008, 41(9): 1096 − 1102.

    Zhangya Sherong, Li Sheng, Peng Minrui. Finite element analysis of ice thermal expansive pressure acting on aqueduct structure [J]. Journal of Tianjin University, 2008, 41(9): 1096 − 1102. (in Chinese)
    [4] 李志军, Devinder S Sodhi, 卢鹏. 渤海海冰工程设计参数分布[J]. 工程力学, 2006(6): 167 − 172. doi: 10.3969/j.issn.1000-4750.2006.06.029

    Li Zhijun, Devinder S Sodhi, Lu Peng. Distribution of ice engineering design criteria of Bohai [J]. Engineering Mechanics, 2006(6): 167 − 172. (in Chinese) doi: 10.3969/j.issn.1000-4750.2006.06.029
    [5] 李锋, 岳前进. 窄锥结构的最不利动冰力[J]. 工程力学, 2010, 27(5): 191 − 198.

    Li Feng, Yue Qianjin. The worst dynamic ice force on narrow conical structures [J]. Engineering Mechanics, 2010, 27(5): 191 − 198. (in Chinese)
    [6] 李志军, 贾青, 王国玉. 流冰对码头排桩撞击力的物理模拟试验研究[J]. 工程力学, 2010, 27(3): 169 − 173, 197.

    Li Zhijun, Jia Qing, Wang Guoyu. Physical simulation of ice floe impact forces on pile structures of wharfs [J]. Engineering Mechanics, 2010, 27(3): 169 − 173, 197. (in Chinese)
    [7] 王帅霖, 刘社文, 季顺迎. 基于GPU并行的锥体导管架平台结构冰激振动DEM-FEM耦合分析[J]. 工程力学, 2019, 36(10): 28 − 39. doi: 10.6052/j.issn.1000-4750.2018.10.0560

    Wang Shuailin, Liu Shewen, Ji Shunying. Coupled discrete-finite element analysis foe ice-induced vibration of conical jacket platform based on GPU-based parallel algorithm [J]. Engineering Mechanics, 2019, 36(10): 28 − 39. (in Chinese) doi: 10.6052/j.issn.1000-4750.2018.10.0560
    [8] 张丹. 水库静冰压力的计算[J]. 冰川冻土, 1987(增刊 1): 89 − 97.

    Zhang Dan. On the calculation of static pressure due to expansion of ice on a reservoir [J]. Journal of Glaciology and Geocryology, 1987(Suppl 1): 89 − 97. (in Chinese)
    [9] 史庆增, 徐阳. 约束冰层温度膨胀力的研究[J]. 海洋学报(中文版), 2000(3): 144 − 148.

    Shi Qingzeng, Xu Yang. A study on thermal expanding force of confined ice sheet [J]. Acta Oceanology Sinica, 2000(3): 144 − 148. (in Chinese)
    [10] 黄焱, 史庆增, 宋安. 冰温度膨胀力的有限元分析[J]. 水利学报, 2005, 36(3): 0314 − 0320.

    Huang Yan, Shi Qingzeng, Song An. Analysis of ice thermal expansive pressure by using FEM [J]. Journal of Hydraulic Engineering, 2005, 36(3): 0314 − 0320. (in Chinese)
    [11] 黄文峰, 李志军, 贾青. 水库冰表层形变的现场观测与分析[J]. 水利学报, 2016, 47(12): 1585 − 1592.

    Huang Wenfeng, Li Zhijun, Jia Qing. Field observations and analysis of surface displacement of ice cover on reservoir [J]. Journal of Hydraulic Engineering, 2016, 47(12): 1585 − 1592. (in Chinese)
    [12] Bergdahl L. Calculated and expected thermal ice pressures in five Swedish lakes [R]. Göteborg: Department of Hydraulics, Chalmers University of Technology, 1978.
    [13] Cox G F N. A preliminary investigation of thermal ice pressures [J]. Cold Regions Science & Technology, 1984, 9(3): 221 − 229.
    [14] Seifaddini M, Saeidi A, Farzaneh M. Ice stress-strain curve prediction in uniaxial compression loading in the objective of atmospheric icing risk evaluation [J]. Materialwissenschaft und Werkstofftechnik, 2020, 51(5): 676 − 684. doi: 10.1002/mawe.202000005
    [15] Huang W, Li Z, Lepparanta M, et al. Residual strain in a reservoir ice cover: Field investigations, causes, and its role in estimating ice stress [J]. Journal of Hydraulic Engineering, 2018, 144(8): 04018048.1 − 04018048.12.
    [16] Aksenov V I , Gevorkyan S G , Iospa A V. Temperature dependence of stress-strain properties of freshwater ice [J]. Soil Mechanics & Foundation Engineering, 2019, 56(5): 366 − 370.
  • 加载中
图(8)
计量
  • 文章访问数:  66
  • HTML全文浏览量:  20
  • PDF下载量:  11
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-09-02
  • 修回日期:  2021-01-25
  • 网络出版日期:  2021-04-09
  • 刊出日期:  2021-09-13

目录

    /

    返回文章
    返回