RESTORING FORCE MODEL OF DISC SPRING DEVICES AND ITS APPLICATION IN SELF-CENTERING RC SHEAR WALL
-
摘要: 为了准确模拟碟簧装置和自复位RC剪力墙的力学性能,对碟簧装置的工作原理和力学特性进行了分析,提出并开发了碟簧装置恢复力模型,通过试验验证了恢复力模型的准确性。在低周往复荷载作用下,对内置碟簧装置的自复位RC剪力墙的滞回性能进行数值模拟,并与试验结果进行了对比。结果表明:应用碟簧装置恢复力模型的数值模型可有效模拟自复位RC剪力墙的滞回特性、自复位性能及耗能能力。自复位RC剪力墙的承载力随碟簧预压力、附加摩擦力及碟簧装置刚度的增大而增大;耗能能力随附加摩擦力的增大而增大;残余位移随附加摩擦力的增大而增大,随碟簧预压力和碟簧装置刚度的增大而减小。Abstract: The working principle and mechanics behavior of disc spring device are analyzed to accurately simulate the mechanics performance of disc spring device and the self-centering RC shear wall. Furthermore, the restoring force model of disc spring device is proposed and developed. The accuracy of the restoring force model is verified through experiments. The hysteretic performance of the self-centering RC shear wall with disc spring device is numerically simulated and compared with the experimental results due to cyclic reversed loading. Results indicate that the numerical model using a restoring force model of disc spring device can effectively simulate the hysteretic behavior, self-centering performance and energy dissipation capability of the self-centering RC shear wall. The bearing capacity of the self-centering RC shear wall increases with the increase of the pre-pressed force of disc springs, the additional friction force and the stiffness of disc spring device. The energy dissipation capacity increases with the increase of the additional friction force. The residual displacement increases with the increase of additional friction and decreases with the increase of the pre-pressed force of disc springs and the stiffness of disc spring device.
-
表 1 碟簧装置模拟与试验结果对比
Table 1. Comparison of simulation and test results of disc spring devices
附加摩擦力F0/kN 加载幅值δ/mm 恢复力F/kN 恢复力相对误差/(%) 等效阻尼比ζeq 等效阻尼比相对误差/(%) 试验 模型 试验 模型 28.4 1.5 128.0 135.8 6.06 0.071 0.068 4.79 3.1 215.7 229.5 6.40 0.095 0.092 3.74 4.6 295.1 317.4 7.57 0.096 0.090 6.59 6.0 390.1 399.4 2.37 0.093 0.087 6.70 7.8 512.2 504.8 1.45 0.090 0.083 6.93 34.3 1.5 142.4 141.2 0.87 0.077 0.071 8.75 3.1 229.8 234.9 2.22 0.106 0.097 8.59 4.5 313.2 316.9 1.17 0.105 0.095 9.33 6.0 406.7 404.7 0.50 0.106 0.091 13.99 7.7 519.6 504.3 2.95 0.101 0.087 13.47 表 2 试验与模拟承载力误差
Table 2. Bearing capacity error between test and simulation
加载位移/mm 承载力/kN 相对误差/(%) 加载位移/mm 承载力/kN 相对误差/(%) 试验 模拟 试验 模拟 5 85.9 79.0 8.07 −5 −66.6 −70.1 5.26 10 111.7 91.1 18.44 −10 −92.5 −95.6 3.44 15 119.8 98.7 17.60 −15 −105.9 −101.4 4.17 20 124.6 103.4 17.04 −20 −116.1 −107.5 7.41 25 122.4 106.2 13.26 −25 −114.7 −110.5 3.63 30 124.4 108.6 12.67 −30 −117.1 −114.1 2.51 35 121.1 111.0 8.39 −35 −115.7 −116.7 0.82 40 113.5 114.3 0.68 −40 −114.8 −123.0 7.07 45 115.8 118.9 2.66 −45 −121.2 −126.0 3.95 50 119.8 123.5 3.13 −50 −126.9 −131.5 3.60 55 121.4 128.7 5.99 −55 −131.6 −135.2 2.74 60 121.7 131.5 8.03 −60 −129.5 −138.9 7.29 65 137.0 135.9 0.82 −65 −134.2 −143.0 6.58 -
[1] Twigden K M, Sridharan S, Henry R S. Cyclic testing of unbonded post-tensioned concrete wall systems with and without supplemental damping [J]. Engineering Structures, 2017, 140: 406 − 420. doi: 10.1016/j.engstruct.2017.02.008 [2] Sherstobitoff J, Cajiao P, Adebar P. Analysis and repair of an earthquake-damaged high-rise building in Santiago, Chile [C]// Proceedings of the 15th World Conference on Earthquake Engineering. Lisbon, Portugal, 15WCEE Secretariat, 2012. [3] Kurama Y. Seismic analysis, behavior and design of unbonded post-tensioned precast concrete walls [D]. Bethlehem, PA: Lehigh University, 1997. [4] Kurama Y, Sause R, Pessiki S, et al. Lateral load behavior and seismic design of unbonded post-tensioned precast concrete walls [J]. ACI Structural Journal, 1999, 96(4): 622 − 632. [5] Lu X L, Dang X L, Qian J, et al. Experimental study of self-centering shear walls with horizontal bottom slits [J]. Journal of Structural Engineering, 2017, 143(3): 04016183. doi: 10.1061/(ASCE)ST.1943-541X.0001673 [6] Qiu C X, Zhu S Y. Performance-based seismic design of self-centering steel frames with SMA-based damping braces [J]. Engineering Structures, 2017, 130: 67 − 82. doi: 10.1016/j.engstruct.2016.09.051 [7] Qiu C X, Zhu S Y. Shake table test and numerical study of self-centering steel frame with SMA braces [J]. Earthquake Engineering & Structural Dynamics, 2017, 46(1): 117 − 137. [8] 徐龙河, 肖水晶, 卢啸. 内置碟簧自复位联肢剪力墙参数设计与滞回性能研究[J]. 工程力学, 2018, 35(10): 144 − 151, 161. doi: 10.6052/j.issn.1000-4750.2017.07.0539Xu Longhe, Xiao Shuijing, Lu Xiao. Parametric design and hysteretic behavior study of self-centering coupled shear wall with embedded disc springs [J]. Engineering Mechanics, 2018, 35(10): 144 − 151, 161. (in Chinese) doi: 10.6052/j.issn.1000-4750.2017.07.0539 [9] 徐龙河, 肖水晶. 内置碟簧自复位混凝土剪力墙基于性能的截面设计方法[J]. 工程力学, 2020, 37(4): 70 − 77. doi: 10.6052/j.issn.1000-4750.2019.03.0119Xu Longhe, Xiao Shuijing. A performance-based section design method of a self-centering concrete shear wall with disc spring devices [J]. Engineering Mechanics, 2020, 37(4): 70 − 77. (in Chinese) doi: 10.6052/j.issn.1000-4750.2019.03.0119 [10] 徐龙河, 陈曦, 肖水晶. 内置碟簧自复位钢筋混凝土剪力墙拟静力试验及损伤分析[J]. 建筑结构学报. doi: 10.14006/j.jzjgxb.2019.0568.Xu Longhe, Chen Xi, Xiao Shuijing. Quasi-static test and damage analysis on self-centering reinforced concrete shear wall with disc spring devices [J]. Journal of Building Structures. doi: 10.14006/j.jzjgxb.2019.0568. (in Chinese) [11] Xiao S J, Xu L H, Li Z X. Development and experimental verification of self-centering shear walls with disc spring devices [J]. Engineering Structures, 2020, 213: 110622. doi: 10.1016/j.engstruct.2020.110622 [12] Xiao S J, Xu L H, Li Z X. Design and experimental verification of disc spring devices in self-centering reinforced concrete shear walls [J]. Structural Control and Health Monitoring, 2020, 27(7): e2549. [13] 肖水晶, 徐龙河, 卢啸. 具有复位功能的钢筋混凝土剪力墙设计与性能研究[J]. 工程力学, 2018, 35(8): 130 − 137. doi: 10.6052/j.issn.1000-4750.2017.04.0296Xiao Shuijing, Xu Longhe, Lu Xiao. Design and behavior study on reinforced concrete shear walls with self-centering capability [J]. Engineering Mechanics, 2018, 35(8): 130 − 137. (in Chinese) doi: 10.6052/j.issn.1000-4750.2017.04.0296 [14] GB/T 1972−2005, 碟形弹簧[S]. 北京: 中国标准出版社, 2005.GB/T 1972−2005, Disc spring [S]. Beijing: Standards Press of China, 2005. (in Chinese). [15] Scott B D, Park R, Priestley M J N. Stress-strain behavior of concrete confined by overlapping hoops at low and high strain rates [J]. ACI Journal, 1982, 79(1): 13 − 27. [16] 汪训流, 陆新征, 叶列平. 往复荷载下钢筋混凝土柱受力性能的数值模拟[J]. 工程力学, 2007, 24(12): 76 − 81. doi: 10.3969/j.issn.1000-4750.2007.12.014Wang Xunliu, Lu Xinzheng, Ye Lieping. Numerical simulation for the hysteresis behavior of RC columns under cyclic loads [J]. Engineering Mechanics, 2007, 24(12): 76 − 81. (in Chinese) doi: 10.3969/j.issn.1000-4750.2007.12.014 -