留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

碟簧装置恢复力模型及其在自复位RC剪力墙中的应用

陈曦 徐龙河 肖水晶

陈曦, 徐龙河, 肖水晶. 碟簧装置恢复力模型及其在自复位RC剪力墙中的应用[J]. 工程力学, 2021, 38(9): 100-109. doi: 10.6052/j.issn.1000-4750.2020.08.0607
引用本文: 陈曦, 徐龙河, 肖水晶. 碟簧装置恢复力模型及其在自复位RC剪力墙中的应用[J]. 工程力学, 2021, 38(9): 100-109. doi: 10.6052/j.issn.1000-4750.2020.08.0607
CHEN Xi, XU Long-he, XIAO Shui-jing. RESTORING FORCE MODEL OF DISC SPRING DEVICES AND ITS APPLICATION IN SELF-CENTERING RC SHEAR WALL[J]. Engineering Mechanics, 2021, 38(9): 100-109. doi: 10.6052/j.issn.1000-4750.2020.08.0607
Citation: CHEN Xi, XU Long-he, XIAO Shui-jing. RESTORING FORCE MODEL OF DISC SPRING DEVICES AND ITS APPLICATION IN SELF-CENTERING RC SHEAR WALL[J]. Engineering Mechanics, 2021, 38(9): 100-109. doi: 10.6052/j.issn.1000-4750.2020.08.0607

碟簧装置恢复力模型及其在自复位RC剪力墙中的应用

doi: 10.6052/j.issn.1000-4750.2020.08.0607
基金项目: 国家自然科学基金项目(52078036)
详细信息
    作者简介:

    陈 曦(1995−),男,山西人,硕士生,主要从事结构抗震研究(E-mail: chenxicn@bjtu.edu.cn)

    肖水晶(1991−),女,江西人,博士生,主要从事高层建筑结构抗震研究(E-mail: 14121117@bjtu.edu.cn)

    通讯作者:

    徐龙河(1976−),男,黑龙江人,教授,博士,博导,主要从事结构抗震与健康监测研究(E-mail: lhxu@bjtu.edu.cn)

  • 中图分类号: TU352

RESTORING FORCE MODEL OF DISC SPRING DEVICES AND ITS APPLICATION IN SELF-CENTERING RC SHEAR WALL

  • 摘要: 为了准确模拟碟簧装置和自复位RC剪力墙的力学性能,对碟簧装置的工作原理和力学特性进行了分析,提出并开发了碟簧装置恢复力模型,通过试验验证了恢复力模型的准确性。在低周往复荷载作用下,对内置碟簧装置的自复位RC剪力墙的滞回性能进行数值模拟,并与试验结果进行了对比。结果表明:应用碟簧装置恢复力模型的数值模型可有效模拟自复位RC剪力墙的滞回特性、自复位性能及耗能能力。自复位RC剪力墙的承载力随碟簧预压力、附加摩擦力及碟簧装置刚度的增大而增大;耗能能力随附加摩擦力的增大而增大;残余位移随附加摩擦力的增大而增大,随碟簧预压力和碟簧装置刚度的增大而减小。
  • 图  1  碟簧装置构造图

    Figure  1.  Configuration of the disc spring device

    图  2  耗能系统滞回曲线

    Figure  2.  Hysteretic curve of the energy dissipation system

    图  3  碟簧装置滞回模型

    Figure  3.  Hysteretic model of the disc spring device

    图  4  碟簧装置不同情况的滞回曲线

    Figure  4.  Hysteretic curves of the disc spring device under different conditions

    图  5  碟簧装置模拟与试验滞回响应对比

    Figure  5.  Comparison of hysteretic responses between simulation and test of disc spring devices

    图  6  不同设计参数碟簧装置的滞回曲线

    Figure  6.  Hysteretic curves of disc spring device with different design parameters

    图  7  自复位RC剪力墙有限元模型

    Figure  7.  Finite element model of self-centering RC shear wall

    图  8  试验和模拟滞回曲线对比

    Figure  8.  Comparison of hysteresis curve between simulation and tests

    图  9  试验和模拟滞回耗能对比

    Figure  9.  Comparison of hysteretic energy dissipation between simulation and test

    图  10  F0P0对自复位RC剪力墙性能的影响

    Figure  10.  Effect of F0 and P0 on the performance of self-centering RC shear wall

    图  11  K1K3对自复位RC剪力墙性能的影响

    Figure  11.  Effect of K1 and K3 on the performance of self-centering RC shear wall

    表  1  碟簧装置模拟与试验结果对比

    Table  1.   Comparison of simulation and test results of disc spring devices

    附加摩擦力F0/kN加载幅值δ/mm恢复力F/kN恢复力相对误差/(%)等效阻尼比ζeq等效阻尼比相对误差/(%)
    试验模型试验模型
    28.41.5128.0135.86.060.0710.0684.79
    3.1215.7229.56.400.0950.0923.74
    4.6295.1317.47.570.0960.0906.59
    6.0390.1399.42.370.0930.0876.70
    7.8512.2504.81.450.0900.0836.93
    34.31.5142.4141.20.870.0770.0718.75
    3.1229.8234.92.220.1060.0978.59
    4.5313.2316.91.170.1050.0959.33
    6.0406.7404.70.500.1060.09113.99
    7.7519.6504.32.950.1010.08713.47
    下载: 导出CSV

    表  2  试验与模拟承载力误差

    Table  2.   Bearing capacity error between test and simulation

    加载位移/mm承载力/kN相对误差/(%)加载位移/mm承载力/kN相对误差/(%)
    试验模拟试验模拟
    585.979.08.07−5−66.6−70.15.26
    10111.791.118.44−10−92.5−95.63.44
    15119.898.717.60−15−105.9−101.44.17
    20124.6103.417.04−20−116.1−107.57.41
    25122.4106.213.26−25−114.7−110.53.63
    30124.4108.612.67−30−117.1−114.12.51
    35121.1111.08.39−35−115.7−116.70.82
    40113.5114.30.68−40−114.8−123.07.07
    45115.8118.92.66−45−121.2−126.03.95
    50119.8123.53.13−50−126.9−131.53.60
    55121.4128.75.99−55−131.6−135.22.74
    60121.7131.58.03−60−129.5−138.97.29
    65137.0135.90.82−65−134.2−143.06.58
    下载: 导出CSV
  • [1] Twigden K M, Sridharan S, Henry R S. Cyclic testing of unbonded post-tensioned concrete wall systems with and without supplemental damping [J]. Engineering Structures, 2017, 140: 406 − 420. doi: 10.1016/j.engstruct.2017.02.008
    [2] Sherstobitoff J, Cajiao P, Adebar P. Analysis and repair of an earthquake-damaged high-rise building in Santiago, Chile [C]// Proceedings of the 15th World Conference on Earthquake Engineering. Lisbon, Portugal, 15WCEE Secretariat, 2012.
    [3] Kurama Y. Seismic analysis, behavior and design of unbonded post-tensioned precast concrete walls [D]. Bethlehem, PA: Lehigh University, 1997.
    [4] Kurama Y, Sause R, Pessiki S, et al. Lateral load behavior and seismic design of unbonded post-tensioned precast concrete walls [J]. ACI Structural Journal, 1999, 96(4): 622 − 632.
    [5] Lu X L, Dang X L, Qian J, et al. Experimental study of self-centering shear walls with horizontal bottom slits [J]. Journal of Structural Engineering, 2017, 143(3): 04016183. doi: 10.1061/(ASCE)ST.1943-541X.0001673
    [6] Qiu C X, Zhu S Y. Performance-based seismic design of self-centering steel frames with SMA-based damping braces [J]. Engineering Structures, 2017, 130: 67 − 82. doi: 10.1016/j.engstruct.2016.09.051
    [7] Qiu C X, Zhu S Y. Shake table test and numerical study of self-centering steel frame with SMA braces [J]. Earthquake Engineering & Structural Dynamics, 2017, 46(1): 117 − 137.
    [8] 徐龙河, 肖水晶, 卢啸. 内置碟簧自复位联肢剪力墙参数设计与滞回性能研究[J]. 工程力学, 2018, 35(10): 144 − 151, 161. doi: 10.6052/j.issn.1000-4750.2017.07.0539

    Xu Longhe, Xiao Shuijing, Lu Xiao. Parametric design and hysteretic behavior study of self-centering coupled shear wall with embedded disc springs [J]. Engineering Mechanics, 2018, 35(10): 144 − 151, 161. (in Chinese) doi: 10.6052/j.issn.1000-4750.2017.07.0539
    [9] 徐龙河, 肖水晶. 内置碟簧自复位混凝土剪力墙基于性能的截面设计方法[J]. 工程力学, 2020, 37(4): 70 − 77. doi: 10.6052/j.issn.1000-4750.2019.03.0119

    Xu Longhe, Xiao Shuijing. A performance-based section design method of a self-centering concrete shear wall with disc spring devices [J]. Engineering Mechanics, 2020, 37(4): 70 − 77. (in Chinese) doi: 10.6052/j.issn.1000-4750.2019.03.0119
    [10] 徐龙河, 陈曦, 肖水晶. 内置碟簧自复位钢筋混凝土剪力墙拟静力试验及损伤分析[J]. 建筑结构学报. doi: 10.14006/j.jzjgxb.2019.0568.

    Xu Longhe, Chen Xi, Xiao Shuijing. Quasi-static test and damage analysis on self-centering reinforced concrete shear wall with disc spring devices [J]. Journal of Building Structures. doi: 10.14006/j.jzjgxb.2019.0568. (in Chinese)
    [11] Xiao S J, Xu L H, Li Z X. Development and experimental verification of self-centering shear walls with disc spring devices [J]. Engineering Structures, 2020, 213: 110622. doi: 10.1016/j.engstruct.2020.110622
    [12] Xiao S J, Xu L H, Li Z X. Design and experimental verification of disc spring devices in self-centering reinforced concrete shear walls [J]. Structural Control and Health Monitoring, 2020, 27(7): e2549.
    [13] 肖水晶, 徐龙河, 卢啸. 具有复位功能的钢筋混凝土剪力墙设计与性能研究[J]. 工程力学, 2018, 35(8): 130 − 137. doi: 10.6052/j.issn.1000-4750.2017.04.0296

    Xiao Shuijing, Xu Longhe, Lu Xiao. Design and behavior study on reinforced concrete shear walls with self-centering capability [J]. Engineering Mechanics, 2018, 35(8): 130 − 137. (in Chinese) doi: 10.6052/j.issn.1000-4750.2017.04.0296
    [14] GB/T 1972−2005, 碟形弹簧[S]. 北京: 中国标准出版社, 2005.

    GB/T 1972−2005, Disc spring [S]. Beijing: Standards Press of China, 2005. (in Chinese).
    [15] Scott B D, Park R, Priestley M J N. Stress-strain behavior of concrete confined by overlapping hoops at low and high strain rates [J]. ACI Journal, 1982, 79(1): 13 − 27.
    [16] 汪训流, 陆新征, 叶列平. 往复荷载下钢筋混凝土柱受力性能的数值模拟[J]. 工程力学, 2007, 24(12): 76 − 81. doi: 10.3969/j.issn.1000-4750.2007.12.014

    Wang Xunliu, Lu Xinzheng, Ye Lieping. Numerical simulation for the hysteresis behavior of RC columns under cyclic loads [J]. Engineering Mechanics, 2007, 24(12): 76 − 81. (in Chinese) doi: 10.3969/j.issn.1000-4750.2007.12.014
  • 加载中
图(11) / 表(2)
计量
  • 文章访问数:  114
  • HTML全文浏览量:  36
  • PDF下载量:  31
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-08-28
  • 修回日期:  2020-11-24
  • 网络出版日期:  2021-03-04
  • 刊出日期:  2021-09-13

目录

    /

    返回文章
    返回