留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

装配式钢-混凝土组合管剪力墙轴压性能与承载力计算方法研究

庞瑞 丁书苏 王文杰 刘宇豪 徐科

庞瑞, 丁书苏, 王文杰, 刘宇豪, 徐科. 装配式钢-混凝土组合管剪力墙轴压性能与承载力计算方法研究[J]. 工程力学, 2021, 38(9): 75-88. doi: 10.6052/j.issn.1000-4750.2020.08.0603
引用本文: 庞瑞, 丁书苏, 王文杰, 刘宇豪, 徐科. 装配式钢-混凝土组合管剪力墙轴压性能与承载力计算方法研究[J]. 工程力学, 2021, 38(9): 75-88. doi: 10.6052/j.issn.1000-4750.2020.08.0603
PANG Rui, DING Shu-su, WANG Wen-jie, LIU Yu-hao, XU Ke. STUDY ON AXIAL COMPRESSIVE BEHAVIOR AND CALCULATION METHOD OF PRECAST SRC COMPOSITE TUBE SHEAR WALLS[J]. Engineering Mechanics, 2021, 38(9): 75-88. doi: 10.6052/j.issn.1000-4750.2020.08.0603
Citation: PANG Rui, DING Shu-su, WANG Wen-jie, LIU Yu-hao, XU Ke. STUDY ON AXIAL COMPRESSIVE BEHAVIOR AND CALCULATION METHOD OF PRECAST SRC COMPOSITE TUBE SHEAR WALLS[J]. Engineering Mechanics, 2021, 38(9): 75-88. doi: 10.6052/j.issn.1000-4750.2020.08.0603

装配式钢-混凝土组合管剪力墙轴压性能与承载力计算方法研究

doi: 10.6052/j.issn.1000-4750.2020.08.0603
基金项目: 国家自然科学基金项目(51778214); 中原青年拔尖人才项目(ZYQR201912170);河南省属高校基本科研业务专项基金项目(2017RCJH04)
详细信息
    作者简介:

    丁书苏(1996−),女,江苏苏州人,硕士生,主要从事装配式混凝土结构研究(E-mail: 876093812@qq.com)

    王文杰(1997−),男,福建南平人,硕士生,主要从事装配式混凝土结构研究(E-mail: 291159216@qq.com)

    刘宇豪(1997−),男,河南周口人,硕士生,主要从事装配式混凝土结构研究(E-mail: 1209452139@qq.com)

    徐 科(1997−),男,河南郑州人,硕士生,主要从事装配式混凝土结构研究(E-mail: 836528868@qq.com)

    通讯作者:

    庞 瑞(1981−),男,河南信阳人,教授,博士,博导,主要从事装配式混凝土结构研究(E-mail:seupangrui@163.com)

  • 中图分类号: TU375.2;TU317+.1

STUDY ON AXIAL COMPRESSIVE BEHAVIOR AND CALCULATION METHOD OF PRECAST SRC COMPOSITE TUBE SHEAR WALLS

  • 摘要: 为研究装配式钢-混凝土组合管(SRCT)剪力墙的轴压性能,完成了7个SRCT剪力墙试件的轴压性能试验,分析了试件的破坏形态、承载能力、位移延性、初始刚度等轴压性能。结果表明:SRCT剪力墙具有良好的轴压承载能力、刚度和变形能力,表现出良好的轴压承载性能;SRCT剪力墙轴压承载能力和初始刚度与距厚比成反比,延性与距厚比成正比;拉结筋布置形式对SRCT剪力墙的轴压承载力有一定影响,对初始刚度影响较小,拉结筋梅花形布置的SRCT剪力墙轴压承载力更高;侧面锚栓布置形式对SRCT剪力墙承载力有较大影响,随着侧面锚栓的加强,SRCT剪力墙承载能力增大;提出了考虑钢板局部屈曲和钢管对内膛混凝土约束作用的SRCT剪力墙轴压承载力和初始刚度计算方法,计算结果与试验值吻合良好。
  • 图  1  SRCT剪力墙结构示意图

    Figure  1.  Sketch of SRCT shear wall

    图  2  试件几何尺寸及构造 /mm

    Figure  2.  Dimensions and details of specimens

    图  3  试件制作过程

    Figure  3.  Production process of specimens

    图  4  试验加载装置

    Figure  4.  Test setup

    图  5  试件测点布置

    Figure  5.  Arrangement of measuring points

    图  6  典型受力全过程图

    Figure  6.  Typical loading process

    图  7  试件典型破坏形态

    Figure  7.  Failure mode of specimens

    图  8  荷载-位移曲线

    Figure  8.  Load-displacement curves

    图  9  试件WP1-75d荷载-应变曲线

    Figure  9.  Force-strain relationship of WP1-75d

    图  10  试件WP2-60荷载-应变曲线

    Figure  10.  Force-strain relationship of specimen WP2-60

    图  11  板的有效截面

    Figure  11.  Effective cross-section of plate

    图  12  钢板区格受力示意图

    Figure  12.  Schematic diagram of steel plate stress

    图  13  钢管侧向受力图

    Figure  13.  Lateral actions of steel plates

    图  14  混凝土约束区示意图

    Figure  14.  Diagram of confined concrete

    图  15  计算值与试验值的比值分布图

    Figure  15.  Distribution of the ratio of calculated values to test

    表  1  试验主要参数

    Table  1.   Main test parameters

    试件编号钢板
    厚度/mm
    拉结筋
    直径/mm
    拉结筋
    间距/mm
    拉结筋
    布置形式
    侧面锚栓
    布置形式
    WP1-75d1675梅花双排
    WP1.5-501.5675梅花单排
    WP1.5-70d1.56105梅花双排
    WP2-402880梅花单排
    WR2-6028120矩形单排
    WP2-6028120梅花单排
    WP2-7028140梅花单排
    下载: 导出CSV

    表  2  混凝土力学性能

    Table  2.   Mechanical properties of concrete

    试件编号立方体抗压强度fcu/MPa弹性模量Ec/MPa
    外层内膛外层内膛
    WP1-75d64.2847.503.65×1043.41×104
    WP1.5-5068.7324.773.70×1042.78×104
    WP1.5-70d60.2332.153.60×1043.05×104
    WP2-4068.7334.773.70×1043.13×104
    WR2-6050.1732.773.46×1043.07×104
    WP2-6064.2848.833.65×1043.43×104
    WP2-7051.3032.153.48×1043.05×104
    下载: 导出CSV

    表  3  钢材力学性能

    Table  3.   Mechanical properties of steel

    钢板厚度或钢筋
    直径/mm
    屈服强度
    fy/MPa
    极限强度
    fu/MPa
    弹性模量
    Es/MPa
    t =1(厚度)285.63380.832.03×105
    t =1.5288.63382.232.03×105
    t =2220.73304.362.05×105
    t =6301.11452.972.06×105
    d=8(直径)462.34584.972.01×105
    d=6692.81759.932.05×105
    下载: 导出CSV

    表  4  主要阶段试验结果

    Table  4.   Test results at main stages

    试件编号初裂点屈服点峰值点极限点延性系数
    μ
    初始刚度Kt/
    (kN/mm)
    荷载Nc/kN位移Δc/mm荷载Ny/kN位移Δy/mm荷载Nu/kN位移Δu/mm荷载Nd/kN位移Δd/mm
    WP1-75d3600.002.057100.006.799198.325.847818.308.481.256988.35
    WP1.5-502500.763.588610.968.598937.7610.787597.1012.811.496408.61
    WP1.5-70d3500.442.659413.546.199698.087.148243.378.801.426280.21
    WP2-405700.603.269700.245.1311 625.286.799881.497.551.476811.00
    WR2-603601.322.436877.264.559333.647.287933.599.482.086604.43
    WP2-602000.721.957801.324.7610 158.366.488634.617.301.536725.81
    WP2-701500.361.136550.404.287894.006.096709.906.751.586308.62
    下载: 导出CSV

    表  5  初始刚度计算值与试验值比较

    Table  5.   Comparison between calculated values and test values of K

    试件编号Kt刚度试验值/
    (kN/mm)
    Kc刚度计算值/
    (kN/mm)
    计算值/试验值
    Kc/Kt
    WP1-75d 6988.35 6469.91 0.93
    WP1.5-70d 6408.61 5948.99 0.93
    WP1.5-50 6280.21 6175.69 0.98
    WP2-40 6811.00 6431.18 0.94
    WR2-60 6604.43 6231.74 0.94
    WP2-60 6725.81 6715.85 1.00
    WP2-70 6308.62 6222.26 0.99
    下载: 导出CSV

    表  6  比值平均值与离散系数

    Table  6.   Average value and dispersion coefficient of ratio

    参数Nc/NtNGJB/NtNCECS/NtNEC4/NtNJGJ/Nt
    平均数1.040.910.910.830.88
    离散系数0.090.120.120.100.11
    注:Nt为试验值;Nc为本文计算方法下轴压承载力计算值;NGJB为文献[33]计算方法下轴压承载力计算值;NCECS为文献[34]计算方法下轴压承载力计算值;NEC4为文献[35]计算方法下轴压承载力计算值;NJGJ为文献[36]计算方法下轴压承载力计算值。
    下载: 导出CSV

    表  7  承载力计算值与试验值比较

    Table  7.   Comparison between calculated values and test values of N

    试件编号Nt/kN计算值/kN
    NcNc/NtNGJBNGJB/NtNCECSNCECS/NtNEC4NEC4/NtNJGJNJGJ/Nt
    WP1-75d9198.009046.240.9810 022.781.089956.431.088796.860.959501.201.03
    WP1.5-508937.7610 346.381.167812.520.877737.870.877338.610.827703.550.86
    WP1.5-70d9698.089864.211.018217.110.858141.340.847501.840.777975.510.82
    WP2-4011 625.2810 417.060.908890.380.768815.570.768187.310.708696.270.74
    WR2-609333.649399.491.007710.810.837636.220.827032.460.757512.150.80
    WP2-6010 158.3610 111.291.0010 314.521.0210 235.781.019116.450.899831.230.96
    WP2-707894.009399.171.197754.650.987677.360.977041.250.897511.860.95
    注:Nt为试验值;Nc为本文计算方法下轴压承载力计算值;NGJB为文献[33]计算方法下轴压承载力计算值;NCECS为文献[34]计算方法下轴压承载力计算值;NEC4为文献[35]计算方法下轴压承载力计算值;NJGJ为文献[36]计算方法下轴压承载力计算值。
    下载: 导出CSV
  • [1] 郭彦林, 朱靖申. 剪力墙的型式、设计理论研究进展[J]. 工程力学, 2020, 37(6): 19 − 33. doi: 10.6052/j.issn.1000-4750.2019.08.0432

    Guo Yanlin, Zhu Jingshen. Research progress of shear walls: types and design methods [J]. Engineering Mechanics, 2020, 37(6): 19 − 33. (in Chinese) doi: 10.6052/j.issn.1000-4750.2019.08.0432
    [2] Dan D, Fabian A, Stoian V. Theoretical and experimental study on composite steel-concrete shear walls with vertical steel encased profiles [J]. Journal of Constructional Steel Research, 2010, 67(5): 800 − 813.
    [3] 吕西林, 董宇光, 丁子文. 截面中部配置型钢的混凝土剪力墙抗震性能研究[J]. 地震工程与工程振动, 2006, 26(6): 101 − 107. doi: 10.3969/j.issn.1000-1301.2006.06.017

    Lü Xilin, Dong Yuguan, Ding Ziwen. Study on seismic behavior of steel reinforced concrete wall [J]. Earthquake Engineering and Engineering Vibration, 2006, 26(6): 101 − 107. (in Chinese) doi: 10.3969/j.issn.1000-1301.2006.06.017
    [4] 董宇光, 吕西林. 型钢混凝土剪力墙轴压比计算及其限值研究[J]. 地震工程与工程振动, 2007, 27(1): 92 − 98. doi: 10.3969/j.issn.1000-1301.2007.01.014

    Dong Yuguang, Lü Xilin. Study on the limit value of axial compression ratio of steel reinforced concrete shear wall by computer [J]. Earthquake engineering and Engineering Vibration, 2007, 27(1): 92 − 98. (in Chinese) doi: 10.3969/j.issn.1000-1301.2007.01.014
    [5] 王玉镯, 高希虎, 许德建, 等. 不同支撑形式的型钢混凝土剪力墙抗震性能试验研究[J]. 土木建筑与环境工程, 2018, 40(5): 47 − 56.

    Wang Yuzhuo, Gao Xihu, Xu Dejian, et al. Experimental study on seismic performance of steel reinforced concrete shear walls with different support forms [J]. Journal of Chongqing Jianzhu University, 2018, 40(5): 47 − 56. (in Chinese)
    [6] 梁兴文, 白亮, 杨红楼, 等. 型钢高性能混凝土剪力墙抗震性能试验研究[J]. 工程力学, 2010, 27(10): 68 − 75.

    Liang Xingwen, Bai Liang, Yang Honglou, et al. Experimental study on seismic behavior of high performance steel reinforced concrete shear wall [J]. Engineering mechanics, 2010, 27(10): 68 − 75. (in Chinese)
    [7] 伍云天, 杨永斌, 杨伟, 等. 内置轻钢桁架混凝土组合剪力墙抗震性能试验研究[J]. 建筑结构学报, 2016, 37(5): 12 − 19.

    Wu Yuntian, Yang Yongbin, Yang Wei, et al. Experimental study on seismic performance of composite shear wall with built-in light steel truss [J]. Journal of Building Structure, 2016, 37(5): 12 − 19. (in Chinese)
    [8] 方鄂华, 钱稼茹, 叶列平. 高层建筑结构设计[M]. 北京: 中国建筑工业出版社, 2018: 325.

    Fang Ehua, Qian Jiaru, Ye Lieping. Structural design of high-rise buildings [M]. Beijing: China Construction Industry Press. 2018: 325. (in Chinese)
    [9] Zhu J S, Guo Y L, Wang M Z, et al. Strength design of concrete-infilled double steel corrugated-plate walls under uniform compressions [J]. Thin-Walled Structures, 2019, 141: 153 − 174. doi: 10.1016/j.tws.2019.02.021
    [10] 王威, 刘格炜, 苏三庆, 等. 波形钢板剪力墙及组合墙抗剪承载力研究[J]. 工程力学, 2019, 36(7): 197 − 206, 226. doi: 10.6052/j.issn.1000-4750.2018.06.0356

    Wang Wei, Liu Gewei, Su Sanqing, et al. Research on the shear bearing capacity of corrugated steel plate shear wall and composite wall [J]. Engineering Mechanics, 2019, 36(7): 197 − 206, 226. (in Chinese) doi: 10.6052/j.issn.1000-4750.2018.06.0356
    [11] 郝婷玥, 曹万林, 董宏英, 等. 不同构造内置钢板-混凝土组合剪力墙轴压性能试验研究[J]. 建筑结构学报, 2016, 37(5): 25 − 33.

    Hao Tingyue, Cao Wanlin, Dong Hongying, et al. Built in steel plates of different structures-Experimental study on axial compression performance of concrete composite shear wall [J]. Journal of Building Structure, 2016, 37(5): 25 − 33. (in Chinese)
    [12] Azree M, Mydin O, Wang Y C. Structural performance of lightweight steel-foamed concrete-steel composite walling system under compression [J]. Thin-Walled Structures, 2011, 49(1): 66 − 76. doi: 10.1016/j.tws.2010.08.007
    [13] Epackachi S, Whittaker A S, Huang Y N. Analytical modeling of rectangular SC wall panels [J]. Journal of Constructional Steel Research, 2015, 105: 49 − 59. doi: 10.1016/j.jcsr.2014.10.016
    [14] 张有佳, 李小军, 贺秋梅, 等. 钢板混凝土组合墙体局部稳定性轴压试验研究[J]. 土木工程学报, 2016, 49(1): 62 − 68.

    Zhang Youjia, Li Xiaojun, He Qiumei, et al. Experimental study on local stability of steel reinforced concrete composite wall under axial compression [J]. China Civil Engineering Journal, 2016, 49(1): 62 − 68. (in Chinese)
    [15] 聂建国, 胡红松, 李盛勇, 等. 方钢管混凝土暗柱内嵌钢板-混凝土组合剪力墙抗震性能试验研究[J]. 建筑结构学报, 2013, 34(1): 52 − 60.

    Nie Jianguo, Hu Hongsong, Li Shengyong, et al. Experimental study on seismic behavior of steel plate reinforced concrete composite shear walls with square CFST concealed columns [J]. Journal of Building Structures, 2013, 34(1): 52 − 60. (in Chinese)
    [16] 聂建国, 卜凡民, 樊健生. 高轴压比、低剪跨比双钢板-混凝土组合剪力墙拟静力试验研究[J]. 工程力学, 2013, 30(6): 60 − 66, 76. doi: 10.6052/j.issn.1000-4750.2011.09.0587

    Nie Jianguo, Bu Fanmin, Fan Jiansheng. Quasi-static test on low shear-span ratio composite shear wall with double steel plates and infill concrete under high axial compression ratio [J]. Engineering Mechanics, 2013, 30(6): 60 − 66, 76. (in Chinese) doi: 10.6052/j.issn.1000-4750.2011.09.0587
    [17] 张文元, 王柯, 王强, 等. 多腔钢板-混凝土组合剪力墙抗震性能研究[J]. 工程力学, 2018, 35(11): 125 − 133. doi: 10.6052/j.issn.1000-4750.2017.06.0482

    Zhang Wenyuan, Wang Ke, Wang Qiang, et al. Seismic behavior of composite shear wall with stiffened double steel plates and infilled concrete [J]. Engineering Mechanics, 2018, 35(11): 125 − 133. (in Chinese) doi: 10.6052/j.issn.1000-4750.2017.06.0482
    [18] 张鹏, 周新刚, 苗志华, 等. 剪跨比1.5的钢管束混凝土组合剪力墙抗震性能试验研究[J]. 建筑结构, 2020, 50(5): 109 − 115.

    Zhang Peng, Zhou Xingang, Miao Zhihua, et al. Experimental study on seismic performance of CFST composite shear wall with shear span ratio of 1.5 [J]. Building Structure, 2020, 50(5): 109 − 115. (in Chinese)
    [19] Wu L, Tian Y, Su Y, et al. Seismic performance of precast composite shear walls reinforced by concrete-filled steel tubes [J]. Engineering Structures, 2018, 162: 72 − 83. doi: 10.1016/j.engstruct.2018.01.069
    [20] 童根树, 刘晓光, 胡立黎. 装配式钢管束混凝土剪力墙结构体系及其施工方法[P]. 中国专利: CN105821989 A, 2016-04-18.

    Tong Genshu, Liu Xiaoguang, Hu Lili. Structural system and construction method of precast composite shear wall with bundled steel tube and infill concrete [P]. Chinese Patents: CN105821989 A, 2016-04-18. (in Chinese)
    [21] 熊枫. 装配式内置双钢管混凝土组合剪力墙抗震性能研究[D]. 广州: 华南理工大学, 2019.

    Xiong Feng. Experiment study on seismic behavior of assembled double steel tube-concrete composite shear walls [D]. Guangzhou: South China University of Technology, 2019. (in Chinese)
    [22] GB/T 50080−2016, 普通混凝土拌合物性能试验方法标准[S]. 北京: 中国建筑工业出版社, 2016.

    GB/T 50080−2016, Standard for performance test method of ordinary concrete mixture [S]. Beijing: China Architecture & Building Press, 2016. (in Chinese)
    [23] GB/T 50081−2016, 普通混凝土力学性能试验方法标准[S]. 北京: 中国建筑工业出版社, 2016.

    GB/T 50081−2016, Standard for test methods of mechanical properties of ordinary concrete [S]. Beijing: China Architecture & Building Press, 2016. (in Chinese)
    [24] GB/T 228−2010, 金属材料室温拉伸试验方法[S]. 北京: 中国计划出版社, 2010.

    GB/T 228−2010, Metallic materials: Tensile testing at ambient temperature [S]. Beijing: China Planning Press, 2010. (in Chinese)
    [25] Che Y, Wang Q L, Shao Y B. Compressive performances of the concrete filled circular CFRP-steel tube (C-CFRP-CFST) [J]. Advanced Steel Construction, 2012, 8(4): 331 − 358.
    [26] Ding F X, Yu Z W, Bai Y, et al. Elasto-plastic analysis of circular concrete-filled steel tube stub columns [J]. Journal of Constructional Steel Research, 2011, 67(10): 1567 − 1577. doi: 10.1016/j.jcsr.2011.04.001
    [27] Liang Q Q, Uy B. Theoretical study on the post-local buckling of steel plates in concrete-filled box columns [J]. Computers & Structures, 2000, 75(5): 479 − 490.
    [28] 郝婷玥, 曹万林. 双钢板混凝土组合剪力墙轴压承载力研究[J]. 工程科学学报, 2017, 39(11): 162 − 170.

    Hao Tingyue, Cao Wanlin. Study on the bearing capacity of composite shear wall of double steel plate concrete under axial compression [J]. Journal of Engineering Science, 2017, 39(11): 162 − 170. (in Chinese)
    [29] Ge H B, Usami T. Strength analysis of concrete-filled thin-walled steel box columns [J]. Journal of Construc-tional Steel Research, 1994, 30(3): 259 − 281. doi: 10.1016/0143-974X(94)90003-5
    [30] Sakino K, Nakahara H, Morino S. Behavior of centrally loaded concrete-filled steel-tube short columns [J]. Journal of Structural Engineering, 2004, 130(2): 180 − 188. doi: 10.1061/(ASCE)0733-9445(2004)130:2(180)
    [31] 蔡健, 龙跃凌. 带约束拉杆方形、矩形钢管混凝土短柱的轴压承载力[J]. 建筑结构学报, 2009, 30(1): 7 − 14. doi: 10.3321/j.issn:1000-6869.2009.01.002

    Cai Jian, Long Yueling. Axial bearing capacity of square and rectangular CFT stub columns with binding bars [J]. Journal of Build Structures, 2009, 30(1): 7 − 14. (in Chinese) doi: 10.3321/j.issn:1000-6869.2009.01.002
    [32] 过镇海, 王传志. 多轴应力下混凝土的强度和破坏准则研究[J]. 土木工程学报, 1991, 24(3): 1 − 14.

    Guo Zhenhai, Wang Chuanzhi. Investi-gation of strength and failure criterion of concreteunder multi-axial stresses [J]. China Civil Engineering Journal, 1991, 24(3): 1 − 14. (in Chinese)
    [33] GJB 4142−2000, 战时军港抢修早强型组合结构设计规程[S]. 北京: 中国人民解放军总后勤部, 2000.

    GJB 4142−2000, Technical specifications for early-strength model composite structures [S]. Beijing: General Logistics Department of the Chinese People's Liberation Army, 2000. (in Chinese)
    [34] CECS 28: 2014, 钢管混凝土结构技术规程[S]. 北京: 中国计划出版社, 2014.

    CECS 28: 2014. Technical specification for concrete-filled steel tubular [S]. Beijing: China Planning Press, 2014. (in Chinese)
    [35] Eurocode 4, Design of composite steel and concrete structures, (Part 1-1): General rules and rules for buildings [S]. London: British Standards Institution, 2004.
    [36] JGJ/T 380−2015, 钢板剪力墙技术规程[S]. 北京: 中国建筑工业出版社, 2015.

    JGJ/T 380−2015, Technical specification for steel plate shear walls [S]. Beijing: China Architecture & Building Press, 2015. (in Chinese)
  • 加载中
图(15) / 表(7)
计量
  • 文章访问数:  148
  • HTML全文浏览量:  39
  • PDF下载量:  41
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-08-26
  • 修回日期:  2020-12-28
  • 网络出版日期:  2021-03-30
  • 刊出日期:  2021-09-13

目录

    /

    返回文章
    返回