STUDY ON AXIAL COMPRESSIVE BEHAVIOR AND CALCULATION METHOD OF PRECAST SRC COMPOSITE TUBE SHEAR WALLS
-
摘要: 为研究装配式钢-混凝土组合管(SRCT)剪力墙的轴压性能,完成了7个SRCT剪力墙试件的轴压性能试验,分析了试件的破坏形态、承载能力、位移延性、初始刚度等轴压性能。结果表明:SRCT剪力墙具有良好的轴压承载能力、刚度和变形能力,表现出良好的轴压承载性能;SRCT剪力墙轴压承载能力和初始刚度与距厚比成反比,延性与距厚比成正比;拉结筋布置形式对SRCT剪力墙的轴压承载力有一定影响,对初始刚度影响较小,拉结筋梅花形布置的SRCT剪力墙轴压承载力更高;侧面锚栓布置形式对SRCT剪力墙承载力有较大影响,随着侧面锚栓的加强,SRCT剪力墙承载能力增大;提出了考虑钢板局部屈曲和钢管对内膛混凝土约束作用的SRCT剪力墙轴压承载力和初始刚度计算方法,计算结果与试验值吻合良好。
-
关键词:
- 钢-混凝土组合管剪力墙 /
- 轴压试验 /
- 承载力 /
- 刚度 /
- 理论计算方法
Abstract: An experimental study was conducted on seven precast steel-concrete composite tube (SRCT) shear walls to evaluate their axial compressive behaviors. Performance of the test specimens was evaluated in terms of failure modes, load-bearing capacity, ductility and initial stiffness, etc. The test results show that SRCT shear walls have high bearing capacity, stiffness and ductility. They show good axial compression performance. The ratio of distance to thickness is inversely proportional to the load-bearing capacity and initial stiffness of the wall, and proportional to the ductility of the wall; The layout of the stud has some effect on the bearing capacity of the wall, but it has little effect on the initial stiffness of the wall. The bearing capacity of SRCT shear wall with the stud of quincunx arrangement is better; The arrangement of bolts has great influence on the bearing capacity of SRCT shear wall. With the strengthening of the bolts, the bearing capacity of the wall are enhanced. The calculation methods of vertical bearing capacity and initial stiffness of SRCT shear wall considering the local buckling of steel plate and the restraint effect of steel tube on the inner concrete are put forward. The proposed calculation values are in good agreement with the test values.-
Key words:
- SRCT shear wall /
- axial compression test /
- bearing capacity /
- stiffness /
- theoretical calculation method
-
表 1 试验主要参数
Table 1. Main test parameters
试件编号 钢板
厚度/mm拉结筋
直径/mm拉结筋
间距/mm拉结筋
布置形式侧面锚栓
布置形式WP1-75d 1 6 75 梅花 双排 WP1.5-50 1.5 6 75 梅花 单排 WP1.5-70d 1.5 6 105 梅花 双排 WP2-40 2 8 80 梅花 单排 WR2-60 2 8 120 矩形 单排 WP2-60 2 8 120 梅花 单排 WP2-70 2 8 140 梅花 单排 表 2 混凝土力学性能
Table 2. Mechanical properties of concrete
试件编号 立方体抗压强度fcu/MPa 弹性模量Ec/MPa 外层 内膛 外层 内膛 WP1-75d 64.28 47.50 3.65×104 3.41×104 WP1.5-50 68.73 24.77 3.70×104 2.78×104 WP1.5-70d 60.23 32.15 3.60×104 3.05×104 WP2-40 68.73 34.77 3.70×104 3.13×104 WR2-60 50.17 32.77 3.46×104 3.07×104 WP2-60 64.28 48.83 3.65×104 3.43×104 WP2-70 51.30 32.15 3.48×104 3.05×104 表 3 钢材力学性能
Table 3. Mechanical properties of steel
钢板厚度或钢筋
直径/mm屈服强度
fy/MPa极限强度
fu/MPa弹性模量
Es/MPat =1(厚度) 285.63 380.83 2.03×105 t =1.5 288.63 382.23 2.03×105 t =2 220.73 304.36 2.05×105 t =6 301.11 452.97 2.06×105 d=8(直径) 462.34 584.97 2.01×105 d=6 692.81 759.93 2.05×105 表 4 主要阶段试验结果
Table 4. Test results at main stages
试件编号 初裂点 屈服点 峰值点 极限点 延性系数
μ初始刚度Kt/
(kN/mm)荷载Nc/kN 位移Δc/mm 荷载Ny/kN 位移Δy/mm 荷载Nu/kN 位移Δu/mm 荷载Nd/kN 位移Δd/mm WP1-75d 3600.00 2.05 7100.00 6.79 9198.32 5.84 7818.30 8.48 1.25 6988.35 WP1.5-50 2500.76 3.58 8610.96 8.59 8937.76 10.78 7597.10 12.81 1.49 6408.61 WP1.5-70d 3500.44 2.65 9413.54 6.19 9698.08 7.14 8243.37 8.80 1.42 6280.21 WP2-40 5700.60 3.26 9700.24 5.13 11 625.28 6.79 9881.49 7.55 1.47 6811.00 WR2-60 3601.32 2.43 6877.26 4.55 9333.64 7.28 7933.59 9.48 2.08 6604.43 WP2-60 2000.72 1.95 7801.32 4.76 10 158.36 6.48 8634.61 7.30 1.53 6725.81 WP2-70 1500.36 1.13 6550.40 4.28 7894.00 6.09 6709.90 6.75 1.58 6308.62 表 5 初始刚度计算值与试验值比较
Table 5. Comparison between calculated values and test values of K
试件编号 Kt刚度试验值/
(kN/mm)Kc刚度计算值/
(kN/mm)计算值/试验值
Kc/KtWP1-75d 6988.35 6469.91 0.93 WP1.5-70d 6408.61 5948.99 0.93 WP1.5-50 6280.21 6175.69 0.98 WP2-40 6811.00 6431.18 0.94 WR2-60 6604.43 6231.74 0.94 WP2-60 6725.81 6715.85 1.00 WP2-70 6308.62 6222.26 0.99 表 6 比值平均值与离散系数
Table 6. Average value and dispersion coefficient of ratio
表 7 承载力计算值与试验值比较
Table 7. Comparison between calculated values and test values of N
试件编号 Nt/kN 计算值/kN Nc Nc/Nt NGJB NGJB/Nt NCECS NCECS/Nt NEC4 NEC4/Nt NJGJ NJGJ/Nt WP1-75d 9198.00 9046.24 0.98 10 022.78 1.08 9956.43 1.08 8796.86 0.95 9501.20 1.03 WP1.5-50 8937.76 10 346.38 1.16 7812.52 0.87 7737.87 0.87 7338.61 0.82 7703.55 0.86 WP1.5-70d 9698.08 9864.21 1.01 8217.11 0.85 8141.34 0.84 7501.84 0.77 7975.51 0.82 WP2-40 11 625.28 10 417.06 0.90 8890.38 0.76 8815.57 0.76 8187.31 0.70 8696.27 0.74 WR2-60 9333.64 9399.49 1.00 7710.81 0.83 7636.22 0.82 7032.46 0.75 7512.15 0.80 WP2-60 10 158.36 10 111.29 1.00 10 314.52 1.02 10 235.78 1.01 9116.45 0.89 9831.23 0.96 WP2-70 7894.00 9399.17 1.19 7754.65 0.98 7677.36 0.97 7041.25 0.89 7511.86 0.95 注:Nt为试验值;Nc为本文计算方法下轴压承载力计算值;NGJB为文献[33]计算方法下轴压承载力计算值;NCECS为文献[34]计算方法下轴压承载力计算值;NEC4为文献[35]计算方法下轴压承载力计算值;NJGJ为文献[36]计算方法下轴压承载力计算值。 -
[1] 郭彦林, 朱靖申. 剪力墙的型式、设计理论研究进展[J]. 工程力学, 2020, 37(6): 19 − 33. doi: 10.6052/j.issn.1000-4750.2019.08.0432Guo Yanlin, Zhu Jingshen. Research progress of shear walls: types and design methods [J]. Engineering Mechanics, 2020, 37(6): 19 − 33. (in Chinese) doi: 10.6052/j.issn.1000-4750.2019.08.0432 [2] Dan D, Fabian A, Stoian V. Theoretical and experimental study on composite steel-concrete shear walls with vertical steel encased profiles [J]. Journal of Constructional Steel Research, 2010, 67(5): 800 − 813. [3] 吕西林, 董宇光, 丁子文. 截面中部配置型钢的混凝土剪力墙抗震性能研究[J]. 地震工程与工程振动, 2006, 26(6): 101 − 107. doi: 10.3969/j.issn.1000-1301.2006.06.017Lü Xilin, Dong Yuguan, Ding Ziwen. Study on seismic behavior of steel reinforced concrete wall [J]. Earthquake Engineering and Engineering Vibration, 2006, 26(6): 101 − 107. (in Chinese) doi: 10.3969/j.issn.1000-1301.2006.06.017 [4] 董宇光, 吕西林. 型钢混凝土剪力墙轴压比计算及其限值研究[J]. 地震工程与工程振动, 2007, 27(1): 92 − 98. doi: 10.3969/j.issn.1000-1301.2007.01.014Dong Yuguang, Lü Xilin. Study on the limit value of axial compression ratio of steel reinforced concrete shear wall by computer [J]. Earthquake engineering and Engineering Vibration, 2007, 27(1): 92 − 98. (in Chinese) doi: 10.3969/j.issn.1000-1301.2007.01.014 [5] 王玉镯, 高希虎, 许德建, 等. 不同支撑形式的型钢混凝土剪力墙抗震性能试验研究[J]. 土木建筑与环境工程, 2018, 40(5): 47 − 56.Wang Yuzhuo, Gao Xihu, Xu Dejian, et al. Experimental study on seismic performance of steel reinforced concrete shear walls with different support forms [J]. Journal of Chongqing Jianzhu University, 2018, 40(5): 47 − 56. (in Chinese) [6] 梁兴文, 白亮, 杨红楼, 等. 型钢高性能混凝土剪力墙抗震性能试验研究[J]. 工程力学, 2010, 27(10): 68 − 75.Liang Xingwen, Bai Liang, Yang Honglou, et al. Experimental study on seismic behavior of high performance steel reinforced concrete shear wall [J]. Engineering mechanics, 2010, 27(10): 68 − 75. (in Chinese) [7] 伍云天, 杨永斌, 杨伟, 等. 内置轻钢桁架混凝土组合剪力墙抗震性能试验研究[J]. 建筑结构学报, 2016, 37(5): 12 − 19.Wu Yuntian, Yang Yongbin, Yang Wei, et al. Experimental study on seismic performance of composite shear wall with built-in light steel truss [J]. Journal of Building Structure, 2016, 37(5): 12 − 19. (in Chinese) [8] 方鄂华, 钱稼茹, 叶列平. 高层建筑结构设计[M]. 北京: 中国建筑工业出版社, 2018: 325.Fang Ehua, Qian Jiaru, Ye Lieping. Structural design of high-rise buildings [M]. Beijing: China Construction Industry Press. 2018: 325. (in Chinese) [9] Zhu J S, Guo Y L, Wang M Z, et al. Strength design of concrete-infilled double steel corrugated-plate walls under uniform compressions [J]. Thin-Walled Structures, 2019, 141: 153 − 174. doi: 10.1016/j.tws.2019.02.021 [10] 王威, 刘格炜, 苏三庆, 等. 波形钢板剪力墙及组合墙抗剪承载力研究[J]. 工程力学, 2019, 36(7): 197 − 206, 226. doi: 10.6052/j.issn.1000-4750.2018.06.0356Wang Wei, Liu Gewei, Su Sanqing, et al. Research on the shear bearing capacity of corrugated steel plate shear wall and composite wall [J]. Engineering Mechanics, 2019, 36(7): 197 − 206, 226. (in Chinese) doi: 10.6052/j.issn.1000-4750.2018.06.0356 [11] 郝婷玥, 曹万林, 董宏英, 等. 不同构造内置钢板-混凝土组合剪力墙轴压性能试验研究[J]. 建筑结构学报, 2016, 37(5): 25 − 33.Hao Tingyue, Cao Wanlin, Dong Hongying, et al. Built in steel plates of different structures-Experimental study on axial compression performance of concrete composite shear wall [J]. Journal of Building Structure, 2016, 37(5): 25 − 33. (in Chinese) [12] Azree M, Mydin O, Wang Y C. Structural performance of lightweight steel-foamed concrete-steel composite walling system under compression [J]. Thin-Walled Structures, 2011, 49(1): 66 − 76. doi: 10.1016/j.tws.2010.08.007 [13] Epackachi S, Whittaker A S, Huang Y N. Analytical modeling of rectangular SC wall panels [J]. Journal of Constructional Steel Research, 2015, 105: 49 − 59. doi: 10.1016/j.jcsr.2014.10.016 [14] 张有佳, 李小军, 贺秋梅, 等. 钢板混凝土组合墙体局部稳定性轴压试验研究[J]. 土木工程学报, 2016, 49(1): 62 − 68.Zhang Youjia, Li Xiaojun, He Qiumei, et al. Experimental study on local stability of steel reinforced concrete composite wall under axial compression [J]. China Civil Engineering Journal, 2016, 49(1): 62 − 68. (in Chinese) [15] 聂建国, 胡红松, 李盛勇, 等. 方钢管混凝土暗柱内嵌钢板-混凝土组合剪力墙抗震性能试验研究[J]. 建筑结构学报, 2013, 34(1): 52 − 60.Nie Jianguo, Hu Hongsong, Li Shengyong, et al. Experimental study on seismic behavior of steel plate reinforced concrete composite shear walls with square CFST concealed columns [J]. Journal of Building Structures, 2013, 34(1): 52 − 60. (in Chinese) [16] 聂建国, 卜凡民, 樊健生. 高轴压比、低剪跨比双钢板-混凝土组合剪力墙拟静力试验研究[J]. 工程力学, 2013, 30(6): 60 − 66, 76. doi: 10.6052/j.issn.1000-4750.2011.09.0587Nie Jianguo, Bu Fanmin, Fan Jiansheng. Quasi-static test on low shear-span ratio composite shear wall with double steel plates and infill concrete under high axial compression ratio [J]. Engineering Mechanics, 2013, 30(6): 60 − 66, 76. (in Chinese) doi: 10.6052/j.issn.1000-4750.2011.09.0587 [17] 张文元, 王柯, 王强, 等. 多腔钢板-混凝土组合剪力墙抗震性能研究[J]. 工程力学, 2018, 35(11): 125 − 133. doi: 10.6052/j.issn.1000-4750.2017.06.0482Zhang Wenyuan, Wang Ke, Wang Qiang, et al. Seismic behavior of composite shear wall with stiffened double steel plates and infilled concrete [J]. Engineering Mechanics, 2018, 35(11): 125 − 133. (in Chinese) doi: 10.6052/j.issn.1000-4750.2017.06.0482 [18] 张鹏, 周新刚, 苗志华, 等. 剪跨比1.5的钢管束混凝土组合剪力墙抗震性能试验研究[J]. 建筑结构, 2020, 50(5): 109 − 115.Zhang Peng, Zhou Xingang, Miao Zhihua, et al. Experimental study on seismic performance of CFST composite shear wall with shear span ratio of 1.5 [J]. Building Structure, 2020, 50(5): 109 − 115. (in Chinese) [19] Wu L, Tian Y, Su Y, et al. Seismic performance of precast composite shear walls reinforced by concrete-filled steel tubes [J]. Engineering Structures, 2018, 162: 72 − 83. doi: 10.1016/j.engstruct.2018.01.069 [20] 童根树, 刘晓光, 胡立黎. 装配式钢管束混凝土剪力墙结构体系及其施工方法[P]. 中国专利: CN105821989 A, 2016-04-18.Tong Genshu, Liu Xiaoguang, Hu Lili. Structural system and construction method of precast composite shear wall with bundled steel tube and infill concrete [P]. Chinese Patents: CN105821989 A, 2016-04-18. (in Chinese) [21] 熊枫. 装配式内置双钢管混凝土组合剪力墙抗震性能研究[D]. 广州: 华南理工大学, 2019.Xiong Feng. Experiment study on seismic behavior of assembled double steel tube-concrete composite shear walls [D]. Guangzhou: South China University of Technology, 2019. (in Chinese) [22] GB/T 50080−2016, 普通混凝土拌合物性能试验方法标准[S]. 北京: 中国建筑工业出版社, 2016.GB/T 50080−2016, Standard for performance test method of ordinary concrete mixture [S]. Beijing: China Architecture & Building Press, 2016. (in Chinese) [23] GB/T 50081−2016, 普通混凝土力学性能试验方法标准[S]. 北京: 中国建筑工业出版社, 2016.GB/T 50081−2016, Standard for test methods of mechanical properties of ordinary concrete [S]. Beijing: China Architecture & Building Press, 2016. (in Chinese) [24] GB/T 228−2010, 金属材料室温拉伸试验方法[S]. 北京: 中国计划出版社, 2010.GB/T 228−2010, Metallic materials: Tensile testing at ambient temperature [S]. Beijing: China Planning Press, 2010. (in Chinese) [25] Che Y, Wang Q L, Shao Y B. Compressive performances of the concrete filled circular CFRP-steel tube (C-CFRP-CFST) [J]. Advanced Steel Construction, 2012, 8(4): 331 − 358. [26] Ding F X, Yu Z W, Bai Y, et al. Elasto-plastic analysis of circular concrete-filled steel tube stub columns [J]. Journal of Constructional Steel Research, 2011, 67(10): 1567 − 1577. doi: 10.1016/j.jcsr.2011.04.001 [27] Liang Q Q, Uy B. Theoretical study on the post-local buckling of steel plates in concrete-filled box columns [J]. Computers & Structures, 2000, 75(5): 479 − 490. [28] 郝婷玥, 曹万林. 双钢板混凝土组合剪力墙轴压承载力研究[J]. 工程科学学报, 2017, 39(11): 162 − 170.Hao Tingyue, Cao Wanlin. Study on the bearing capacity of composite shear wall of double steel plate concrete under axial compression [J]. Journal of Engineering Science, 2017, 39(11): 162 − 170. (in Chinese) [29] Ge H B, Usami T. Strength analysis of concrete-filled thin-walled steel box columns [J]. Journal of Construc-tional Steel Research, 1994, 30(3): 259 − 281. doi: 10.1016/0143-974X(94)90003-5 [30] Sakino K, Nakahara H, Morino S. Behavior of centrally loaded concrete-filled steel-tube short columns [J]. Journal of Structural Engineering, 2004, 130(2): 180 − 188. doi: 10.1061/(ASCE)0733-9445(2004)130:2(180) [31] 蔡健, 龙跃凌. 带约束拉杆方形、矩形钢管混凝土短柱的轴压承载力[J]. 建筑结构学报, 2009, 30(1): 7 − 14. doi: 10.3321/j.issn:1000-6869.2009.01.002Cai Jian, Long Yueling. Axial bearing capacity of square and rectangular CFT stub columns with binding bars [J]. Journal of Build Structures, 2009, 30(1): 7 − 14. (in Chinese) doi: 10.3321/j.issn:1000-6869.2009.01.002 [32] 过镇海, 王传志. 多轴应力下混凝土的强度和破坏准则研究[J]. 土木工程学报, 1991, 24(3): 1 − 14.Guo Zhenhai, Wang Chuanzhi. Investi-gation of strength and failure criterion of concreteunder multi-axial stresses [J]. China Civil Engineering Journal, 1991, 24(3): 1 − 14. (in Chinese) [33] GJB 4142−2000, 战时军港抢修早强型组合结构设计规程[S]. 北京: 中国人民解放军总后勤部, 2000.GJB 4142−2000, Technical specifications for early-strength model composite structures [S]. Beijing: General Logistics Department of the Chinese People's Liberation Army, 2000. (in Chinese) [34] CECS 28: 2014, 钢管混凝土结构技术规程[S]. 北京: 中国计划出版社, 2014.CECS 28: 2014. Technical specification for concrete-filled steel tubular [S]. Beijing: China Planning Press, 2014. (in Chinese) [35] Eurocode 4, Design of composite steel and concrete structures, (Part 1-1): General rules and rules for buildings [S]. London: British Standards Institution, 2004. [36] JGJ/T 380−2015, 钢板剪力墙技术规程[S]. 北京: 中国建筑工业出版社, 2015.JGJ/T 380−2015, Technical specification for steel plate shear walls [S]. Beijing: China Architecture & Building Press, 2015. (in Chinese) -