留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

轴压比对RC剪力墙剪切破坏尺寸效应影响的细观分析

金浏 苗丽越 李冬 杜修力

金浏, 苗丽越, 李冬, 杜修力. 轴压比对RC剪力墙剪切破坏尺寸效应影响的细观分析[J]. 工程力学, 2021, 38(9): 26-35. doi: 10.6052/j.issn.1000-4750.2020.08.0581
引用本文: 金浏, 苗丽越, 李冬, 杜修力. 轴压比对RC剪力墙剪切破坏尺寸效应影响的细观分析[J]. 工程力学, 2021, 38(9): 26-35. doi: 10.6052/j.issn.1000-4750.2020.08.0581
JIN Liu, MIAO Li-yue, LI Dong, DU Xiu-li. INFLUENCE OF AXIAL COMPRESSION RATIO ON SIZE EFFECT OF RC SHEAR WALL UNDER SHEAR FAILURE: MESO-SCALE SIMULATION[J]. Engineering Mechanics, 2021, 38(9): 26-35. doi: 10.6052/j.issn.1000-4750.2020.08.0581
Citation: JIN Liu, MIAO Li-yue, LI Dong, DU Xiu-li. INFLUENCE OF AXIAL COMPRESSION RATIO ON SIZE EFFECT OF RC SHEAR WALL UNDER SHEAR FAILURE: MESO-SCALE SIMULATION[J]. Engineering Mechanics, 2021, 38(9): 26-35. doi: 10.6052/j.issn.1000-4750.2020.08.0581

轴压比对RC剪力墙剪切破坏尺寸效应影响的细观分析

doi: 10.6052/j.issn.1000-4750.2020.08.0581
基金项目: 国家重点研发计划项目(2018YFC1504302);国家自然科学基金项目(51822801,51421005)
详细信息
    作者简介:

    金 浏(1985−),男,江苏人,教授,博士,博导,主要从事混凝土结构防灾减灾研究(E-mail: jinliu@bjut.edu.cn)

    苗丽越(1992−),女,河北人,博士生,主要从事混凝土结构抗震研究(E-mail: 13011185100@163.com)

    李 冬(1988−),男,北京人,助理研究员,博士,主要从事混凝土结构抗震研究(E-mail: winte_lee@126.com)

    通讯作者:

    杜修力(1962−),男,四川人,教授,博士,博导,主要从事结构抗震与防灾减灾研究(E-mail: duxiuli@bjut.edu.cn)

  • 中图分类号: TU375;TU317+.1

INFLUENCE OF AXIAL COMPRESSION RATIO ON SIZE EFFECT OF RC SHEAR WALL UNDER SHEAR FAILURE: MESO-SCALE SIMULATION

  • 摘要: 剪切破坏是剪力墙破坏的主要模式之一,借助细观数值分析方法对高宽比为1.0的钢筋混凝土(RC)剪力墙的破坏行为进行了分析,研究了轴压比对不同尺寸剪力墙的破坏模式、抗剪承载力、延性、耗能能力等性能的影响,分析了剪力墙剪切破坏的尺寸效应行为,并揭示了轴压比对名义抗剪强度尺寸效应的影响规律。结果表明:不同轴压比作用下的RC剪力墙均发生了明显的剪切破坏,且破坏模式一致;轴压比增大,剪力墙抗剪承载力提高,但延性降低,变形能力下降;随剪力墙尺寸的增大,其名义抗剪强度降低,即存在明显的尺寸效应;轴压比越大,剪切破坏更具脆性,尺寸效应更明显;当剪力墙长度大于1600 mm后,其名义抗剪强度趋于稳定值,尺寸效应逐渐消失。
  • 图  1  钢筋混凝土剪力墙试验

    Figure  1.  Test of reinforced concrete (RC) wall

    图  2  钢筋混凝土剪力墙二维细观数值模型 /mm

    Figure  2.  2D mesoscopic numerical model of RC wall

    图  3  粘结滑移曲线

    Figure  3.  Bond-slip curve

    图  4  RC剪力墙的破坏模式 (网格平均尺寸不同)

    Figure  4.  Failure pattern of RC shear wall (different average mesh size)

    图  5  荷载-位移角曲线(网格平均尺寸不同)

    Figure  5.  Load-drift angle curves (different average mesh size)

    图  6  RC剪力墙的破坏模式

    Figure  6.  Failure patterns of RC shear wall

    图  7  荷载-位移角曲线

    Figure  7.  Load-drift angle curves

    图  8  变形能力与尺寸的关系

    Figure  8.  Relationship between deformation capacity and structural size

    图  9  RC剪力墙刚度退化

    Figure  9.  Stiffness degeneration of RC shear wall

    图  10  RC剪力墙耗能能力

    Figure  10.  Energy dissipation capacity of RC shear wall

    图  11  不同轴压比下剪力墙名义抗剪强度

    Figure  11.  Nominal shear strength of shear wall with different axial compression ratios

    图  12  名义抗剪强度双对数曲线

    Figure  12.  Double logarithmic curve of nominal shear strength

    图  13  抗剪承载能力与轴压比的关系

    Figure  13.  Relationship between shear capacity and axial compression ratio

    表  1  试件的钢筋性能

    Table  1.   Properties of steel reinforcements of tested specimens

    钢筋类型钢筋截面面积As/mm2屈服强度fy/MPa极限抗拉强度fu/MPa钢筋弹性模量Es/GPa
    R628.3421583.0211.0
    R850.3289504.5207.2
    T1073.8601644.0203.0
    下载: 导出CSV

    表  2  粘结滑移曲线中采用的参数

    Table  2.   Parameters utilized in the bond-slip curve

    特征点 粘结应力τ 纵筋相对滑移s 箍筋相对滑移s
    开裂cr τcr=2.5ft scr,l=0.025dl scr,t=0.025dt
    峰值u τu=3ft su,l=0.04dl su,t=0.04dt
    残余r τr=ft sr,l=0.55dl sr,t=0.55dt
    注:ft混凝土抗拉强度;dldt分别为纵筋和箍筋的直径。
    下载: 导出CSV

    表  3  混凝土细观组分及钢筋力学参数

    Table  3.   Mechanical parameters of the meso-components of concrete and reinforcing bars

    细观组分 抗压强度/MPa 抗拉强度/MPa 断裂能Gc/(J/m2) 弹性模量/GPa 泊松比 屈服强度/MPa 剪胀角Ψ/(°) 偏心率η/(%) 配筋率ρh/(%) K
    骨料 70 0.2
    砂浆基质 36.17 3.01 48 22.1 0.2 30 0.1 0.667
    界面过渡区 28.94 2.52 28 20.68 0.2 30 0.1 0.667
    水平分布钢筋 207.2 0.3 289 1.4
    注:为试验实测值;为反复试算选值;其他力学数据为默认值。
    下载: 导出CSV

    表  4  尺寸效应律拟合参数

    Table  4.   Fitting parameters of size effect law

    编号剪力墙抗剪强度vu经验系数v0经验系数d0lg(d/d0)lg (vu/v0)
    600-03.5673.6243805−0.802−0.007
    800-03.370−0.677−0.032
    1200-03.049−0.501−0.075
    1600-03.003−0.376−0.082
    2400-02.997−0.200−0.083
    600-14.1364.3112690−0.652−0.018
    800-13.836−0.527−0.051
    1200-13.481−0.351−0.093
    1600-13.360−0.226−0.108
    2400-13.284−0.050−0.118
    600-24.7835.0701945−0.511−0.025
    800-24.433−0.386−0.058
    1200-23.836−0.210−0.121
    1600-23.758−0.085−0.130
    2400-23.6340.091−0.145
    600-45.9636.1541320−0.342−0.014
    800-45.217−0.217−0.072
    1200-44.278−0.041−0.158
    1600-44.1720.084−0.169
    2400-44.1910.260−0.167
    注:试件编号600、800、1200、1600和2400代表剪力墙的长度;0、1、2、和4代表轴压比为0、0.1、0.2和0.4。
    下载: 导出CSV
  • [1] Davood M, Maryam M A. Effect of confining of boundary elements of slender RC shear wall by FRP composites and stirrups [J]. Engineering Structures, 2012, 41: 1 − 13. doi: 10.1016/j.engstruct.2012.03.019
    [2] Salonikios T N, Kappos A J, Tegos I A, et al. Cyclic load behavior of low-slenderness R/C walls: Design basis and test results [J]. ACI Structural Journal, 1999, 96(4): 649 − 660.
    [3] Paulay T, Priestley M J N, Synge A J. Ductility in earthquake resisting squat shear walls [J]. ACI Journal, 1982, 79(4): 257 − 269.
    [4] Hwang S J, Fang W H, Lee H J, et al. Analytical model for predicting shear strength of squat walls [J]. Journal of Structural Engineering, 2001, 127(1): 43 − 50. doi: 10.1061/(ASCE)0733-9445(2001)127:1(43)
    [5] Li B, Qian K, Wu H. Flange effects on seismic performance of reinforced concrete squat walls with irregular or regular openings [J]. Engineering Structures, 2016, 110: 127 − 144. doi: 10.1016/j.engstruct.2015.11.051
    [6] Peng Y, Wu H, Zhuge Y. Strength and drift capacity of squat recycled concrete shear walls under cyclic loading [J]. Engineering Structures, 2015, 100: 356 − 368. doi: 10.1016/j.engstruct.2015.06.025
    [7] Bekő A, Rosko P, Wenzel H, et al. RC shear walls: Full scale cyclic test, insights and derived analytical model [J]. Engineering Structures, 2015, 102: 120 − 131. doi: 10.1016/j.engstruct.2015.07.053
    [8] Athanasopoulou M. Shear strength and drift capacity of reinforced concrete and high-performance fiber reinforced concrete low-rise walls subjected to displacement reversals [D]. Ann Arbor, MI, USA: University of Michigan, 2010.
    [9] Luna B, Rivera J, Whittaker A. Seismic behavior of low-aspect-ratio reinforced concrete shear walls [J]. ACI Structural Journal, 2015, 112: 593 − 604.
    [10] JGJ 3−2010, 高层建筑混凝土结构技术规程[S]. 北京: 中国建筑工业出版社, 2010.

    JGJ 3−2010, Technical specification for concrete structures of tall building [S]. Beijing: China Architecture & Building Press, 2010. (in Chinese)
    [11] Looi D T W, Su R K L, Cheng B, et al. Effects of axial load on seismic performance of reinforced concrete walls with short shear span [J]. Engineering Structures, 2012, 28(Suppl 1): 312 − 326. doi: 10.1016/j.engstruct.2017.08.030
    [12] Lefas L D, Kotsovos M K, Ambraseys N N. Behavior of reinforced concrete structural walls: Strength, deformation characteristics, and failure mechanism [J]. ACI Structural Journal, 1990, 87(1): 12 − 31.
    [13] Li W, Li Q. Seismic performance of L-shaped RC shear wall subjected to cyclic loading [J]. Structural Design of Tall & Special Buildings, 2012, 21: 855 − 866.
    [14] Kang S M, Kim J Y. Evaluation of deformation capacity including yield deformation in displacement-based design of special RC shear wall [J]. Structural Design of Tall & Special Buildings, 2014, 23: 181 − 209.
    [15] Rasoolinejad M, Bažant Z P. Size effect of squat shear walls extrapolated by microplane model M7 [J]. ACI Structural Journal, 2019, 116(3): 75 − 84.
    [16] Rios R D, Riera J D. Size effects in the analysis of reinforced concrete structures [J]. Engineering Structures, 2004, 26(8): 1115 − 1125. doi: 10.1016/j.engstruct.2004.03.012
    [17] Li W J, Guo L. Meso-fracture simulation of cracking process in concrete incorporating three-phase characteristics by peridynamic method [J]. Construction and Building Materials, 2018, 161: 665 − 675. doi: 10.1016/j.conbuildmat.2017.12.002
    [18] Wriggers P, Moftah S O. Mesoscale models for concrete: Homogenisation and damage behavior [J]. Finite Elements in Analysis and Design, 2006, 42: 623 − 636. doi: 10.1016/j.finel.2005.11.008
    [19] Meddah M S, Zitouni S, Belâabes S. Effect of content and particle size distribution of coarse aggregate on the compressive strength of concrete [J]. Construction and Building Materials, 2010, 24(4): 505 − 512. doi: 10.1016/j.conbuildmat.2009.10.009
    [20] Jin L, Wang T, Jiang X A, et al. Size effect in shear failure of RC beams with stirrups: Simulation and formulation [J]. Engineering Structures, 2019, 199: 109573. doi: 10.1016/j.engstruct.2019.109573
    [21] Jin L, Li D, Du X L, et al. Experimental and numerical study on size effect in eccentrically loaded stocky RC columns [J]. ASCE Journal of Structural Engineering, 2017, 143(2): 04016170. doi: 10.1061/(ASCE)ST.1943-541X.0001655
    [22] GB 50010−2010, 混凝土结构设计规范[S]. 北京: 中国建筑工业出版社, 2010.

    GB 50010−2010, Code for design of concrete structures [S]. Beijing: China Architecture & Building Press, 2010. (in Chinese)
    [23] Lee J, Fenves G L. Plastic-damage model for cyclic loading of concrete structures [J]. ASCE Journal of Engineering Mechanics, 1998, 124(8): 892 − 900. doi: 10.1061/(ASCE)0733-9399(1998)124:8(892)
    [24] Jin L, Ding Z, Li D, et al. Experimental and numerical investigations on the size effect of moderate high-strength reinforced concrete columns under small-eccentric compression [J]. International Journal of Damage Mechanics, 2017: 657 − 685.
    [25] Rodrigues H, Arêde A, Varum H, et al. Experimental evaluation of rectangular reinforced concrete column behaviour under biaxial cyclic loading [J]. Earthquake Engineering & Structural Dynamics, 2013, 42(2): 239 − 259.
    [26] 叶露, 王宇航, 石宇, 等. 冷弯薄壁型钢框架-开缝钢板剪力墙力学性能研究[J]. 工程力学, 2020, 37(11): 156 − 166. doi: 10.6052/j.issn.1000-4750.2020.01.0005

    Ye Lu, Wang Yuhang, Shi Yu, et al. Study on the mechanical properties of cold-formed steel framed shear wall with slits [J]. Engineering Mechanics, 2020, 37(11): 156 − 166. (in Chinese) doi: 10.6052/j.issn.1000-4750.2020.01.0005
    [27] Jin L, Li D, Du X L. Mechanical behavior and size effect of moderate high-strength RC columns under monotonic and cyclic axial compression [J]. Engineering Structures, 2016, 124: 269 − 285. doi: 10.1016/j.engstruct.2016.06.030
    [28] 谢岳峻. 低剪跨比钢筋混凝土剪力墙抗震性能试验研究[D]. 广州: 华南理工大学, 2018.

    Xie Yuejun. Experimental study on seismic behaviour of low-rise reinforced concrete shear walls [D]. Guangzhou: South China University of Technology, 2018. (in Chinese)
    [29] 韩小雷, 陈彬彬, 崔济东, 等. 钢筋混凝土剪力墙变形性能指标试验研究[J]. 建筑结构学报, 2018, 39(6): 1 − 9.

    Han Xiaolei, Chen Binbin, Cui Jidong, et al. Experimental study on deformation performance indexes of RC shear walls [J]. Journal of Building Structures, 2018, 39(6): 1 − 9. (in Chinese)
    [30] Salonikios T N. Shear strength and deformation patterns of R/C walls with aspect ratio 1.0 and 1.5 designed to Eurocode 8 (EC8) [J]. Engineering Structures, 2002, 24(1): 39 − 49. doi: 10.1016/S0141-0296(01)00076-1
    [31] Bažant Z P, Kim J K. Size effect in shear failure of longitudinally reinforced beams [J]. Journal of the American Concrete Institute, 1984, 81(5): 456 − 468.
    [32] 任重翠, 肖从真, 徐培福, 等. 钢筋混凝土剪力墙拉压变轴力低周往复受剪试验研究[J]. 土木工程学报, 2018, 51(5): 16 − 25.

    Ren Chongcui, Xiao Congzhen, Xu Peifu, et al. Low-cyclic repeated shear test on tension-compression variable axial force of reinforced concrete shear wall [J]. China Civil Engineering Journal, 2018, 51(5): 16 − 25. (in Chinese)
    [33] 抗剪强度专题研究组. 钢筋混凝土框架柱的抗剪强度[J]. 建筑结构学报, 1987(3): 25 − 37.

    Research Group on Shear Strength. Shear strength of reinforced concrete columns [J]. Journal of Building Structures, 1987(3): 25 − 37. (in Chinese)
  • 加载中
图(13) / 表(4)
计量
  • 文章访问数:  101
  • HTML全文浏览量:  25
  • PDF下载量:  29
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-08-19
  • 修回日期:  2020-11-27
  • 网络出版日期:  2021-04-21
  • 刊出日期:  2021-09-13

目录

    /

    返回文章
    返回