留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高延性混凝土加固钢筋混凝土梁受剪性能试验研究及承载力计算

邓明科 宋诗飞 张敏 马福栋 陈尚城 张阳玺

邓明科, 宋诗飞, 张敏, 马福栋, 陈尚城, 张阳玺. 高延性混凝土加固钢筋混凝土梁受剪性能试验研究及承载力计算[J]. 工程力学, 2021, 38(9): 36-44, 63. doi: 10.6052/j.issn.1000-4750.2020.06.0381
引用本文: 邓明科, 宋诗飞, 张敏, 马福栋, 陈尚城, 张阳玺. 高延性混凝土加固钢筋混凝土梁受剪性能试验研究及承载力计算[J]. 工程力学, 2021, 38(9): 36-44, 63. doi: 10.6052/j.issn.1000-4750.2020.06.0381
DENG Ming-ke, SONG Shi-fei, ZHANG Min, MA Fu-dong, CHEN Shang-cheng, ZHANG Yang-xi. EXPERIMENTAL STUDY ON SHEAR BEHAVIOR AND CAPACITY PREDICTION OF RC BEAMS STRENGTHENED WITH HIGH DUCTILE CONCRETE[J]. Engineering Mechanics, 2021, 38(9): 36-44, 63. doi: 10.6052/j.issn.1000-4750.2020.06.0381
Citation: DENG Ming-ke, SONG Shi-fei, ZHANG Min, MA Fu-dong, CHEN Shang-cheng, ZHANG Yang-xi. EXPERIMENTAL STUDY ON SHEAR BEHAVIOR AND CAPACITY PREDICTION OF RC BEAMS STRENGTHENED WITH HIGH DUCTILE CONCRETE[J]. Engineering Mechanics, 2021, 38(9): 36-44, 63. doi: 10.6052/j.issn.1000-4750.2020.06.0381

高延性混凝土加固钢筋混凝土梁受剪性能试验研究及承载力计算

doi: 10.6052/j.issn.1000-4750.2020.06.0381
基金项目: 国家自然科学基金项目(51708445);西安市重大科技创新计划项目(20191522415KYPT015JC017)
详细信息
    作者简介:

    邓明科(1979−),男,四川南充人,教授,博士,主要从事高性能材料与新型结构研究(E-mail: dengmingke@126.com)

    宋诗飞(1994−),男,山东临沂人,硕士生,主要从事建筑结构及抗震加固研究(E-mail: 1169926962@qq.com)

    张 敏(1992−),女,安徽阜阳人,博士生,主要从事建筑结构及抗震加固研究(E-mail: zhang_miner@126.com)

    马福栋(1991−),男,山东平阴人,博士生,主要从事高性能土木工程材料与新型结构研究(E-mail: mafudongmfd@126.com)

    陈尚城(1993−),男,重庆人,硕士生,主要从事建筑结构及抗震加固研究(E-mail: 923439669@qq.com)

    通讯作者:

    张阳玺(1990−),男,四川安岳人,讲师,博士,主要从事新材料与结构加固研究(E-mail: yangxizhang@xauat.edu.cn)

  • 中图分类号: TU375.1;TU317+.1

EXPERIMENTAL STUDY ON SHEAR BEHAVIOR AND CAPACITY PREDICTION OF RC BEAMS STRENGTHENED WITH HIGH DUCTILE CONCRETE

  • 摘要: 为研究高延性混凝土(HDC)加固钢筋混凝土梁的受剪性能,该文对7根HDC加固梁及4根未加固梁进行静力试验,研究剪跨比、配箍率、加固层厚度和加固层附加箍筋对钢筋混凝土梁破坏形态、荷载-挠度曲线、受剪承载力以及裂缝的影响。结果表明:采用HDC面层对钢筋混凝土梁进行受剪加固,可以显著提高梁的受剪承载力;HDC面层可以代替部分箍筋的受剪作用,改善钢筋混凝土梁的剪切破坏形态;加固试件在达到极限位移之后,试件的完整性较好,剩余承载力较高。基于试验结果,利用桁架-拱模型,提出了HDC加固钢筋混凝土梁的受剪承载力计算公式,计算值与试验值吻合较好。
  • 图  1  试件尺寸及加固示意图 /mm

    Figure  1.  Section details and strengthening of test beam

    图  2  HDC哑铃型试件拉伸应力-应变曲线

    Figure  2.  Tensile stress-strain curve of HDC dumbbell specimen

    图  3  梁加载装置现场图

    Figure  3.  Field diagram of beam loading device

    图  4  位移计和应变片布置图

    Figure  4.  Location of displacement meters and strain gauges

    图  5  试件破坏形态及裂缝分布

    Figure  5.  Photographs and crack patterns of specimens at failure

    图  6  不同因素下梁荷载-挠度曲线

    Figure  6.  Load-deflection curves of beams under different factors

    图  7  承载力分析图

    Figure  7.  Loading capacity analysis

    图  8  桁架模型

    Figure  8.  Truss model

    图  9  桁架模型隔离体应力平衡

    Figure  9.  Equilibrium of stress in truss model

    图  10  拱模型

    Figure  10.  Arch model

    表  1  试件设计参数

    Table  1.   Main parameters of specimens

    编号受压筋/受拉筋箍筋配箍率/
    (%)
    剪跨比λHDC厚度/
    mm
    面层附加
    箍筋
    FL2-1216/225+1186@1500.252
    FL2-2216/225+1186@1500.25215
    FL2-3216/225+1186@1500.25225
    FL2-4216/225+1186@1500.252256@150
    FL2-5222/3258@1000.672
    FL2-6222/3258@1000.67225
    FL2-7216/225+1186@2200.172
    FL2-8216/225+1186@2200.17225
    FL3-1220/3226@2200.173
    FL3-2220/3226@2200.17325
    FL3-3220/3226@2200.173256@220
    注:原梁截面尺寸均为150 mm×300 mm。
    下载: 导出CSV

    表  2  PVA纤维各项性能指标

    Table  2.   Performance indicators of PVA

    长度/
    mm
    直径/
    μm
    抗拉强度/
    MPa
    弹性模量/
    GPa
    伸长率/
    (%)
    密度/
    (g·cm−3)
    123515003671.29
    下载: 导出CSV

    表  3  普通混凝土、高延性混凝土力学性能

    Table  3.   Mechanical properties of concrete and HDC

    材料fcu,m/MPafc,m/MPaft/MPaεt/(%)
    普通混凝土32.1321.482.66
    高延性混凝土67.0062.905.201.27
    注:fcu,mfc,m分别为立方体和棱柱体抗压强度;ft为抗拉强度;εt为拉应变。
    下载: 导出CSV

    表  4  钢筋的力学性能

    Table  4.   Mechanical properties of steels

    钢筋种类直径/mmfy,m/MPaεy/μεfu,m/MPa
    HPB30063751785510
    HRB40084002000609
    HRB400164602340613
    HRB400184482240615
    HRB400204452225618
    HRB400224052025568
    HRB400254382190615
    HRB500225432715705
    注:fy,m为屈服强度;εy为屈服应变;fu,m为极限抗拉强度。
    下载: 导出CSV

    表  5  钢筋屈服情况

    Table  5.   Yield condition of steels

    编号箍筋面层附加箍筋箍筋εʋ/με纵筋εl/με
    FL2-16@150屈服5658未屈服1508
    FL2-26@150屈服7530未屈服1161
    FL2-36@150屈服5406未屈服1856
    FL2-46@1506@150屈服6568未屈服1589
    FL2-58@100屈服7805未屈服1650
    FL2-68@100屈服9324未屈服1739
    FL2-76@220屈服11449未屈服1859
    FL2-86@220屈服3258未屈服2003
    FL3-16@220屈服3986未屈服1197
    FL3-26@220屈服2354未屈服1225
    FL3-36@2206@220屈服6584屈服2421
    注:εʋ为峰值荷载时箍筋应变;εl为峰值荷载时纵筋应变。
    下载: 导出CSV

    表  6  试验结果

    Table  6.   Test results

    试件编号Fy/kNFm/kNΔy/mmΔm/mmΔu/mm
    FL2-12442793.004.806.77
    FL2-23123623.404.845.86
    FL2-33764404.055.677.79
    FL2-44404744.385.246.34
    FL2-53794333.686.0213.25
    FL2-64584924.005.658.95
    FL2-72362602.583.214.02
    FL2-83444063.084.404.77
    FL3-12022385.718.3811.04
    FL3-22332584.216.6010.59
    FL3-33403956.9810.2110.41
    注:Fy为屈服荷载;Fm为峰值荷载;Δy为屈服位移;Δm为峰值位移;Δu为极限位移。
    下载: 导出CSV

    表  7  试验结果分析及破坏形态

    Table  7.   Test results analysis and failure modes

    试件
    编号
    竖缝开裂
    荷载/kN
    提升
    幅度/(%)
    斜缝开裂
    荷载/kN
    提升
    幅度/(%)
    峰值
    荷载/kN
    提升
    幅度/(%)
    破坏形态
    FL2-120158279剪压破坏
    FL2-21205002475636229剪压破坏
    FL2-31406002606444057剪压破坏
    FL2-41406002606447469剪压破坏
    FL2-560140433剪压破坏
    FL2-61601702205749213剪压破坏
    FL2-744120260剪压破坏
    FL2-812017224010040656剪压破坏
    FL3-120100238剪压破坏
    FL3-2140602071072588剪压破坏
    FL3-31406024014039566弯剪破坏
    下载: 导出CSV

    表  8  计算值与试验值的对比结果

    Table  8.   Comparison of theoretical and experimental results

    试件编号试验值/kN规范
    计算值
    规范计算值/
    试验值
    本文
    计算值
    本文计算值/
    试验值
    FL2-1139.5101.00.730132.70.95
    FL2-2181.0125.80.700184.21.01
    FL2-3220.0143.50.650218.50.99
    FL2-4237.0181.60.770274.41.15
    FL2-5216.5178.30.820229.31.05
    FL2-6246.0220.80.900279.71.13
    FL2-7130.095.80.740111.10.97
    FL2-8203.0138.30.680196.81.07
    FL3-1119.078.40.66091.00.85
    FL3-2129.0110.20.850170.01.32
    FL3-3197.5136.20.690211.31.06
    平均值0.7451.05
    下载: 导出CSV
  • [1] 黄辉, 王文炜, 戴建国. 两跨连续GFRP-混凝土空心组合板受力性能试验研究[J]. 建筑结构学报, 2015, 36(10): 59 − 65.

    Huang Hui, Wang Wenwei, Dai Jianguo. Experimental study on structural performance of two-span continue GFRP-concrete composite hollow slabs [J]. Journal of Building Structures, 2015, 36(10): 59 − 65. (in Chinese)
    [2] Wang W W, Dai J G, Harries K A, et al. Prestress losses and flexural behavior of reinforced concrete beams strengthened with post-tensioned CFRP sheets [J]. Journal of Composites for Construction, 2012, 16(2): 207 − 216. doi: 10.1061/(ASCE)CC.1943-5614.0000255
    [3] Wang W W, Li G. Experimental study and analysis of RC beams strengthened with CFRP laminates under sustaining load [J]. International Journal of Solids and Structures, 2006, 43(6): 1372 − 1387. doi: 10.1016/j.ijsolstr.2005.03.076
    [4] 高仲学, 王文炜, 张永康. 基于拉压杆模型的FRP-混凝土组合梁受剪承载力研究[J]. 建筑结构学报, 2012, 33(9): 136 − 140.

    Gao Zhongxue, Wang Wenwei, Zhang Yongkang. Study on shear capacity of FRP-concrete composite beams based on strut-and-tie model [J]. Journal of Building Structures, 2012, 33(9): 136 − 140. (in Chinese)
    [5] Zhang H Y, Kodur V, Wu B, et al. Thermal behavior and mechanical properties of geopolymer mortar after exposure to elevated temperatures [J]. Construction and Building Materials, 2016, 109: 17 − 24. doi: 10.1016/j.conbuildmat.2016.01.043
    [6] 曹亮, 张海燕, 吴波. 纤维编织网增强地聚物砂浆加固钢筋混凝土梁受剪性能研究[J]. 工程力学, 2019, 36(1): 207 − 215. doi: 10.6052/j.issn.1000-4750.2017.11.0881

    Cao Liang, Zhang Haiyan, Wu Bo. Shear behavior of RC beams strengthened with textile reinforced geopolymer mortar [J]. Engineering Mechanics, 2019, 36(1): 207 − 215. (in Chinese) doi: 10.6052/j.issn.1000-4750.2017.11.0881
    [7] Escrig C, Gil L, Bernat-Maso E, et al. Experimental and analytical study of reinforced concrete beams shear strengthened with different types of textile-reinforced mortar [J]. Construction and Building Materials, 2015, 83: 248 − 260. doi: 10.1016/j.conbuildmat.2015.03.013
    [8] Li V C, Wang S, Wu C. Tensile Strain-hardening Behavior of PVA-ECC [J]. ACI Mater Journal, 2001, 98(6): 483 − 492.
    [9] 邓明科, 代洁, 梁兴文, 等. 高延性混凝土无腹筋梁受剪性能试验研究[J]. 工程力学, 2016, 33(10): 208 − 217. doi: 10.6052/j.issn.1000-4750.2015.03.0209

    Deng Mingke, Dai Jie, Liang Xingwen, et al. Experimental study on the shear behavior of high ductile fiber reinforced concrete beams without stirrups [J]. Engineering Mechanics, 2016, 33(10): 208 − 217. (in Chinese) doi: 10.6052/j.issn.1000-4750.2015.03.0209
    [10] 代洁, 邓明科, 陈佳莉. 基于材料延性的高延性混凝土无腹筋梁受剪性能试验研究[J]. 工程力学, 2018, 35(2): 124 − 132.

    Dai Jie, Deng Mingke, Chen Jiali. Influence of matrix ductility on shear behavior of high ductile reinforced concrete beams. [J]. Engineering Mechanics, 2018, 35(2): 124 − 132. (in Chinese)
    [11] 邓明科, 李琦琦, 马福栋, 等. 高延性混凝土加固RC梁抗剪性能试验研究[J]. 工程力学, 2020, 37(5): 55 − 63.

    Deng Mingke, Li Qiqi, Ma Fudong, et al. Experimental study on the shear behavior of RC beams reinforced by high ductile concrete [J]. Engineering Mechanics, 2020, 37(5): 55 − 63. (in Chinese)
    [12] 邓明科, 张阳玺, 胡红波. 高延性混凝土加固钢筋混凝土柱抗剪承载力计算[J]. 工程力学, 2018, 35(3): 159 − 166. doi: 10.6052/j.issn.1000-4750.2016.11.0888

    Deng Mingke, Zhang Yangxi, Hu Hongbo. Experimental study and calculation of the shear capacity of RC beams columns strengthened with high ductile concrete [J]. Engineering Mechanics, 2018, 35(3): 159 − 166. (in Chinese) doi: 10.6052/j.issn.1000-4750.2016.11.0888
    [13] Deng M K, Zhang Y X. Cyclic loading tests of RC columns strengthened with high ductile fiber reinforced concrete jacket [J]. Construction and Building Materials, 2017, 153: 986 − 995. doi: 10.1016/j.conbuildmat.2017.07.175
    [14] Deng M K, Zhang Y X, Li Q Q. Shear strengthening of RC short columns with ECC jacket: Cyclic behavior tests [J]. Engineering Structures, 2018, 160: 535 − 545. doi: 10.1016/j.engstruct.2018.01.061
    [15] 邓明科, 李琦琦, 刘海勃, 等. 高延性混凝土低矮剪力墙抗震性能试验研究及抗剪承载力计算[J]. 工程力学, 2020, 37(1): 63 − 72.

    Deng Mingke, Li Qiqi, Liu Haibo, et al. Experimental study on seismic behavior and shear strength calculation of high ductile concrete low-rise shear wall [J]. Engineering Mechanics, 2020, 37(1): 63 − 72. (in Chinese)
    [16] GB 50010−2010, 混凝土结构设计规范[S]. 北京: 中国建筑工业出版社, 2010.

    GB 50010−2010, Code for design of concrete structures [S]. Beijing: China Architecture Industry Press, 2010. (in Chinese).
    [17] Watson S, Zahn F A, Park R. Confined reinforcement for concrete columns [J]. Journal of Structural Engineering of ASCE, 1994, 120(6): 1798 − 1824. doi: 10.1061/(ASCE)0733-9445(1994)120:6(1798)
    [18] Ghee A B, Priestley M J N, Paulay T. Seismic shear strength of circular reinforced concrete columns [J]. Structural Journal, 1989, 86(1): 45 − 59.
    [19] 史庆轩, 王朋, 王秋维. 桁架-拱模型用于钢筋混凝土梁的受剪承载力计算分析[J]. 土木建筑与环境工程, 2013, 35(4): 7 − 12.

    Shi Qingxuan, Wang Peng, Wang Qiuwei. Shear capacity analysis of reinforced concrete beams based on truss-arch model [J]. Journal of Civil, Architectural and Environmental Engineering, 2013, 35(4): 7 − 12. (in Chinese)
    [20] 荀勇, 尹红宇, 肖保辉. 织物增强混凝土加固RC梁的斜截面抗剪承载力试验研究[J]. 土木工程学报, 2012, 45(5): 58 − 64.

    Xun Yong, Yin Hongyu, Xiao Baohui. Experimental study on shear capacity of RC beams strengthened with textile reinforced concrete [J]. Journal of Civil Engineering, 2012, 45(5): 58 − 64. (in Chinese)
    [21] GB 50367−2013, 混凝土结构加固设计规范[S]. 北京: 中国建筑工业出版社, 2013.

    GB 50367−2013, Code for design of strengthening concrete structure [S]. Beijing: China Architecture Industry Press, 2013. (in Chinese)
    [22] Kanakubo T, Shimizu K, Kanda T, et al. Evaluation of bending and shear capacities of HPFRCC members toward the structural application [C]// Proceedings of the Hokkaido University COE Workshop on High Performance Fiber Reinforced Composites for Sustainable Infrastructure System – material modeling, structural design and application. Sapporo, Japan, Kanakubo T, February 9, 2007.
  • 加载中
图(10) / 表(8)
计量
  • 文章访问数:  380
  • HTML全文浏览量:  86
  • PDF下载量:  110
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-06-14
  • 修回日期:  2020-08-31
  • 网络出版日期:  2020-10-23
  • 刊出日期:  2021-09-13

目录

    /

    返回文章
    返回