EXPERIMENTAL STUDY ON SHEAR BEHAVIOR AND CAPACITY PREDICTION OF RC BEAMS STRENGTHENED WITH HIGH DUCTILE CONCRETE
-
摘要: 为研究高延性混凝土(HDC)加固钢筋混凝土梁的受剪性能,该文对7根HDC加固梁及4根未加固梁进行静力试验,研究剪跨比、配箍率、加固层厚度和加固层附加箍筋对钢筋混凝土梁破坏形态、荷载-挠度曲线、受剪承载力以及裂缝的影响。结果表明:采用HDC面层对钢筋混凝土梁进行受剪加固,可以显著提高梁的受剪承载力;HDC面层可以代替部分箍筋的受剪作用,改善钢筋混凝土梁的剪切破坏形态;加固试件在达到极限位移之后,试件的完整性较好,剩余承载力较高。基于试验结果,利用桁架-拱模型,提出了HDC加固钢筋混凝土梁的受剪承载力计算公式,计算值与试验值吻合较好。Abstract: In order to study the shear response of reinforced concrete (RC) beams strengthened with high ductile concrete (HDC) jacketing layer, 7 HDC jacketed RC beams and 4 non-strengthened RC beams were designed. The failure modes, load-deflection curves, shear capacities and cracks of the beams with different shear span ratios, stirrup ratios, thickness of HDC jacket and stirrups in HDC jacket were studied by static tests. The test results show that the HDC jacket can significantly improve the shear capacity of the beams. The HDC jacket can share partially shear loads which were taken by stirrups, and improve the shear failure pattern. After the ultimate displacements were reached, beams strengthened with HDC jacket exhibit good integrity and high residual bearing capacity. A formula based on the truss-arch model for calculating the shear capacity of beams strengthened with HDC jacket is proposed, and the calculated results are in good agreement with the test results.
-
Key words:
- high ductile concrete /
- strengthened /
- reinforced concrete beam /
- shear capacity /
- truss-arch model
-
表 1 试件设计参数
Table 1. Main parameters of specimens
编号 受压筋/受拉筋 箍筋 配箍率/
(%)剪跨比λ HDC厚度/
mm面层附加
箍筋FL2-1 2 16/2 25+1 18 6@1500.25 2 − − FL2-2 2 16/2 25+1 18 6@1500.25 2 15 − FL2-3 2 16/2 25+1 18 6@1500.25 2 25 − FL2-4 2 16/2 25+1 18 6@1500.25 2 25 6@150FL2-5 2 22/3 25 8@1000.67 2 − − FL2-6 2 22/3 25 8@1000.67 2 25 − FL2-7 2 16/2 25+1 18 6@2200.17 2 − − FL2-8 2 16/2 25+1 18 6@2200.17 2 25 − FL3-1 2 20/3 22 6@2200.17 3 − − FL3-2 2 20/3 22 6@2200.17 3 25 − FL3-3 2 20/3 22 6@2200.17 3 25 6@220注:原梁截面尺寸均为150 mm×300 mm。 表 2 PVA纤维各项性能指标
Table 2. Performance indicators of PVA
长度/
mm直径/
μm抗拉强度/
MPa弹性模量/
GPa伸长率/
(%)密度/
(g·cm−3)12 35 1500 36 7 1.29 表 3 普通混凝土、高延性混凝土力学性能
Table 3. Mechanical properties of concrete and HDC
材料 fcu,m/MPa fc,m/MPa ft/MPa εt/(%) 普通混凝土 32.13 21.48 2.66 − 高延性混凝土 67.00 62.90 5.20 1.27 注:fcu,m、fc,m分别为立方体和棱柱体抗压强度;ft为抗拉强度;εt为拉应变。 表 4 钢筋的力学性能
Table 4. Mechanical properties of steels
钢筋种类 直径/mm fy,m/MPa εy/με fu,m/MPa HPB300 6 375 1785 510 HRB400 8 400 2000 609 HRB400 16 460 2340 613 HRB400 18 448 2240 615 HRB400 20 445 2225 618 HRB400 22 405 2025 568 HRB400 25 438 2190 615 HRB500 22 543 2715 705 注:fy,m为屈服强度;εy为屈服应变;fu,m为极限抗拉强度。 表 5 钢筋屈服情况
Table 5. Yield condition of steels
编号 箍筋 面层附加箍筋 箍筋 εʋ/με 纵筋 εl/με FL2-1 6@150− 屈服 5658 未屈服 1508 FL2-2 6@150− 屈服 7530 未屈服 1161 FL2-3 6@150− 屈服 5406 未屈服 1856 FL2-4 6@150 6@150屈服 6568 未屈服 1589 FL2-5 8@100− 屈服 7805 未屈服 1650 FL2-6 8@100− 屈服 9324 未屈服 1739 FL2-7 6@220− 屈服 11449 未屈服 1859 FL2-8 6@220− 屈服 3258 未屈服 2003 FL3-1 6@220− 屈服 3986 未屈服 1197 FL3-2 6@220− 屈服 2354 未屈服 1225 FL3-3 6@220 6@220屈服 6584 屈服 2421 注:εʋ为峰值荷载时箍筋应变;εl为峰值荷载时纵筋应变。 表 6 试验结果
Table 6. Test results
试件编号 Fy/kN Fm/kN Δy/mm Δm/mm Δu/mm FL2-1 244 279 3.00 4.80 6.77 FL2-2 312 362 3.40 4.84 5.86 FL2-3 376 440 4.05 5.67 7.79 FL2-4 440 474 4.38 5.24 6.34 FL2-5 379 433 3.68 6.02 13.25 FL2-6 458 492 4.00 5.65 8.95 FL2-7 236 260 2.58 3.21 4.02 FL2-8 344 406 3.08 4.40 4.77 FL3-1 202 238 5.71 8.38 11.04 FL3-2 233 258 4.21 6.60 10.59 FL3-3 340 395 6.98 10.21 10.41 注:Fy为屈服荷载;Fm为峰值荷载;Δy为屈服位移;Δm为峰值位移;Δu为极限位移。 表 7 试验结果分析及破坏形态
Table 7. Test results analysis and failure modes
试件
编号竖缝开裂
荷载/kN提升
幅度/(%)斜缝开裂
荷载/kN提升
幅度/(%)峰值
荷载/kN提升
幅度/(%)破坏形态 FL2-1 20 − 158 − 279 − 剪压破坏 FL2-2 120 500 247 56 362 29 剪压破坏 FL2-3 140 600 260 64 440 57 剪压破坏 FL2-4 140 600 260 64 474 69 剪压破坏 FL2-5 60 − 140 − 433 − 剪压破坏 FL2-6 160 170 220 57 492 13 剪压破坏 FL2-7 44 − 120 − 260 − 剪压破坏 FL2-8 120 172 240 100 406 56 剪压破坏 FL3-1 20 − 100 − 238 − 剪压破坏 FL3-2 140 60 207 107 258 8 剪压破坏 FL3-3 140 60 240 140 395 66 弯剪破坏 表 8 计算值与试验值的对比结果
Table 8. Comparison of theoretical and experimental results
试件编号 试验值/kN 规范
计算值规范计算值/
试验值本文
计算值本文计算值/
试验值FL2-1 139.5 101.0 0.730 132.7 0.95 FL2-2 181.0 125.8 0.700 184.2 1.01 FL2-3 220.0 143.5 0.650 218.5 0.99 FL2-4 237.0 181.6 0.770 274.4 1.15 FL2-5 216.5 178.3 0.820 229.3 1.05 FL2-6 246.0 220.8 0.900 279.7 1.13 FL2-7 130.0 95.8 0.740 111.1 0.97 FL2-8 203.0 138.3 0.680 196.8 1.07 FL3-1 119.0 78.4 0.660 91.0 0.85 FL3-2 129.0 110.2 0.850 170.0 1.32 FL3-3 197.5 136.2 0.690 211.3 1.06 平均值 − − 0.745 − 1.05 -
[1] 黄辉, 王文炜, 戴建国. 两跨连续GFRP-混凝土空心组合板受力性能试验研究[J]. 建筑结构学报, 2015, 36(10): 59 − 65.Huang Hui, Wang Wenwei, Dai Jianguo. Experimental study on structural performance of two-span continue GFRP-concrete composite hollow slabs [J]. Journal of Building Structures, 2015, 36(10): 59 − 65. (in Chinese) [2] Wang W W, Dai J G, Harries K A, et al. Prestress losses and flexural behavior of reinforced concrete beams strengthened with post-tensioned CFRP sheets [J]. Journal of Composites for Construction, 2012, 16(2): 207 − 216. doi: 10.1061/(ASCE)CC.1943-5614.0000255 [3] Wang W W, Li G. Experimental study and analysis of RC beams strengthened with CFRP laminates under sustaining load [J]. International Journal of Solids and Structures, 2006, 43(6): 1372 − 1387. doi: 10.1016/j.ijsolstr.2005.03.076 [4] 高仲学, 王文炜, 张永康. 基于拉压杆模型的FRP-混凝土组合梁受剪承载力研究[J]. 建筑结构学报, 2012, 33(9): 136 − 140.Gao Zhongxue, Wang Wenwei, Zhang Yongkang. Study on shear capacity of FRP-concrete composite beams based on strut-and-tie model [J]. Journal of Building Structures, 2012, 33(9): 136 − 140. (in Chinese) [5] Zhang H Y, Kodur V, Wu B, et al. Thermal behavior and mechanical properties of geopolymer mortar after exposure to elevated temperatures [J]. Construction and Building Materials, 2016, 109: 17 − 24. doi: 10.1016/j.conbuildmat.2016.01.043 [6] 曹亮, 张海燕, 吴波. 纤维编织网增强地聚物砂浆加固钢筋混凝土梁受剪性能研究[J]. 工程力学, 2019, 36(1): 207 − 215. doi: 10.6052/j.issn.1000-4750.2017.11.0881Cao Liang, Zhang Haiyan, Wu Bo. Shear behavior of RC beams strengthened with textile reinforced geopolymer mortar [J]. Engineering Mechanics, 2019, 36(1): 207 − 215. (in Chinese) doi: 10.6052/j.issn.1000-4750.2017.11.0881 [7] Escrig C, Gil L, Bernat-Maso E, et al. Experimental and analytical study of reinforced concrete beams shear strengthened with different types of textile-reinforced mortar [J]. Construction and Building Materials, 2015, 83: 248 − 260. doi: 10.1016/j.conbuildmat.2015.03.013 [8] Li V C, Wang S, Wu C. Tensile Strain-hardening Behavior of PVA-ECC [J]. ACI Mater Journal, 2001, 98(6): 483 − 492. [9] 邓明科, 代洁, 梁兴文, 等. 高延性混凝土无腹筋梁受剪性能试验研究[J]. 工程力学, 2016, 33(10): 208 − 217. doi: 10.6052/j.issn.1000-4750.2015.03.0209Deng Mingke, Dai Jie, Liang Xingwen, et al. Experimental study on the shear behavior of high ductile fiber reinforced concrete beams without stirrups [J]. Engineering Mechanics, 2016, 33(10): 208 − 217. (in Chinese) doi: 10.6052/j.issn.1000-4750.2015.03.0209 [10] 代洁, 邓明科, 陈佳莉. 基于材料延性的高延性混凝土无腹筋梁受剪性能试验研究[J]. 工程力学, 2018, 35(2): 124 − 132.Dai Jie, Deng Mingke, Chen Jiali. Influence of matrix ductility on shear behavior of high ductile reinforced concrete beams. [J]. Engineering Mechanics, 2018, 35(2): 124 − 132. (in Chinese) [11] 邓明科, 李琦琦, 马福栋, 等. 高延性混凝土加固RC梁抗剪性能试验研究[J]. 工程力学, 2020, 37(5): 55 − 63.Deng Mingke, Li Qiqi, Ma Fudong, et al. Experimental study on the shear behavior of RC beams reinforced by high ductile concrete [J]. Engineering Mechanics, 2020, 37(5): 55 − 63. (in Chinese) [12] 邓明科, 张阳玺, 胡红波. 高延性混凝土加固钢筋混凝土柱抗剪承载力计算[J]. 工程力学, 2018, 35(3): 159 − 166. doi: 10.6052/j.issn.1000-4750.2016.11.0888Deng Mingke, Zhang Yangxi, Hu Hongbo. Experimental study and calculation of the shear capacity of RC beams columns strengthened with high ductile concrete [J]. Engineering Mechanics, 2018, 35(3): 159 − 166. (in Chinese) doi: 10.6052/j.issn.1000-4750.2016.11.0888 [13] Deng M K, Zhang Y X. Cyclic loading tests of RC columns strengthened with high ductile fiber reinforced concrete jacket [J]. Construction and Building Materials, 2017, 153: 986 − 995. doi: 10.1016/j.conbuildmat.2017.07.175 [14] Deng M K, Zhang Y X, Li Q Q. Shear strengthening of RC short columns with ECC jacket: Cyclic behavior tests [J]. Engineering Structures, 2018, 160: 535 − 545. doi: 10.1016/j.engstruct.2018.01.061 [15] 邓明科, 李琦琦, 刘海勃, 等. 高延性混凝土低矮剪力墙抗震性能试验研究及抗剪承载力计算[J]. 工程力学, 2020, 37(1): 63 − 72.Deng Mingke, Li Qiqi, Liu Haibo, et al. Experimental study on seismic behavior and shear strength calculation of high ductile concrete low-rise shear wall [J]. Engineering Mechanics, 2020, 37(1): 63 − 72. (in Chinese) [16] GB 50010−2010, 混凝土结构设计规范[S]. 北京: 中国建筑工业出版社, 2010.GB 50010−2010, Code for design of concrete structures [S]. Beijing: China Architecture Industry Press, 2010. (in Chinese). [17] Watson S, Zahn F A, Park R. Confined reinforcement for concrete columns [J]. Journal of Structural Engineering of ASCE, 1994, 120(6): 1798 − 1824. doi: 10.1061/(ASCE)0733-9445(1994)120:6(1798) [18] Ghee A B, Priestley M J N, Paulay T. Seismic shear strength of circular reinforced concrete columns [J]. Structural Journal, 1989, 86(1): 45 − 59. [19] 史庆轩, 王朋, 王秋维. 桁架-拱模型用于钢筋混凝土梁的受剪承载力计算分析[J]. 土木建筑与环境工程, 2013, 35(4): 7 − 12.Shi Qingxuan, Wang Peng, Wang Qiuwei. Shear capacity analysis of reinforced concrete beams based on truss-arch model [J]. Journal of Civil, Architectural and Environmental Engineering, 2013, 35(4): 7 − 12. (in Chinese) [20] 荀勇, 尹红宇, 肖保辉. 织物增强混凝土加固RC梁的斜截面抗剪承载力试验研究[J]. 土木工程学报, 2012, 45(5): 58 − 64.Xun Yong, Yin Hongyu, Xiao Baohui. Experimental study on shear capacity of RC beams strengthened with textile reinforced concrete [J]. Journal of Civil Engineering, 2012, 45(5): 58 − 64. (in Chinese) [21] GB 50367−2013, 混凝土结构加固设计规范[S]. 北京: 中国建筑工业出版社, 2013.GB 50367−2013, Code for design of strengthening concrete structure [S]. Beijing: China Architecture Industry Press, 2013. (in Chinese) [22] Kanakubo T, Shimizu K, Kanda T, et al. Evaluation of bending and shear capacities of HPFRCC members toward the structural application [C]// Proceedings of the Hokkaido University COE Workshop on High Performance Fiber Reinforced Composites for Sustainable Infrastructure System – material modeling, structural design and application. Sapporo, Japan, Kanakubo T, February 9, 2007. -