留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高温超导带材低/变温疲劳性能测试系统的研制

潘远洲 何天虎 辛灿杰 关明智

潘远洲, 何天虎, 辛灿杰, 关明智. 高温超导带材低/变温疲劳性能测试系统的研制[J]. 工程力学, 2020, 37(11): 248-256. doi: 10.6052/j.issn.1000-4750.2019.12.0797
引用本文: 潘远洲, 何天虎, 辛灿杰, 关明智. 高温超导带材低/变温疲劳性能测试系统的研制[J]. 工程力学, 2020, 37(11): 248-256. doi: 10.6052/j.issn.1000-4750.2019.12.0797
Yuan-zhou PAN, Tian-hu HE, Can-jie XIN, Ming-zhi GUAN. DEVELOPMENT OF A CRYOGENIC FATIGUE TEST FACILITY FOR HIGH TEMPERATURE SUPERCONDUCTING TAPES[J]. Engineering Mechanics, 2020, 37(11): 248-256. doi: 10.6052/j.issn.1000-4750.2019.12.0797
Citation: Yuan-zhou PAN, Tian-hu HE, Can-jie XIN, Ming-zhi GUAN. DEVELOPMENT OF A CRYOGENIC FATIGUE TEST FACILITY FOR HIGH TEMPERATURE SUPERCONDUCTING TAPES[J]. Engineering Mechanics, 2020, 37(11): 248-256. doi: 10.6052/j.issn.1000-4750.2019.12.0797

高温超导带材低/变温疲劳性能测试系统的研制

doi: 10.6052/j.issn.1000-4750.2019.12.0797
基金项目: 国家自然科学基金项目(11672120,11932008);中国科学院青年创新促进会项目(2019404);中国科学院“西部青年学者”A类等项目资助项目
详细信息
    作者简介:

    潘远洲(1993−),男,甘肃人, 硕士生,从事高温超导材料力学研究(E-mail: panyuanzhou@outlook.com)

    何天虎(1973−),男,甘肃人,教授,博士,从事多物理场耦合、电磁固体力学研究(E-mail: heth@lut.edu.cn)

    辛灿杰(1984−),男,河南人,高工,博士,从事实验固体力学研究(E-mail: xincj@impcas.ac.cn)

    通讯作者:

    关明智(1983−),男(锡伯族),辽宁人,副研究员,博士,从事超导结构力学、实验固体力学研究(E-mail: mzg615@impcas.ac.cn)

  • 中图分类号: O511+.4;TQ175.1+5

DEVELOPMENT OF A CRYOGENIC FATIGUE TEST FACILITY FOR HIGH TEMPERATURE SUPERCONDUCTING TAPES

  • 摘要: 实用化高温超导带材(如Bi系与ReBCO高温超导复合带材)在高磁场下拥有较高的临界电流密度、宽泛的温度裕度、较强的抗粒子辐照能力及良好的机械特性,因此这类材料在加速器超导磁体系统、高场超导磁体、超导电力等方面表现出巨大的应用潜力。而作为典型的多层功能复合性材料,虽然高强度的基底层增强了高温超导带材拉伸强度,使其在强磁场、高载流条件下可以承受很高的应力,在其加工与运行过程中,不可避免地受到多种疲劳载荷的作用,从而其临界载流能力会显著地降低,进一步,会造成相应高温超导装置功能性难以达到设计标准等。该文介绍一种自主研制的高温超导带材低/变温疲劳性能测试系统,基于该测试系统:一方面,可以实现对高温超导材料在低/变温、疲劳载荷等环境下力学、热学等宏观参数的实验表征研究;另一方面,可以对高温超导材料开展低温疲劳载荷环境下力-电弱化等临界特性的实验研究。利用所研制的低/变温疲劳性能测试系统,对受拉-压疲劳荷载下的YBCO超导带材的力学行为、载流特性开展了初步的实验研究,并分析了应力比、温度等外部环境因素对实验结果的影响规律等。结果表明:在相同的疲劳次数的情况下,YBCO超导带材的力学性能及载流特性与其应力比成明显的非线性关系。该测试系统的成功研制将为中国粒子加速器用高温超导磁体的设计与研发提供基础测试平台。
  • 图  1  高温超导带材低/变温疲劳性能测试系统结构示意图

    Figure  1.  Schematic diagram of cryogenic fatigue testing systems for high temperature superconducting tapes

    图  2  电子疲劳试验系统

    Figure  2.  Electronic fatigue testing systems

    图  3  电流加载内部关键部件示意图

    Figure  3.  Illustration of key current lead parts

    图  4  非接触光学应变测量系统示意图

    Figure  4.  Schematic diagrams of non-contact optical strain measurement systems

    图  5  高温超导带材低/变温疲劳性能测试装置实物图

    Figure  5.  Actual equipment of cryogenic fatigue testing systems for high temperature superconducting tapes

    图  6  室温下不同次数疲劳荷载YBCO高温超导带材屈服强度与应力比依赖关系

    Figure  6.  Yield strength-stress ratio curves of a YBCO tape under different fatigue cycles at room temperature

    图  7  室温下不同次数疲劳荷载YBCO高温超导带材弹性模量与应力比的依赖关系

    Figure  7.  Young’s modules-stress ratio curves of a YBCO tape under different fatigue cycles at room temperature

    图  8  室温下1万次疲劳荷载YBCO高温超导带材临界电流与应力比的依赖关系

    Figure  8.  Critical current-stress ratio curves of a YBCO tape after 10000 fatigue cycles at room temperature

    图  9  室温下1万次疲劳荷载YBCO高温超导带材n值与应力比的依赖关系

    Figure  9.  n value-stress ratio curves of a YBCO tape after 10000 fatigue cycles at room temperature

    表  1  电子疲劳试验系统主要技术参数

    Table  1.   Parameters of electronic fatigue testing systems

    技术指标技术参数
    测力范围±5000 N
    测量范围50 N~5000 N
    测量精度±1.5 N
    控制精度<1%FS(量程)
    频率0.1 Hz~10 Hz
    作动器行程100 mm
    调整空间0 mm~500 mm
    外形尺寸(长×宽×高)900 mm×610 mm×2000 mm
    下载: 导出CSV
  • [1] Aymar R, Genevey P, Palanque S, et al. A NbTi 10T 388mm bore magnet working at 1.8 K in pressurized superfluid helium [J]. Cryogenics, 20(9): 521 − 524, 1980.
    [2] Banks M. Superconductivity: The first 100 years [N]. United Kingdom: Physics World, 2011.
    [3] 张博. 超导电力材料发展的现状和前景[J]. 新材料产业, 2014, 3: 53 − 55. doi: 10.3969/j.issn.1008-892X.2014.04.015

    Zhang Bo. Status and prospects of the development of superconducting materials [J]. Advanced Materials Industry, 2014, 3: 53 − 55. (in Chinese) doi: 10.3969/j.issn.1008-892X.2014.04.015
    [4] 王秋良. 高磁场超导磁体科学 [M]. 北京: 科学出版社, 2008.

    Wang Qiuliang. High magnetic field superconducting magnet science [M]. Beijing: Science Press, 2008. (in Chinese)
    [5] Weijers H W, Markiewicz H W, Voran A J, et al. Progress in the development of a superconducting 32T magnet with REBCO high field coils [J]. IEEE Transactions on Applied Superconductivity, 2014, 24(3): 1 − 5.
    [6] Iwasa Y, Bascunan J, Hahn S, et al. A high-resolution 1.3-GHz/54-mm LTS/HTS NMR magnet [J]. IEEE Transactions on Applied Superconductivity, 2015, 25: 4301205. doi: 10.1109/TASC.2014.2363496
    [7] Matsumoto S, Kiyoshi T, Otsuka A, et al. Generation of 24 T at 4.2 K using a layer-wound GdBCO insert coil with Nb3Sn and Nb-Ti external magnetic field coils [J]. Superconductor Science and Technology, 2012, 25(2): 108 − 112.
    [8] Yoon S, Kim J, Cheon K, et al. 26 T 35 mm all-REBCO multi-width no-insulation superconducting magnet [J]. Superconductor Science and Technology, 2016, 29: 1 − 6.
    [9] Awaji S, Watanabe K, Oguro H, et al. New 25 T Cryogen-Free Superconducting Magnet Project at Tohoku University [J]. IEEE Transactions on Applied Superconductivity, 2014, 24(3): 4302005.
    [10] Liu J, Li Y. High-field insert with Bi-and Y-based tapes for 25 T all-superconducting magnet [J]. IEEE Transactions on Applied Superconductivity, 2016, 26(7): 4602705.
    [11] 刘建华, 程军胜, 王秋良, 等. 高场超导磁体研究进展及其应用[J]. 电工电能新技术, 2017, 36(11): 1 − 12.

    Liu Jianhua, Cheng Junsheng, Wang Qiuliang, et al. Research progress and application of high-field superconducting magnets [J]. Advanced Technology of Electrical Engineering and Energy, 2017, 36(11): 1 − 12. (in Chinese)
    [12] Takahashi H, Igawa K, Arii K, Kamihara Y, et al. Superconductivity at 43 K in an iron-based layered compound LaO(1-x)F(x)FeAs [J]. Nature, 2008, 453(7193): 376 − 378. doi: 10.1038/nature06972
    [13] Chen X, Struzhkin V V, Yu Y, et al. Enhancement of superconductivity by pressure-driven competition in electronic order [J]. Nature, 2010, 466: 950 − 953. doi: 10.1038/nature09293
    [14] Duan Y, Ta W, Gao Y. Numerical models of delamination behavior in 2G HTS tapes under transverse tension and peel [J]. Physica C: Superconductivity and Its Ipplications, 2018, 545: 26 − 37. doi: 10.1016/j.physc.2017.11.012
    [15] Gao P, Wang X. Analysis of torsional deformation-induced degeneration of critical current of Bi-2223 HTS composite tapes [J]. International Journal of Mechanical Sciences, 2018, 141: 401 − 407. doi: 10.1016/j.ijmecsci.2018.04.029
    [16] Gao P, Wei X, Wu B, et al. Numerical investigation on decreasing radial stress in epoxy impregnated REBCO pancake coils by overband [J]. Cryogenics, 2019, 103: 102971. doi: 10.1016/j.cryogenics.2019.08.002
    [17] Elen J D, Franken W M P, Horvath I, et al. The superconductor test facility SULTAN [J]. IEEE Transactions on Magnetics, 1981, 17(1): 490 − 493. doi: 10.1109/TMAG.1981.1060978
    [18] Bruzzone P, Stepanov B, Wesche R, et al. Operation and test results from the SULTAN test facility [J]. IEEE Transactions on Applied Superconductivity, 2012, 22(3): 9501704. doi: 10.1109/TASC.2012.2191483
    [19] Verweij A. The 10 T dipole magnet of the FRESCA facility: An overview of 6 years of operation, magnets and superconductors group AT-MAS [J]. Internal Note, 2005: 2005 − 04.
    [20] Ulbricht A, and the ITER L2 Project Team. Test results of the ITER toroidal field model coil experiment in the TOSKA facility of the KIT [J]. Fusion Engineering and Design, 2003, 66-68: 103 − 118. doi: 10.1016/S0920-3796(03)00140-6
    [21] 钱莉, 武玉, 刘华军, 等. ITER CC导体测试装置数据采集系统的设计与应用[J]. 超导技术, 2012, 40(9): 27 − 31.

    Qian Li, Wu Yu, Liu Huajun, et al. Design and application of data acquisition system for ITER CC testing apparatus [J]. Superconductivity, 2012, 40(9): 27 − 31. (in Chinese)
    [22] 王省哲, 周又和, 关明智. 极端低温环境下超导材料力学性能测试系统的研制与应用 [C]. 昆明: 第十三届全国实验力学会议, 2012: 112.

    Wang Xingzhe, Zhou Youhe, Guan Mingzhi. A test facility for investigating mechanical properties of superconducting wires and tapes under extreme environments [C]. Kunming: The 13th National Conference on Experimental Mechanics, 2012: 112. (in Chinese)
    [23] Guan M, Wang X, Zhou Y H. Cryogenic temperaturedependence of tensile response of NbTi/Cu superconducting composite wires [J]. IEEE Transactions on Applied Superconductivity, 2012, 22(6): 8401106. doi: 10.1109/TASC.2012.2215857
    [24] Wang X, Zhou Y, Guan M, et al. A versatile facility for investigating field-dependent and mechanical properties of superconducting wires and tapes under cryogenic-electro-magnetic multifields [J]. Review of Scientific Instruments, 2018, 89: 085117. doi: 10.1063/1.5030350
    [25] Guan M, Hahn S, Bascuñán J, et al. A parametric study on overband radial build for a REBCO 800 MHz insert of a 1.3 GHz LTS/HTS NMR magnet [J]. IEEE Transactions on Applied Superconductivity, 2016, 26(4): 430120.
    [26] Rogers S, Schwartz J. Tensile fatigue behavior and crack growth in GdBa2Cu3O7−x/stainless-steel coated conductor grown via reactive co-evaporation [J]. Superconductor Science and Technology, 2017, 20: 045013.
    [27] Sugano M, Yoshida Y, Hojo M. Two different mechanisms of fatigue damage due to cyclic stress loading at 77 K for MOCVD-YBCO-coated conductors [J]. Superconductor Science and Technology, 2008, 21: 054006. doi: 10.1088/0953-2048/21/5/054006
    [28] Shin H, Dizon J, Kim K, et al. Ic degradation behaviors of Bi-2223 superconducting tapes under axial fatigue loading [J]. Cryogenics, 2006, 46: 378 − 384. doi: 10.1016/j.cryogenics.2005.11.024
    [29] Hojo M, Osawa K, Adachi T, et al. Effect of fatigue loading on critical current in stainless steel-laminated DI-BSCCO superconducting composite tape [J]. Physica C, 2010, 470: 1373 − 1376. doi: 10.1016/j.physc.2010.05.116
    [30] Chen W, Zhang H, Chen Y, et al. Impact of fatigue loading on the critical current of Bi-2223 tapes under background magnetic field [J]. Cryogenics, 2018, 94: 1 − 4. doi: 10.1016/j.cryogenics.2018.06.004
    [31] Chen W, Zhang H, Chen Y, et al. Fatigue behavior of critical current degradation for YBCO tapes at 77 K [J]. IEEE Trans. Appl. Supercond, 2018, 28(3): 8400905.
    [32] 关明智, 王省哲, 马力祯, 等. 液氮低温环境下电阻应变片测试性能的试验研究[J]. 工程力学, 2012, 29(11): 350 − 354.

    Guan Mingzhi, Wang Xingzhe, Ma Lizhen, et al. Experiment study on mechanical properties based on resistance strain gauge under liquid nitrogen cooling environment [J]. Engineering Mechanics, 2012, 29(11): 350 − 354. (in Chinese)
    [33] Shin H, Gorospe A, Bautista Z, et al. Evaluation of the electromechanical properties in GdBCO coated conductor tapes under low cyclic loading and bending [J]. Supercond. Sci. Technol, 2016, 29: 014001. doi: 10.1088/0953-2048/29/1/014001
    [34] 班慧勇, 白日升, 刘明, 等. 钛-钢复合钢材力学性能及本构模型研究[J]. 工程力学, 2019, 36(7): 57 − 66.

    Ban Huiyong, Bai Risheng, Liu Ming, et al. Study on the material properties and constitutive model of Titanium-Clad steel [J]. Engineering Mechanics, 2019, 36(7): 57 − 66. (in Chinese)
    [35] 辛灿杰. 超导材料低温力学实验及多场性能测试仪器原型机研制中的若干关键技术研究 [D]. 兰州: 兰州大学, 2017.

    Xin Canjie. Experiment of cryogenic mechanical properties on superconducting materials and key technologies R & D of multi-field prototype test facility [D]. Lanzhou: Lanzhou University, 2017. (in Chinese)
    [36] 廖小伟, 王元清, 石永久, 等. 低温环境下桥梁钢Q345qD疲劳裂纹扩展行为研究[J]. 工程力学, 2018, 35(10): 85 − 91.

    Liao Xiaowei, Wang Yuanqing, Shi Yongjiu, et al. Experimental study on the fatigue crack growth behavior of bridge steel Q345qD at low temperatures [J]. Engineering Mechanics, 2018, 35(10): 85 − 91. (in Chinese)
    [37] Rogers S, Chan W K, Schwartz J. Effects of room-temperature tensile fatigue on critical current and n-value of IBAD–MOCVD YBa2Cu3O7−x/Hastelloy coated conductor [J]. Supercond. Sci. Technol, 2016, 29: 085013. doi: 10.1088/0953-2048/29/8/085013
  • 加载中
图(9) / 表(1)
计量
  • 文章访问数:  99
  • HTML全文浏览量:  15
  • PDF下载量:  21
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-12-19
  • 修回日期:  2020-04-22
  • 刊出日期:  2020-11-25

目录

    /

    返回文章
    返回