留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

冻融低剪跨比RC梁抗震性能试验研究

郑山锁 姬金铭 裴培 贺金川 张艺欣 董立国

郑山锁, 姬金铭, 裴培, 贺金川, 张艺欣, 董立国. 冻融低剪跨比RC梁抗震性能试验研究[J]. 工程力学, 2020, 37(11): 97-107. doi: 10.6052/j.issn.1000-4750.2019.12.0770
引用本文: 郑山锁, 姬金铭, 裴培, 贺金川, 张艺欣, 董立国. 冻融低剪跨比RC梁抗震性能试验研究[J]. 工程力学, 2020, 37(11): 97-107. doi: 10.6052/j.issn.1000-4750.2019.12.0770
Shan-suo ZHENG, Jin-ming JI, pei PEI, Jin-chuan HE, Yi-xin ZHANG, Li-guo DONG. EXPERIMENTAL STUDY ON THE SEISMIC BEHAVIOR OF RC BEAMS OF LOW SHEAR-SPAN RATIOS SUBJECTED TO FREEZE-THAW CYCLES[J]. Engineering Mechanics, 2020, 37(11): 97-107. doi: 10.6052/j.issn.1000-4750.2019.12.0770
Citation: Shan-suo ZHENG, Jin-ming JI, pei PEI, Jin-chuan HE, Yi-xin ZHANG, Li-guo DONG. EXPERIMENTAL STUDY ON THE SEISMIC BEHAVIOR OF RC BEAMS OF LOW SHEAR-SPAN RATIOS SUBJECTED TO FREEZE-THAW CYCLES[J]. Engineering Mechanics, 2020, 37(11): 97-107. doi: 10.6052/j.issn.1000-4750.2019.12.0770

冻融低剪跨比RC梁抗震性能试验研究

doi: 10.6052/j.issn.1000-4750.2019.12.0770
基金项目: 国家重点研发计划课题项目(2019YFC1509302);国家自然科学基金计划项目(51678475);西安市科技计划项目(2019113813CXSF016SF026);陕西省教育厅产业化项目(18JC020)
详细信息
    作者简介:

    郑山锁(1960−),男,陕西人,教授,工学博士,主要从事结构工程与工程抗震研究(E-mail: zhengshansuo@263.net)

    裴 培(1993−),女,安徽人,硕士生,主要从事结构抗震研究(E-mail: 743513468@qq.com)

    贺金川(1962−),女,陕西人,高工,学士,主要从事建筑设计研究(E-mail: 1138088650@qq.com)

    张艺欣(1991−),女,河南人,博士生,主要从事结构抗震研究(E-mail: zyx19910619@126.com)

    董立国(1990−),男,山西人,博士生,主要从事结构抗震研究(E-mail: dlg_15@163.com)

    通讯作者:

    姬金铭(1995−),男,河南人,硕士生,主要从事结构抗震研究(E-mail: jjm_182@163.com)

  • 中图分类号: TU352.11;TU375.1

EXPERIMENTAL STUDY ON THE SEISMIC BEHAVIOR OF RC BEAMS OF LOW SHEAR-SPAN RATIOS SUBJECTED TO FREEZE-THAW CYCLES

  • 摘要: 通过人工气候模拟实验室对6榀剪跨比为2.6的钢筋混凝土(Reinforced concrete, RC)梁试件进行加速冻融循环试验,继而对其进行拟静力加载试验,根据试验结果分析了冻融循环作用和混凝土强度变化对RC梁试件破坏形态、滞回曲线、承载能力、变形能力和耗能能力等抗震性能指标的影响。结果表明:冻融后混凝土抗压强度降低,内部孔隙率变大,微裂缝增多,梁试件表面出现裂缝。各梁试件在拟静力加载试验后均发生了弯剪破坏。随着冻融循环次数的增加,试件的承载能力与耗能能力逐渐退化,延性先略微增长后显著下降;随着混凝土强度等级的提高,试件受冻融循环作用造成的损伤程度有所减轻,各试件的屈服、峰值、极限承载力均有所增大,耗能能力增强,延性无明显变化。
  • 图  1  试件尺寸及配筋  /mm

    Figure  1.  Size and reinforcement arrangement of specimens

    图  2  单次冻融循环方案

    Figure  2.  Single freeze-thaw cycle scheme

    图  3  加载系统及测点布置

    Figure  3.  Loading system and measuring point arrangement

    图  4  加载制度示意图

    Figure  4.  Loading system diagram

    图  5  冻融循环后试件表面形态

    Figure  5.  Specimen surface states after freeze-thaw cycles

    图  6  混凝土试样扫描电镜照片(5000倍)

    Figure  6.  SEM images of concrete (magnified by 5000 times)

    图  7  试件破坏状态图

    Figure  7.  Failure modes of specimens

    图  8  试件滞回曲线

    Figure  8.  Force-displacement responses of specimens

    图  9  试件骨架曲线

    Figure  9.  Skeleton curves of specimens

    图  10  试件刚度退化曲线

    Figure  10.  Stiffness degradation of specimens

    图  11  累积耗能曲线

    Figure  11.  Cumulative energy dissipation curves

    图  12  剪切位移计算示意图

    Figure  12.  Calculation diagram of shear displacement

    图  13  剪切位移占总侧向位移比例

    Figure  13.  Ratio of shear displacement to total lateral displacement

    表  1  试件设计参数

    Table  1.   Design parameters of specimens

    试件
    编号
    混凝土
    强度等级
    剪跨比高度/
    mm
    箍筋
    配箍率/(%)
    纵筋
    配筋率/(%)
    冻融
    次数N
    DL-1C402.67000.631.750
    DL-2C402.67000.631.75100
    DL-3C402.67000.631.75200
    DL-4C402.67000.631.75300
    DL-5C302.67000.631.75300
    DL-6C502.67000.631.75300
    下载: 导出CSV

    表  2  混凝土配合比

    Table  2.   Mix proportion of concrete

    强度
    等级
    水泥品种每立方米混凝土配比材料质量/kg
    水泥粉煤灰
    C30P.O 42.5R320595119018590
    C40P.O 42.5R390585117018575
    C50P.O 42.5R430565114018580
    下载: 导出CSV

    表  3  混凝土力学性能

    Table  3.   Mechanical properties of concrete

    强度
    等级
    立方体抗压强度平均值$f_{\rm{cu}}^0 $/MPa轴心抗压强度平均值fc/MPa弹性模量
    Ec/MPa
    C3032.0024.3233450.52
    C4040.3030.6334937.99
    C5055.0841.8635335.78
    下载: 导出CSV

    表  4  钢材力学性能

    Table  4.   Material properties of reinforcement

    钢材种类钢筋型号屈服强度
    fy/MPa
    极限强度
    fu/MPa
    弹性模量
    Es/MPa
    梁纵筋163735372.0×105
    梁箍筋62704702.1×105
    基座纵筋222.0×105
    基座箍筋83054832.1×105
    下载: 导出CSV

    表  5  冻融后混凝土性能参数

    Table  5.   Concrete properties after freeze-thaw cycles

    强度
    等级
    冻融次数N立方体抗压强度
    $f_{\rm{cu}} ^N$/MPa
    相对抗压强度
    $f_{\rm{cu}} ^0/f_{\rm{cu}} ^N $
    相对动弹性模量/
    (%)
    C40040.301.000100.0
    C4010035.730.88795.4
    C4020031.220.77587.1
    C4030025.360.62976.9
    C3030018.140.56773.9
    C5030037.260.67679.4
    下载: 导出CSV

    表  6  骨架曲线特征参数

    Table  6.   Characteristic parameters of the skeleton curves

    试件编号混凝土强度等级冻融循环次数N屈服点峰值点极限点延性系数$\mu $
    位移Δy/mm荷载Py/kN位移Δc/mm荷载Pc/kN位移Δu/mm荷载Pu/kN
    DL-14003.9780.0015.6985.4920.2572.675.10
    DL-2401004.3777.7415.2083.5319.6471.005.49
    DL-3402004.8174.6314.8181.1318.8468.963.92
    DL-4403005.2771.8814.5279.2318.4867.343.51
    DL-5303005.2369.1214.5676.9018.4565.363.53
    DL-6503005.2872.9414.5180.2318.5068.203.50
    下载: 导出CSV
  • [1] Pleau R, Pigeon M. Durability of concrete in cold climates [M]. London: E & FN Spon, 1995.
    [2] Powers T C. A working hypothesis for further studies of frost resistance [J]. Journal of the ACI, 1945, 16(4): 245 − 272.
    [3] Powers T C, Helmuth R A. Theory of volume changes in hardened portland-cement paste during freezing [J]. Highway Research Board Proceedings, 1953, 32(5): 285 − 297.
    [4] 施士升. 冻融循环对混凝土力学性能的影响[J]. 土木工程学报, 1997, 30(4): 35 − 42. doi: 10.3321/j.issn:1000-131X.1997.04.005

    Shi Shisheng. Effect of freezing-thawing cycles on mechanical properties of concrete [J]. China Civil Engineering Journal, 1997, 30(4): 35 − 42. (in Chinese) doi: 10.3321/j.issn:1000-131X.1997.04.005
    [5] 宋玉普, 于长江, 覃丽坤, 等. 冻融环境下混凝土双向受压强度与变形特性试验研究[J]. 大连理工大学学报, 2004, 44(4): 545 − 549. doi: 10.3321/j.issn:1000-8608.2004.04.019

    Song Yupu, Yu Changjiang, Qin Likun, et al. Experimental study of strength and deformation of concrete under biaxial compression in freezing-thawing circumstance [J]. Journal of Dalian University of Technology, 2004, 44(4): 545 − 549. (in Chinese) doi: 10.3321/j.issn:1000-8608.2004.04.019
    [6] 魏强, 谢剑, 吴洪海. 超低温冻融循环对混凝土材料性能的影响[J]. 工程力学, 2013, 30(增刊 1): 125 − 131.

    Wei Qiang, Xie Jian, Wu Honghai. Cryogenic freezing and thawing cycle effect on the properties of concrete material [J]. Engineering Mechanics, 2013, 30(Suppl 1): 125 − 131. (in Chinese)
    [7] Vesa P, Fahim A N. Stress and strain state of concrete during freezing and thawing cycles [J]. Cement and Concrete Research, 2002, 32(9): 1407 − 1420. doi: 10.1016/S0008-8846(02)00785-8
    [8] Petersen L, Lohaus L, Polak M A. Influence of freezing-and-thawing damage on behavior of reinforced concrete elements [J]. ACI Materials Journal, 2007, 104(4): 369 − 378.
    [9] Molero M, Aparicio S, Al-Assadi G, et al. Evaluation of freeze-thaw damage in concrete by ultrasonic imaging [J]. NDT & E International, 2012, 52(4): 86 − 94.
    [10] Matalkah F, Soroushian P. Freeze thaw and deicer salt scaling resistance of concrete prepared with alkali aluminosilicate cement [J]. Construction and Building Materials, 2018, 163(28): 200 − 213. doi: 10.1016/j.conbuildmat.2017.12.119
    [11] 冀晓东. 冻融后混凝土力学性能及钢筋混凝土粘结性能的研究[D]. 大连: 大连理工大学, 2007.

    Ji Xiaodong. Experimental study and theoretical analysis on the mechanical performance of concrete and bond behaviour between concrete and stall bar after freezing and thawing [D]. Dalian: Dalian University of Technology, 2007. (in Chinese)
    [12] 曹芙波, 唐磊杰, 丁兵兵, 等. 冻融损伤后钢筋与再生混凝土黏结滑移性能试验研究[J]. 工程力学, 2017, 34(增刊 1): 244 − 251.

    Cao Fubo, Tang Leijie, Ding Bingbing, et al. Study on bond-slip properties between steel bars and recycled concrete after freeze-thaw cycles [J]. Engineering Mechanics, 2017, 34(Suppl 1): 244 − 251. (in Chinese)
    [13] Xu S H, Li A B, Ji Z Y, et al. Seismic performance of reinforced concrete columns after freeze-thaw cycles [J]. Construction and Building Materials, 2016, 102(15): 861 − 871. doi: 10.1016/j.conbuildmat.2015.10.168
    [14] 秦卿, 郑山锁, 甘传磊, 等. 冻融环境作用下RC剪力墙抗震性能试验[J]. 哈尔滨工业大学学报, 2016, 48(6): 111 − 118. doi: 10.11918/j.issn.0367-6234.2016.06.018

    Qin Qing, Zheng Shansuo, Gan Chuanlei, et al. Experimental study on the seismic behaviors of RC shear walls under the freeze-thaw environment action [J]. Journal of Harbin Institute of Technology, 2016, 48(6): 111 − 118. (in Chinese) doi: 10.11918/j.issn.0367-6234.2016.06.018
    [15] 郑捷, 董立国, 秦卿, 等. 冻融循环下钢筋混凝土框架梁柱中节点抗震性能试验研究[J]. 建筑结构学报, 2016, 37(10): 73 − 81.

    Zheng Jie, Dong Liguo, Qin Qing, et al. Experimental study on seismic behaviors of RC beam-column joints after freeze-thaw cycles [J]. Journal of Building Structures, 2016, 37(10): 73 − 81. (in Chinese)
    [16] Toutanji H, Balaguru P. Durability characteristics of concrete columns wrapped with FRP tow sheets [J]. Journal of Materials in Civil Engineering, 1998, 10(1): 52 − 57. doi: 10.1061/(ASCE)0899-1561(1998)10:1(52)
    [17] 曹大富, 葛文杰, 郭容邑, 等. 冻融循环作用后钢筋混凝土梁受弯性能试验研究[J]. 建筑结构学报, 2014, 35(6): 137 − 144.

    Cao Dafu, Ge Wenjie, Guo Rongyi, et al. Experimental study on flexural behaviors of RC beams after freeze-thaw cycles [J]. Journal of Building Structures, 2014, 35(6): 137 − 144. (in Chinese)
    [18] Duan A, Li Z Y, Zhang W C, et al. Flexural behaviour of reinforced concrete beams under freeze-thaw cycles and sustained load [J]. Structure and Infrastructure Engineering, 2017, 13(10): 1350 − 1358. doi: 10.1080/15732479.2016.1268172
    [19] Diao B, Zhang J, Ye Y, et al. Effects of freeze-thaw cycles and seawater corrosion on the behavior of reinforced air-entrained concrete beams with persistent loads [J]. Journal of Cold Regions Engineering, 2012, 27(1): 44 − 53.
    [20] Green M F, Dent A J S, Bisby L A. Effect of freeze–thaw cycling on the behaviour of reinforced concrete beams strengthened in flexure with fibre reinforced polymer sheets [J]. Canadian Journal of Civil Engineering, 2003, 30(6): 1081 − 1088. doi: 10.1139/l03-059
    [21] GBT 50082−2009, 普通混凝土长期性能和耐久性能试验方法标准[S]. 北京: 中国建筑工业出版社, 2009.

    GBT 50082−2009, Standard for test methods of long-term performance and durability of ordinary concrete [S]. Beijing: China Building Industry Press, 2010. (in Chinese)
    [22] 李金玉, 曹建国, 徐文雨, 等. 混凝土冻融破坏机理的研究[J]. 水利学报, 1999, 30(1): 41 − 49. doi: 10.3321/j.issn:0559-9350.1999.01.008

    Li Jinyu, Cao Jianguo, XuWenyu, et al. Study on the mechanism of concrete destruction under frost action [J]. Journal of Hydraulic Engineering, 1999, 30(1): 41 − 49. (in Chinese) doi: 10.3321/j.issn:0559-9350.1999.01.008
    [23] Mahin S A, Bertero V V. Problems in establishing and predicting ductility in aseismic design [C]// Proceedings of the International Symposium on Earthquake Structural Engineering, St. Louis, USA, University of Missouri-Rolla, 1976: 613 − 628.
    [24] JGJ 101−96, 建筑抗震试验方法规程 [S]. 北京: 中国建筑工业出版社, 1997.

    JGJ 101−96, Specification of test methods for earthquake resistant building [S]. Beijiing: China Architecture & Building Press, 1997. (in Chinese)
    [25] 郑山锁, 李强强, 秦卿, 等. 冻融损伤低矮钢筋混凝土剪力墙恢复力模型研究[J]. 建筑结构学报, 2018, 39(3): 111 − 119.

    Zheng Shansuo, Li Qiangqiang, Qin Qing, et al. Study on restoring force model of low reinforced concreteshear wall subjected to freeze-thaw damage [J]. Journal of Building Structures, 2018, 39(3): 111 − 119. (in Chinese)
  • 加载中
图(13) / 表(6)
计量
  • 文章访问数:  111
  • HTML全文浏览量:  28
  • PDF下载量:  32
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-12-24
  • 修回日期:  2020-03-20
  • 刊出日期:  2020-11-25

目录

    /

    返回文章
    返回