留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

钢支撑动力屈曲致扭机理及BRB减扭机理的研究

高向宇 李杨龙 李建勤 徐吉民

高向宇, 李杨龙, 李建勤, 徐吉民. 钢支撑动力屈曲致扭机理及BRB减扭机理的研究[J]. 工程力学, 2020, 37(11): 83-96, 107. doi: 10.6052/j.issn.1000-4750.2019.12.0748
引用本文: 高向宇, 李杨龙, 李建勤, 徐吉民. 钢支撑动力屈曲致扭机理及BRB减扭机理的研究[J]. 工程力学, 2020, 37(11): 83-96, 107. doi: 10.6052/j.issn.1000-4750.2019.12.0748
Xiang-yu GAO, Yang-long LI, Jian-qin LI, Ji-min XU. STUDY ON THE MECHANISM OF TORSION INDUCED BY STEEL BRACE DYNAMIC BUCKLING AND THE MECHANISM OF TORSION REDUCTION SUPPLIED BY BRB[J]. Engineering Mechanics, 2020, 37(11): 83-96, 107. doi: 10.6052/j.issn.1000-4750.2019.12.0748
Citation: Xiang-yu GAO, Yang-long LI, Jian-qin LI, Ji-min XU. STUDY ON THE MECHANISM OF TORSION INDUCED BY STEEL BRACE DYNAMIC BUCKLING AND THE MECHANISM OF TORSION REDUCTION SUPPLIED BY BRB[J]. Engineering Mechanics, 2020, 37(11): 83-96, 107. doi: 10.6052/j.issn.1000-4750.2019.12.0748

钢支撑动力屈曲致扭机理及BRB减扭机理的研究

doi: 10.6052/j.issn.1000-4750.2019.12.0748
基金项目: 北京市自然科学基金重点项目(8141001);国家自然科学基金面上项目(51378038)
详细信息
    作者简介:

    李杨龙(1990−),男,北京人,博士生,从事结构工程及放在减灾研究(E-mail: tszylyl@126.com)

    李建勤(1987−),男,北京人,博士,从事电力土木结构工程设计及研究(E-mail: lijianqin328@sina.com)

    徐吉民(1989−),男,江苏人,博士,从事土木工程检测及试验研究(E-mail: laoxu89@126.com)

    通讯作者:

    高向宇(1959−),男,北京人,教授,博士,从事结构工程及防灾减灾工程研究(E-mail: gaoxy@bjut.edu.cn)

  • 中图分类号: TU391

STUDY ON THE MECHANISM OF TORSION INDUCED BY STEEL BRACE DYNAMIC BUCKLING AND THE MECHANISM OF TORSION REDUCTION SUPPLIED BY BRB

  • 摘要: 研究了钢支撑混凝土框架结构侧移和扭转地震响应的特点,揭示了在反复加载过程中钢支撑动力屈曲会对抵抗扭矩产生影响,使结构塑性铰状态发生非均衡性变化从而导致非弹性扭转的过程。运用达朗贝尔原理研究了钢支撑屈曲使结构产生惯性力、惯性扭矩并出现非弹性扭转突增的致灾机理,并通过振动台试验、有限元非线性分析对类似性能加以验证。对比研究了防屈曲支撑对结构的抗扭效果,以及阻断结构发生非弹性扭转突增的工作机理。最后针对设计上将普通钢支撑作为中心支撑混凝土框架结构第一道抗震防线的保障条件、设置防屈曲支撑减控非弹性扭转的技术保障措施等提出了建议。
  • 图  1  汶川钢支撑屈曲[1]

    Figure  1.  Steel brace buckling at Wen Chuan[1]

    图  2  日本熊本地震市立代山中学框架结构震害[2]

    Figure  2.  Concrete columns damaged in Kumamoto earthquake[2]

    图  3  原型F-BRC结构标准层平面

    Figure  3.  The prototype F-BRC structure plan layout

    图  4  振动台试验模型

    Figure  4.  Shaking table test models

    图  5  F-BRC结构的层间扭转角峰值变化规律

    Figure  5.  Story rotation peak variation of F-BRC

    图  6  F-BRB结构的层间扭转角峰值变化规律

    Figure  6.  Story rotation peak variation of F-BRB

    图  7  普通人字形钢支撑梁中节点开裂情况

    Figure  7.  F-BRC Beam cracks near the connection

    图  8  人字形防屈曲支撑梁中节点开裂情况

    Figure  8.  F-BRB Beam cracks near the connection

    图  9  BRC残余变形

    Figure  9.  BRC residual deforms

    图  10  首层钢支撑在超罕遇地震北岭波下断裂

    Figure  10.  Brace fractured at 1st floor under super rare Northridge wave

    图  11  试验后防屈曲支撑钢芯残余变形

    Figure  11.  The residual deforms of BRB steel core

    图  12  普通钢支撑骨架线及接受准则

    Figure  12.  The skeleton line and acceptance criteria

    图  13  BRB轴力-变形滞回曲线(Bouc-Wen)

    Figure  13.  BRB axial force-deformation hysteresis curve

    图  14  钢支撑及主体结构梁柱构件塑性铰状态发展过程

    Figure  14.  Plastic hinge state and generation process of steel brace and main frame structure

    图  15  防屈曲支撑及主体结构梁柱构件塑性铰状态发展过程(M5,框架位置分别为x=21 m,-21 m)

    Figure  15.  Plastic hinges state with numbers and generation process for both brb-braced frames at x=21 m and -21 m

    图  16  各层钢支撑轴力所承担的扭矩时程曲线

    Figure  16.  The history curves of torsional moment carried by the brace in each floor

    图  17  F-BRC结构动力放大倍数

    Figure  17.  The dynamic amplification of torsional angle and lateral drift of F-BRC structure

    图  18  钢支撑P-δ滞回曲线[3]及符号标记

    Figure  18.  P-δ hysteric cure of a steel brace with mark symbols

    图  19  由于钢支撑屈曲引发的惯性扭矩机理图

    Figure  19.  Schematic diagram of inertia torsional moment increase due to steel braces buckling

    图  20  钢支撑动力屈曲致扭过程及BRB抗扭机制和保障措施

    Figure  20.  Torsional process by steel brace buckling, BRB resistance mechanism and technical measures

    表  1  四个结构计算模型主要差别

    Table  1.   The main differences between the 4 models

    比较参数M0(F-BRC)M1(F-BRC)M2(F-BRC)M3(F-BRB)
    选择范围全部还是局部全部范围局部范围局部范围局部范围
    平面范围图3整个模型图3虚线框内图3虚线框内图3虚线框内
    平面尺寸/m54×21.615.6×10.815.6×10.815.6×10.8
    考虑楼面荷载偏心x向5%, y向0双向均为0双向均为0双向均为0
    钢支撑类型BRCBRCBRCBRB
    优化设计优化BRC优化BRC两种支撑对结构的刚度贡献接近
    塑性铰梁/柱M3/P-M-MM3/P-M-MM3/P-M-MM3/P-M-M
    BRC/BRBN1, isotropicN1, isotropicN1, isotropicN1, Bouc-wen
    结构高宽比1.3434.0284.0284.028
    长宽比2.5001.6671.6671.667
    下载: 导出CSV

    表  2  结构模型符合性检查

    Table  2.   Compliance check with specification

    性能和条件M0(F-BRC)M1(F-BRC)M2(F-BRC)M3(F-BRB)
    前三阶振型DOFDy, Dx, RzDx, Rz, DyDx, Rz, DyDx, Rz, Dy
    周期/s1.10, 1.03, 0.961.46, 1.01, 0.961.46, 0.85,0.781.46, 0.85, 0.77
    层间侧移角θy=δmax,y/h1/8311/8901/11761/1190
    |Δ|top,max/m(顶点侧移角)Newhall-10.179(1/162)0.183(1/158)0.124(1/234)0.141(1/206)
    El-Centro NS0.138(1/210)0.147(1/197)0.118(1/246)0.094(1/309)
    |φ|top,max/rad(顶点扭转角)Newhall-13.21×10−35.25×10−52.83×10−52.17×10−5
    El-Centro NS2.78×10−32.88×10−53.83×10−51.42×10−5
    下载: 导出CSV

    表  3  振动台试验模型相似比

    Table  3.   Similarity coefficients of shaking table test model

    物理量长度模量密度
    相似比1∶61∶1.3331∶481∶0.556
    物理量刚度质量时间加速度
    相似比1∶81∶1201∶3.871∶0.4
    下载: 导出CSV

    表  4  各加载工况下测试的模型自振频率

    Table  4.   Tested natural frequencies in each loading cases /Hz

    结构种类和振动方向多遇
    地震
    中间
    工况1
    设防
    地震
    中间
    工况2
    罕遇
    地震
    F-BRC结构平动5.805.504.203.142.60
    扭转4.953.953.85
    F-BRB结构平动4.904.904.904.854.64
    扭转6.005.855.20
    下载: 导出CSV

    表  5  两种钢支撑参数

    Table  5.   Modeling parameters of the two types of braces

    BRB支撑(Bouc-Wen模型)BRC支撑(梁柱单元轴力铰模型)
    弹性刚度/(kN/m)屈服承载力/kN屈服后刚度系数指数钢管直径/mm厚度/mm长度/m截面积/mm2抗拉屈服力/kN
    6~71250004250.052132.006.005.382375558.13
    2~52008006830.052132.006.005.382375558.13
    11250004630.052132.006.006.162375558.13
    下载: 导出CSV

    表  6  F-BRB与F-BRC结构侧移与扭转角响应的比值

    Table  6.   The ratio values of the peak response of F-BRB and F-BRC structure

    输入GPA/gal输入方向F-BRB/F-BRC侧移峰值对比F-BRB/F-BRC扭转角峰值对比
    El-Centro NSNew Hall-1ArtificialEl-Centro NSNew Hall-1Artificial
    70 + 1.061 0.978 1.106 7.951×10−03 5.708×10−03 1.731×10−02
    1.017 1.074 1.003 7.967×10−03 8.703×10−03 1.905×10−02
    210 + 1.036 0.932 1.063 1.966×10−03 3.532×10−03 1.459×10−02
    0.892 0.998 0.980 1.544×10−03 2.382×10−03 1.590×10−02
    400 + 0.948 1.013 1.023 4.979×10−03 6.576×10−03 1.249×10−02
    1.018 1.274 0.971 4.869×10−03 1.095×10−02 1.295×10−02
    下载: 导出CSV
  • [1] 王亚勇. 汶川地震建筑震害启示-抗震概念设计[J]. 建筑结构学报, 2008, 29(4): 20 − 25. doi: 10.3321/j.issn:1000-6869.2008.04.003

    Wang Yayong. Lessons learnt from building damages in the Wen Chuan Earthquake seismic concept design of buildings [J]. Journal of Building Structures, 2008, 29(4): 20 − 25. (in Chinese) doi: 10.3321/j.issn:1000-6869.2008.04.003
    [2] Daiki Saito, Koji Katsuno, Kazuhiro Hayashi, Yoshinori Kakino, Keimei Kondo. Investigation report on casualties in Kumamoto earthquake [R]. Toyohashi University of Technology, Research center for safe and secure areas, Heisei, May, 2016: 23 − 28.
    [3] Black G R, Wenger BW A, Popov E P. Inelastic buckling of steel struts under cyclic load reversals [R]. UCB/EERC-80/40, Berkeley, California: Earthquake Engineering Research Center, Oct. 1980: 127 − 129.
    [4] Patxi Uriz, Filip C Filippou, Stephen A Mahin. Model for cyclic inelastic buckling of steel braces [J]. Journal of Structural Engineering, 2008, 134(4): 619 − 628. doi: 10.1061/(ASCE)0733-9445(2008)134:4(619)
    [5] Lee P S, Noh H C. Inelastic buckling behavior of steel members under reversed cyclic loading [J]. Engineering Structures, 2010, 32: 2579 − 2595. doi: 10.1016/j.engstruct.2010.04.031
    [6] Iraj H P M. Cyclic elastoplastic large displacement analysis and stability evaluation of steel tubular braces [J]. American Transactions on Engineering & Applied Sciences, 2012, 1(1): 2229.
    [7] 马申. 网架结构在发电厂主厂房屋面中应用的经验[J]. 武汉大学学报(工学版), 2009, 42(增刊): 123 − 128.

    Ma Shen. Experience in applying grid structure to main building roof of power plant [J]. Engineering Journal of Wuhan University, 2009, 42(Suppl): 123 − 128. (in Chinese)
    [8] Daniel P M, Broderick B M. An experimental and numerical investigation into the seismic performance of a multi-story concentrically braced plan irregular structure [J]. Bull Earthquake Eng, 2013, 11: 2363 − 1385. doi: 10.1007/s10518-013-9470-3
    [9] Günay Ozmen, Konuralp Girgin, Yavuz Durgun. Torsional irregularity in multi-story structures [J]. International Journal of Advanced Structural Engineering, 2014(6): 121 − 131. doi: 10.1007/s40091-014-0070-5
    [10] Ali D, Duygu D D, Recep T E , et al. Torsional irregularity effects of local site classes in multiple storey structures [J]. IJRRAS, August, 2010 (Suppl): 258 − 262.
    [11] Bugeja M N, Thambiratnam D P, Brameld G H. The influence of stiffness and strength eccentricities on the inelastic earthquake response of asymmetric structures [J]. Engineering Structures, 1999, 21(9): 856 − 863. doi: 10.1016/S0141-0296(98)00035-2
    [12] Kourosh KayvanI, Fariborz Barzegar. Influence of local inertia on seismic response of offshore jackets [J]. Journal of Structural Engineering, 1997, 124(1): 52 − 61.
    [13] Sina Kazemzadeh Azad, Cem Topkaya, Milad Bybordiani. Dynamic buckling of braces in concentrically braced frames [J]. Earthquake Engineering Structure Dynamics, 2017, 1 − 21. Wileyonlinelibrary.com/journal/EQE. DOI: 10.1002/EQE.2982.
    [14] Emrah E, Keri L R. Effects of torsion on the behavior of peripheral steel-braced frame systems [J]. Earthquake Engineering & Structural Dynamics, 2011, 40(5): 491 − 507.
    [15] 高向宇, 李建勤, 刘超, 李杨龙. 钢支撑-混凝土框架动力非弹性扭转机理与抗扭设计研究[J]. 建筑结构学报, 2018, 39(2): 44 − 53.

    GAO Xiangyu, LI Jianqin, LIU Chao, LI Yanglong. Mechanism of dynamic inelastic torsion and anti-torsional design strategy of steel-braced concrete frames [J]. Journal of Building Structures, 2018, 39(2): 44 − 53. (in Chinese)
    [16] GB50011−2010, 建筑抗震设计规范[S]. 北京: 中国建筑工业出版社, 2016.

    GB50011−2010, Code for seismic design of buildings [S]. Beijing: China Architecture Industry Press, 2016. (in Chinese)
    [17] 高向宇, 张慧, 杜海燕, 等. 防屈曲支撑恢复力的特点及计算模型研究[J]. 工程力学, 2011, 28(6): 19 − 28.

    Gao Xiangyu, Zhang Hui, Du Haiyan, et al. Study on characterization and modeling of buckling-restrained brace [J]. Engineering Mechanics, 2011, 28(6): 19 − 28. (in Chinese)
    [18] 刘超, 钢支撑混凝土框架振动台试验研究 [D]. 北京: 北京工业大学, 2016: 27 − 71.

    Liu Chao. Shaking table test research on steel-braced concrete frame [D]. Beijing: Beijing University of Technology, 2016: 27 − 71. (in Chinese)
    [19] 李建勤, 混凝土框架-防屈曲支撑结构设计相关问题及振动台试验研究[D]. 北京: 北京工业大学, 2016: 79 − 114.

    Li Jianqin. The research on design issues and shaking table test of reinforced concrete frame with buckling-restrained brace [D]. Beijing: Beijing University of Technology, 2016: 79 − 114. (in Chinese)
    [20] FEMA356, Prestandard and commentary for the seismic rehabilitation of buildings [S]. Washington DC: Federal Emergency Management Agency, 2000.
    [21] JG/T 209−2012, 建筑消能阻尼器[S]. 北京: 中国标准出版社, 2012.

    JG/T 209−2012, Dampers for vibration energy dissipation of buildings [S]. Beijing: Ministry of Housing and Urban-Rural Development of the PRC, 2012. (in Chinese)
  • 加载中
图(20) / 表(6)
计量
  • 文章访问数:  163
  • HTML全文浏览量:  58
  • PDF下载量:  45
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-12-11
  • 修回日期:  2020-04-02
  • 刊出日期:  2020-11-25

目录

    /

    返回文章
    返回