留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

船板钢焊接接头的断裂失效行为及GTN模型的数值分析

卓子超 张庆亚 王江超

卓子超, 张庆亚, 王江超. 船板钢焊接接头的断裂失效行为及GTN模型的数值分析[J]. 工程力学, 2020, 37(11): 238-247. doi: 10.6052/j.issn.1000-4750.2019.12.0746
引用本文: 卓子超, 张庆亚, 王江超. 船板钢焊接接头的断裂失效行为及GTN模型的数值分析[J]. 工程力学, 2020, 37(11): 238-247. doi: 10.6052/j.issn.1000-4750.2019.12.0746
Zi-chao ZHUO, Qing-ya ZHANG, Jiang-chao WANG. FRACTURE BEHAVIOR OF WELDED JOINTS OF SHIP STEEL PLATES AND NUMERICAL ANALYSIS WITH GTN MODEL[J]. Engineering Mechanics, 2020, 37(11): 238-247. doi: 10.6052/j.issn.1000-4750.2019.12.0746
Citation: Zi-chao ZHUO, Qing-ya ZHANG, Jiang-chao WANG. FRACTURE BEHAVIOR OF WELDED JOINTS OF SHIP STEEL PLATES AND NUMERICAL ANALYSIS WITH GTN MODEL[J]. Engineering Mechanics, 2020, 37(11): 238-247. doi: 10.6052/j.issn.1000-4750.2019.12.0746

船板钢焊接接头的断裂失效行为及GTN模型的数值分析

doi: 10.6052/j.issn.1000-4750.2019.12.0746
详细信息
    作者简介:

    卓子超(1996−),男,浙江宁波人,硕士生,主要从事船舶结构力学性能评估(E-mail: lipschwitz@163.com)

    张庆亚(1990−),男,江苏连云港人,博士生,主要从事船舶结构焊接残余应力及断裂性能评估(E-mail: 18252580756@163.com)

    通讯作者:

    王江超(1983−),男,陕西咸阳人,副教授,工学博士,博导,主要从事船舶海洋结构物建造工艺力学及力学性能评估(E-mail: wjccn@hust.edu.cn)

  • 中图分类号: TG407

FRACTURE BEHAVIOR OF WELDED JOINTS OF SHIP STEEL PLATES AND NUMERICAL ANALYSIS WITH GTN MODEL

  • 摘要: 船舶钢结构皆采用焊接方法建造而成,在实际工况及环境载荷作用下,焊接接头的力学性能及其断裂强度,直接影响船舶整体结构的强度和寿命。该文针对常用的船板钢材料(Q345和Q690),首先对母材进行单向拉伸试验,获得其各自的应力-应变曲线,进而评估其断裂性能;基于Gurson-Tvergaard-Needleman (GTN)损伤模型,通过程序代码的调试和一系列的数值模拟分析,提出了母材本构关系的表达函数及最优GTN模型参数,且与实测的应力-应变曲线高度吻合。同时,针对满足焊接规范要求的船板钢对接焊接头,进行了单向拉伸试验获得其应力-应变曲线;考虑焊缝微观缺陷以及焊接残余应力的影响,提出修正GTN损伤模型中的初始空穴体积分数f0和材料的幂函数塑性强化参数,预测焊接接头的断裂强度,且与试验测量数据吻合一致。
  • 图  1  基于GTN模型的材料断裂失效过程

    Figure  1.  Failure process based on GTN model

    图  2  初始缺陷f0数值的确认算法流程图

    Figure  2.  Flow chart of the algorithm for confirming the initial void fraction f0

    图  3  拉伸试样尺寸及形状示意图 /mm

    Figure  3.  Dimension and shape of tensile sample

    图  4  焊接试样坡口以及焊缝成形

    Figure  4.  Welding specimen bevel and welded joint

    图  5  试样取样位置图 /mm

    Figure  5.  Sampling location

    图  6  试验装置图

    Figure  6.  Test device

    图  7  Q345船板钢母材及焊接接头工程应力-应变曲线

    Figure  7.  Engineering stress-strain curve of Q345 ship plate steel base metal and welded joints

    图  8  Q345焊接接头拉伸试样(未经热处理和消应力退火)

    Figure  8.  Tension test specimens of Q345 welded joint (without heat treatment and stress relief annealed)

    图  9  GTN模型计算结果与测量工程应力-应变曲线对比(Q345船板钢母材)

    Figure  9.  Comparison of GTN model numerical simulation and measured engineering stress-strain curve (Q345 ship plate steel base metal)

    图  10  GTN模型计算结果与未经热处理的焊接接头工程应力-应变曲线对比(Q345船板钢焊接接头)

    Figure  10.  Comparison of calculated results of GTN model with engineering stress-strain curves of welded joint (without heat treatment) (Q345 ship plate steel welded joint)

    图  11  GTN模型计算结果与焊接接头(消应力退火)工程应力-应变曲线对比(Q345船板钢焊接接头)

    Figure  11.  Comparison of calculation results of GTN model with engineering stress-strain curves of welded joint (stress relief annealing) (Q345 ship plate steel welded joint)

    图  12  Q690母材工程应力-应变曲线

    Figure  12.  Engineering stress-strain curve of Q690 steel base metal

    图  13  Q690对接焊接头坡口形式 /mm

    Figure  13.  Q690 butt welding joint bevel

    图  14  Q690焊接接头工程应力-应变曲线

    Figure  14.  Engineering stress-strain curve of Q690 welded joint

    图  15  Q690焊接接头单向拉伸断裂试样

    Figure  15.  Tension test specimens of Q690 welded joint

    图  16  GTN模型计算结果与Q690母材及接头工程应力-应变曲线对比

    Figure  16.  Comparison of calculation results of GTN model with engineering stress-strain curves of Q690 base metal and joint

    图  17  目标函数随初始空穴体积分数f0变化趋势

    Figure  17.  The trend of the objective function with the initial void volume fraction f0

    图  18  GTN模型双参数对目标函数的影响

    Figure  18.  Influence of two parameters of GTN model on objective function T

    表  1  Q345船板钢化学成分及力学性能

    Table  1.   Chemical composition and mechanical properties of ship plate steel Q345

    化学成分/(%)CSiMnPS
    Q345≤0.20≤0.55≤1.70≤0.045≤0.045
    力学性能抗拉强度/MPa屈服强度/MPa伸长率/(%)
    Q345470~630≥345≥26
    下载: 导出CSV

    表  2  Q345母材GTN模型参数数值

    Table  2.   GTN model parameters of Q345 base metal

    参数参数值域步长最优参数手动参数
    f0 0~0.004 0.0002 0.0034 0.0001
    fC 0.08~0.1 0.0020 0.0820 0.1000
    fF 0.60~0.65 0.0050 0.6340 0.6150
    K 750~850 10.0000 810.0000 800.0000
    n 0.175~0.185 0.0010 0.1840 0.1820
    T 32.2000 66.6000
    下载: 导出CSV

    表  3  Q345焊接接头(未经热处理)的GTN模型参数数值

    Table  3.   GTN model parameters of Q345 welded joint (without heat treatment)

    参数参数值域步长最优参数手动参数
    f0 0.01~0.06 0.0005 0.040 0.028
    fC 0.082 0.100
    fF 0.634 0.580
    K 750~950 10.0000 900.000 850.000
    n 0.17~0.19 0.0010 0.173 0.160
    T 11.000 72.700
    下载: 导出CSV

    表  4  Q345焊接接头(消应力退火)的GTN模型参数数值

    Table  4.   GTN model parameters of Q345 welded joint (stress relief annealed)

    参数参数值域步长最优参数手动参数
    f0 0.01~0.06 0.0001 0.0265 0.028
    fC 0.0820 0.100
    fF 0.6340 0.615
    K 810.0000 800.000
    n 0.1840 0.182
    T 11.3000 22.900
    下载: 导出CSV

    表  5  Q690船板钢化学成分及力学性能

    Table  5.   Chemical composition and mechanical properties of ship plate steel Q690

    化学成分/(%)CSiMnPS
    Q6900.18≤0.551.00~1.60≤0.030≤0.030
    力学性能抗拉强度/MPa屈服强度/MPa伸长率/(%)
    Q690730~900≥640≥14
    下载: 导出CSV

    表  6  Q690母材GTN模型参数

    Table  6.   GTN model parameters of Q690 base metal

    参数参数值域步长最优参数
    f0 0~0.004 0.0002 0.0008
    fC 0.01~0.03 0.0020 0.0180
    fF 0.58~0.63 0.0050 0.6050
    K 950~1050 5.0000 970.0000
    n 0.055~0.08 0.0010 0.0590
    T 25.7000
    下载: 导出CSV

    表  7  Q690焊接接头GTN模型参数

    Table  7.   GTN model parameters of Q690 welded joint

    参数参数值域步长最优参数
    f0 0~0.05 0.001 0.010
    fC 0.018
    fF 0.605
    K 900~1150 5.000 1040.000
    n 0.02~0.07 0.001 0.061
    T 19.900
    下载: 导出CSV

    表  8  参数搜索计算时间表

    Table  8.   Calculation time of searching parameters

    计算参数Q345母材焊接接头
    (未经热处理)
    焊接接头
    (消应力退火)
    搜索参数点个数20000040000500
    计算时间155 min17 min少于1 min
    下载: 导出CSV
  • [1] Gurson A L. Continuum theory of ductile rupture by void nucleation and growth: part 1-yield criteria and flow rules for porous ductile media [J]. Journal of Engineering Materials & Technology, 1977, 99(1): 297 − 300.
    [2] Tvergaard V, Needleman A. Analysis of the cup-cone fracture in a round tensile bar [J]. Acta Metallurgica, 1984, 32(1): 157 − 169. doi: 10.1016/0001-6160(84)90213-X
    [3] Chu C C, Needleman A. Void nucleation effects in biaxially stretched sheets [J]. Journal of Engineering Materials & Technology, 1980, 102(3): 249.
    [4] 肖晋, 胡玉梅, 金晓清, 等. 基于各向异性GTN模型的铝合金损伤参数确定[J]. 机械强度, 2018, 40(5): 1189 − 1193.

    Xiao Jin, Hu Yumei, Jin Xiaoqing, et al. Damage parameters identification of aluminum alloy based on anisotropic GTN model [J]. Journal of Mechanical Strength, 2018, 40(5): 1189 − 1193. (in Chinese)
    [5] 韩晓兰, 赵升吨, 徐凡, 等. Al6061板料的修正GTN损伤模型[J]. 中国有色金属学报, 2017, 27(5): 902 − 910.

    Han Xiaolan, Zhao Shengdun, Xu Fan, et al. Modified GTN damage model of Al6061 [J]. The Chinese Journal of Nonferrous Metals, 2017, 27(5): 902 − 910. (in Chinese)
    [6] 张颖, 刘爱玲, 李彬, 等. 基于GTN模型的20钢孔洞扩张比数值模拟[J]. 机械强度, 2015, 37(2): 343 − 347.

    Zhang Ying, Liu Ailing, Li Bin, et al. Simulation of void growth ratio of 20 steel based on GTN model [J]. Journal of Mechanical Strength, 2015, 37(2): 343 − 347. (in Chinese)
    [7] 王国珍, 张贺全, 蒲吉斌, 等. GTN损伤模型对C-Mn钢缺口拉伸试样延性断裂的预测[J]. 机械强度, 2008(4): 647 − 652. doi: 10.3321/j.issn:1001-9669.2008.04.025

    Wang Guozhen, Zhang Hequan, Pu Jibin, et al. Prediction of ductile fracture in tensile specimens with notches for a C-Mn steel by using GTN damage model [J]. Journal of Mechanical Strength, 2008(4): 647 − 652. (in Chinese) doi: 10.3321/j.issn:1001-9669.2008.04.025
    [8] 胡朝辉, 杜鹏, 段利斌, 等. 铝合金焊接结构塑性变形及断裂失效预测方法[J]. 汽车工程学报, 2019, 9(2): 115 − 122. doi: 10.3969/j.issn.2095-1469.2019.02.06

    Hu Zhaohui, Du Peng, Duan Libin, et al. Plastic deformation and failure prediction of aluminum alloy welded structures [J]. Chinese Journal of Automotive Engineering, 2019, 9(2): 115 − 122. (in Chinese) doi: 10.3969/j.issn.2095-1469.2019.02.06
    [9] 方勇勇, 庄新村, 赵震, 等. 基于试验与模拟的修正GTN模型参数反求分析[J]. 上海交通大学学报, 2016, 50(7): 1011 − 1016.

    Fang Yongyong, Zhuang Xincun, Zhao Zhen, et al. Parameter identification of enhanced GTN model through experiments and simulation [J]. Journal of Shanghai Jiao Tong University, 2016, 50(7): 1011 − 1016. (in Chinese)
    [10] Liu X G, Wang C, Deng Q F, et al. High-temperature fracture behavior of MnS inclusions based on GTN model [J]. Journal of Iron and Steel Research, International, 2019, 26: 941 − 952. doi: 10.1007/s42243-018-0202-4
    [11] Oh Y R, Nam H S, Kim Y J, et al. Application of the GTN model to ductile crack growth simulation in through-wall cracked pipes [J]. International Journal of Pressure Vessels and Piping, 2018, 159: 35 − 44. doi: 10.1016/j.ijpvp.2017.11.006
    [12] Madej L, Perzyński, K, Składzień M, et al. Application of the GTN model to numerical simulation of distaloy ab sinters behaviour under complex loading conditions [J]. Archives of Metallurgy and Materials, 2018, 63(4): 1937 − 1942.
    [13] 杨璐, 卫璇, 张有振, 等. 不锈钢母材及其焊缝金属材料单拉本构关系研究[J]. 工程力学, 2018, 35(5): 125 − 130, 151.

    Yang Lu, Wei Xuan, Zhang Youzhen, et al. Research on the tensile stress-strain relation of stainless steel base material and its weld metal material [J]. Engineering Mechanics, 2018, 35(5): 125 − 130, 151. (in Chinese)
    [14] 刘希月, 王元清, 石永久, 等. 高强度钢框架梁柱节点焊接构造的断裂性能试验研究[J]. 工程力学, 2018, 35(5): 54 − 64.

    Liu Xiyue, Wang Yuanqing, Shi Yongjiu, et al. Experimental study on the weld fracture behavior of high strength steel beam-to-column connections [J]. Engineering Mechanics, 2018, 35(5): 54 − 64. (in Chinese)
    [15] 陈爱国, 王开明, 邢佶慧, 等. 单调荷载下Q345钢焊缝金属的延性断裂性能研究[J]. 工程力学, 2020, 37(1): 88 − 97.

    Chen Aiguo, Wang Kaiming, Xing Jihui, et al. Ductile fracture behavior of weld metal for Q345 steel under monotonic loading [J]. Engineering Mechanics, 2020, 37(1): 88 − 97. (in Chinese)
    [16] 杨新华, 陈传尧. 疲劳与断裂 [M]. 武汉: 华中科技大学出版社, 2018.

    Yang Xinhua, Chen Chuanyao. Fatigue and fracture [M]. Wuhan: Huazhong University of Science and Technology Press, 2018. (in Chinese)
    [17] GB/T 228−2002, 金属材料室温拉伸试验方法 [S]. 2002.

    GB/T 228−2002, Metallic materials-Tensile testing at ambient temperature [S]. 2002. (in Chinese).
    [18] 陆善彬, 周璐瑶, 郭赛. 基于Gurson-JC模型的铝合金6061T6和低碳钢Q235力学性能表征[J]. 合肥工业大学学报(自然科学版), 2014(6): 641 − 644.

    Lu Shanbin, Zhou Luyao, Guo Sai. Characterization of mechanical properties of aluminum alloy 6061T6 and low carbon steel Q235 based on Gurson-JC model [J]. Journal of Hefei University of Technology, 2014(6): 641 − 644. (in Chinese)
  • 加载中
图(18) / 表(8)
计量
  • 文章访问数:  199
  • HTML全文浏览量:  29
  • PDF下载量:  18
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-12-10
  • 修回日期:  2020-05-07
  • 刊出日期:  2020-11-25

目录

    /

    返回文章
    返回