GREEN’S FUNCTION METHOD FOR STATIC AND DYNAMIC ANALYSIS OF FUNCTIONALLY GRADED BEAMS
-
摘要: 功能梯度梁静动态响应的数值分析方法一般局限于有限元法,存在有限元法的固有缺点,有必要发展新的数值求解方法。将功能梯度梁静力分析的控制微分方程转化为与匀质材料梁静力分析控制微分方程相一致的形式,并利用匀质材料梁静力问题的格林函数,开展功能梯度梁的静力分析。在此基础上,进一步推导获得功能梯度梁的柔度矩阵,据此建立功能梯度梁的运动方程,开展功能梯度梁的动力特性分析和动力响应分析。数值算例表明,采用格林函数法可以高效准确地分析功能梯度梁的静力响应与动力行为,验证了方法的计算精度与效率。Abstract: The numerical analysis of static and dynamic problems of functionally graded material beams is usually conducted with the finite element method and suffers from the inherent deficiencies of the method. The governing equations for static analysis of functionally graded material beams are transformed to the forms for static analysis of isotropic material beams, and the Green’s functions corresponding to isotropic material beams are used for static analysis of functionally graded material beams. On this basis, the compliance matrix of a functionally graded material beam is further derived, and the equation of motion is established and solved for the dynamic problem of the functionally graded material beam. Numerical examples show that the proposed method can analyze the static and dynamic problems of functionally graded material beams with high efficiency and accuracy, indicating the feasibility of the present approach.
-
表 1 功能梯度梁跨中点C的轴向与横向位移
Table 1. Axial and transverse displacement of node C at midspan of the functionally graded beam
位移 方法 子段数n,离散单元数Ne 4 10 20 50 100 轴向位移/
(×10−5 m)解析解 − − 1.328 − − 有限元法 1.314 1.326 1.327 1.328 1.328 格林函数法
(d1=d2=0.2 m)1.349 1.331 1.329 1.328 1.328 格林函数法
(d1=d2=0.4 m)1.349 1.331 1.329 1.328 1.328 格林函数法
(d1=0.2 m, d2=0.2 m)1.349 1.331 1.329 1.328 1.328 横向位移/
(×10−3 m)解析解 − − −2.447 − − 有限元法 −2.403 −2.439 −2.445 −2.447 −2.447 格林函数法
(d1=d2=0.2 m)−2.489 −2.451 −2.448 −2.447 −2.447 格林函数法
(d1=d2=0.4 m)−2.489 −2.451 −2.448 −2.447 −2.447 格林函数法
(d1=0.2 m, d2=0.2 m)−2.489 −2.451 −2.448 −2.447 −2.447 表 2 功能梯度梁固定端点A的轴力与弯矩
Table 2. Axial force and bending moment of node A at fixed end of the functionally graded beam
内力 方法 子段数n,离散单元数Ne 4 10 20 50 100 轴力/kN 解析解 − − 3.166 − − 有限元法 3.181 3.168 3.166 3.166 3.166 格林函数法
(d1=d2=0.2 m)3.066 3.149 3.161 3.165 3.165 格林函数法
(d1=d2=0.4 m)3.066 3.149 3.161 3.165 3.165 格林函数法
(d1=0.2 m, d2=0.2 m)3.066 3.149 3.161 3.165 3.165 弯矩/(kN·m) 解析解 − − −0.625 − − 有限元法 −0.634 −0.627 −0.626 −0.625 −0.625 格林函数法
(d1=d2=0.2 m)−0.677 −0.634 −0.628 −0.626 −0.625 格林函数法
(d1=d2=0.4 m)−0.677 −0.634 −0.628 −0.626 −0.625 格林函数法
(d1=0.2 m, d2=0.2 m)−0.677 −0.634 −0.628 −0.626 −0.625 表 3 功能梯度梁前三阶横向自由振动固有频率
Table 3. The first three natural frequencies of functionally graded beam’s transverse free vibration
频率 方法 子段数n,离散单元数Ne 10 20 30 40 50 200 第一阶频率/
(×103 rad/s)有限元法 1.320 1.323 1.324 1.324 1.324 1.324 格林函数法
(m=4)1.322 1.323 1.323 1.323 1.323 1.323 格林函数法
(m=6)1.323 1.324 1.324 1.324 1.324 1.324 格林函数法
(m=8)1.323 1.324 1.324 1.324 1.324 1.324 格林函数法
(m=10)1.322 1.324 1.324 1.324 1.324 1.324 第二阶频率/
(×103 rad/s)有限元法 4.275 4.307 4.312 4.314 4.315 4.317 格林函数法
(m=4)4.298 4.303 4.303 4.304 4.304 4.304 格林函数法
(m=6)4.308 4.314 4.315 4.315 4.316 4.316 格林函数法
(m=8)4.308 4.315 4.316 4.317 4.317 4.317 格林函数法
(m=10)4.309 4.315 4.316 4.317 4.317 4.317 第三阶频率/
(×103 rad/s)有限元法 8.853 8.992 9.018 9.027 9.031 9.038 格林函数法
(m=4)8.885 8.897 8.898 8.899 8.899 8.899 格林函数法
(m=6)8.989 8.995 8.994 8.994 8.994 8.993 格林函数法
(m=8)9.011 9.032 9.034 9.035 9.035 9.036 格林函数法
(m=10)9.010 9.033 9.036 9.037 9.037 9.038 -
[1] Koizumi M. FGM activities in Japan [J]. Composites Part B: Engineering, 1997, 28(1/2): 1 − 4. doi: 10.1016/S1359-8368(96)00016-9 [2] 毛丽娟, 马连生. 非均匀热载荷作用下功能梯度梁的非线性静态响应[J]. 工程力学, 2017, 34(6): 1 − 8.Mao Lijuan, Ma Liansheng. Nonlinear static responses of FGM beams under non-uniform thermal loading [J]. Engineering Mechanics, 2017, 34(6): 1 − 8. (in Chinese) [3] 何昊南, 于开平. 考虑热对材料参数影响的FGM梁热后屈曲特性研究[J]. 工程力学, 2019, 36(4): 52 − 61.He Haonan, Yu Kaiping. Thermal post-buckling analysis of FGM beams considering the heat effect on materials [J]. Engineering Mechanics, 2019, 36(4): 52 − 61. (in Chinese) [4] Celebi K, Yarimpabuc D, Tutuncu N. Free vibration analysis of functionally graded beams using complementary functions method [J]. Archive of Applied Mechanics, 2018, 88(5): 729 − 739. doi: 10.1007/s00419-017-1338-6 [5] Cao D X, Gao Y H, Yao M H, et al. Free vibration of axially functionally graded beams using the asymptotic development method [J]. Engineering Structures, 2018, 173: 442 − 448. doi: 10.1016/j.engstruct.2018.06.111 [6] Birman V, Byrd L W. Modeling and analysis of functionally graded materials and structures [J]. Applied Mechanics Reviews, 2007, 60(5): 195 − 216. doi: 10.1115/1.2777164 [7] 仲政, 吴林志, 陈伟球. 功能梯度材料与结构的若干力学问题研究进展[J]. 力学进展, 2010, 40(5): 528 − 541.Zhong Zheng, Wu Linzhi, Cheng Weiqiu. Progress in the study on mechanics problems of functionally graded materials and structures [J]. Advances in Mechanics, 2010, 40(5): 528 − 541. (in Chinese) [8] Jha D K, Kant T, Singh R K. A critical review of recent research on functionally graded plates [J]. Composite Structures, 2013, 96: 833 − 849. doi: 10.1016/j.compstruct.2012.09.001 [9] Sankar B V. An elasticity solution for functionally graded beams [J]. Composites Science and Technology, 2001, 61(5): 689 − 696. doi: 10.1016/S0266-3538(01)00007-0 [10] Zhong Z, Yu T. Analytical solution of a cantilever functionally graded beam [J]. Composites Science and Technology, 2007, 67(3/4): 481 − 488. doi: 10.1016/j.compscitech.2006.08.023 [11] Li X. A unified approach for analyzing static and dynamic behaviors of functionally graded Timoshenko and Euler–Bernoulli beams [J]. Journal of Sound and Vibration, 2008, 318(4/5): 1210 − 1229. doi: 10.1016/j.jsv.2008.04.056 [12] Simşek M. Fundamental frequency analysis of functionally graded beams by using different higher-order beam theories [J]. Nuclear Engineering and Design, 2010, 240(4): 697 − 705. doi: 10.1016/j.nucengdes.2009.12.013 [13] Chakraborty A, Gopalakrishnan S, Reddy J N. A new beam finite element for the analysis of functionally graded materials [J]. International Journal of Mechanical Sciences, 2003, 45(3): 519 − 539. doi: 10.1016/S0020-7403(03)00058-4 [14] Kadoli R, Akhtar K, Ganesan N. Static analysis of functionally graded beams using higher order shear deformation theory [J]. Applied Mathematical Modelling, 2008, 32(12): 2509 − 2525. doi: 10.1016/j.apm.2007.09.015 [15] Filippi M, Carrera E, Zenkour A M. Static analyses of FGM beams by various theories and finite elements [J]. Composites Part B: Engineering, 2015, 72: 1 − 9. [16] Pradhan S C, Murmu T. Thermo-mechanical vibration of FGM sandwich beam under variable elastic foundations using differential quadrature method [J]. Journal of Sound and Vibration, 2009, 321(1-2): 342 − 362. doi: 10.1016/j.jsv.2008.09.018 [17] Jiao P F, Wang Y Z, Xu G N, et al. Linear bending of functionally graded beams by differential quadrature method [C]// IOP Conference Series: Earth and Environmental Science. IOP publishing, 2018, 170: 022160. [18] 李世荣, 刘平. 功能梯度梁与均匀梁静动态解间的相似转换[J]. 力学与实践, 2010, 32(5): 45 − 49.Li Shirong, Liu Ping. Analogous transformation of static and dynamic solutions between functionally graded material beams and uniform beams [J]. Mechanics in Engineering, 2010, 32(5): 45 − 49. (in Chinese) [19] 王瑄, 李世荣. 功能梯度Levinson梁自由振动响应的均匀化和经典化表示[J]. 振动与冲击, 2017, 36(18): 70 − 77.Wang Xuan, Li Shirong. Homogenized and classical expression for the response of free vibration of simply supported FGM Levinson beams [J]. Journal of Vibration and Shock, 2017, 36(18): 70 − 77. (in Chinese) [20] Murín J, Kutiš V. An effective solution of the composite (FGM's) beam structures [J]. Engineering Mechanics, 2008, 15(2): 115 − 132. [21] Alshorbagy A E, Eltaher M A, Mahmoud F F. Free vibration characteristics of a functionally graded beam by finite element method [J]. Applied Mathematical Modelling, 2011, 35(1): 412 − 425. doi: 10.1016/j.apm.2010.07.006 [22] 汪亚运, 彭旭龙, 陈得良. 轴向功能梯度变截面梁的自由振动研究[J]. 固体力学学报, 2015, 36(5): 384 − 391.Wang Yayun, Peng Xulong, Chen Deliang. Free vibration of axially functionally graded beams with non-uniform cross-section [J]. Chinese Journal of Solid Mechanics, 2015, 36(5): 384 − 391. (in Chinese) [23] Su C, Fan X, Ma H, et al. Green's function method for stability analysis of stochastic structures [J]. Journal of Engineering Mechanics, 2015, 141(3): 4014121. doi: 10.1061/(ASCE)EM.1943-7889.0000842 [24] Su C, Han D. Elastic analysis of orthotropic plane problems by the spline fictitious boundary element method [J]. Applied Mathematics and Mechanics, 2002, 23(4): 446 − 453. -