留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

大气边界层大涡模拟入口湍流生成方法综述

周桐 杨庆山 闫渤文 Pham Van Phuc 王京学

周桐, 杨庆山, 闫渤文, Pham Van Phuc, 王京学. 大气边界层大涡模拟入口湍流生成方法综述[J]. 工程力学, 2020, 37(5): 15-25. doi: 10.6052/j.issn.1000-4750.2019.06.0340
引用本文: 周桐, 杨庆山, 闫渤文, Pham Van Phuc, 王京学. 大气边界层大涡模拟入口湍流生成方法综述[J]. 工程力学, 2020, 37(5): 15-25. doi: 10.6052/j.issn.1000-4750.2019.06.0340
ZHOU Tong, YANG Qing-shan, YAN Bo-wen, Pham Van Phuc, WANG Jing-xue. REVIEW OF INFLOW TURBULENCE GENERATION METHODS WITH LARGE EDDY SIMULATION FOR ATMOSPHERIC BOUNDARY LAYER[J]. Engineering Mechanics, 2020, 37(5): 15-25. doi: 10.6052/j.issn.1000-4750.2019.06.0340
Citation: ZHOU Tong, YANG Qing-shan, YAN Bo-wen, Pham Van Phuc, WANG Jing-xue. REVIEW OF INFLOW TURBULENCE GENERATION METHODS WITH LARGE EDDY SIMULATION FOR ATMOSPHERIC BOUNDARY LAYER[J]. Engineering Mechanics, 2020, 37(5): 15-25. doi: 10.6052/j.issn.1000-4750.2019.06.0340

大气边界层大涡模拟入口湍流生成方法综述

doi: 10.6052/j.issn.1000-4750.2019.06.0340
基金项目: 

中央高校基本科研业务费专项资金资助项目(2018YJS122);国家自然科学基金项目(51720105005,51608075);重庆市科委基础与前沿研究计划项目(stc2017jcyjAX0180)

详细信息
    作者简介:

    杨庆山(1968-),男,河北人,教授,博士,博导,主要从事结构风工程和古建筑木结构研究(E-mail:qshyang@cqu.edu.cn);闫渤文(1989-),男,河南人,副教授,博士,博导,主要从事结构风工程研究(E-mail:bowenyancq@cqu.edu.cn);Pham Van Phuc(1978-),男,越南人,高级研究员,博士,主要从事结构风工程研究(Email:p_phuc@shimz.co.jp);王京学(1991-),女,河北人,博士生,主要从事结构风工程研究(E-mail:14121095@bjtu.edu.cn).

  • 中图分类号: O357.5

REVIEW OF INFLOW TURBULENCE GENERATION METHODS WITH LARGE EDDY SIMULATION FOR ATMOSPHERIC BOUNDARY LAYER

  • 摘要: 随着计算资源的飞速发展以及数值模拟技术的不断进步,大涡模拟被越来越多地应用于结构风工程领域的研究。运用大涡模拟准确模拟结构风效应的关键问题之一是生成满足大气边界层风场特性的入口湍流条件。预前模拟法和人工合成法是目前主流的两类大涡模拟入口湍流生成方法。该文阐述了不同入口湍流生成方法的基本原理,并梳理其在结构风工程领域的发展。从结构风工程研究的角度出发,对比分析不同方法的特点及适用性。最后,针对当前大气边界层大涡模拟入口湍流生成方法存在的问题,提出了未来研究的展望。
  • [1] Ricci M, Patruno L, Miranda S D. Wind loads and structural response:Benchmarking LES on a low-rise building[J]. Engineering Structures, 2017, 144:26-42.
    [2] Yan B, Li Q. Large-eddy simulation of wind effects on a super-tall building in urban environment conditions[J]. Structure & Infrastructure Engineering, 2015, 12(6):765-785.
    [3] Dagnew A K, Bitsuamlak G T. Computational evaluation of wind loads on buildings:A review[J]. Wind & Structures, 2013, 16(6):629-660.
    [4] Britter R E, Hanna S R. Flow and dispersion in urban areas[J]. Annual Review of Fluid Mechanics, 2003, 35(1):469-496.
    [5] Nozu T, Kishida T, Tamura T, et al. LES of wind turbulence and heat environment around dense tall buildings[C]//Proceeding of the Fifth European and African Conference on Wind Engineering, Florence, Italy:Firenze University Press, 2009:241-244.
    [6] Nakayama H, Takemi T, Nagai H. Large-eddy simulation of urban boundary-layer flows by generating turbulent inflows from mesoscale meteorological simulations[J]. Atmospheric Science Letters, 2012, 13(3):180-186.
    [7] Park S B, Baik J J, Lee S H. Impacts of mesoscale wind on turbulent flow and ventilation in a densely built-up urban area[J]. Journal of Applied Meteorology and Climatology, 2015, 54(4):811-824.
    [8] Tamura T. Towards practical use of LES in wind engineering[J]. Journal of Wind Engineering & Industrial Aerodynamics, 2008, 96(10/11):1451-1471.
    [9] Cochran L, Derickson R. A physical modeler's view of Computational Wind Engineering[J]. Journal of Wind Engineering & Industrial Aerodynamics, 2011, 99(4):139-153.
    [10] 李孙伟. 边界层风场特性的CFD模拟[D]. 上海:同济大学, 2008:1-80. Li Sunwei. CFD simulation of wind field characteristics in the atmospheric boundary layer[D]. Shanghai:Tongji University, 2008:1

    -80. (in Chinese)
    [11] Phuc P V, Nozu T, Kikuchi H, et al. Wind pressure distributions on buildings using the coherent structure Smagorinsky model for LES[J]. Journal of Computations, 2018, 6(2):32.
    [12] Blackmore T, Batten W M J, Bahaj A S. Inlet grid-generated turbulence for large-eddy simulations[J]. International Journal of Computational Fluid Dynamics, 2013, 27(6/7):307-315.
    [13] Enoki K, Ishihara T. A generalized canopy model and its application to the prediction to the prediction of urban wind climate[J]. Journal of Japan Society of Civil Engineers, 2012, 68(1):28-47. (in Japanese)
    [14] Kaimal J C, Finnigan J J. Atmospheric boundary layer flows:their structure and measurement[M]. New York:Oxford University Press, 1994.
    [15] Liu Z, Ishihara T, Tanaka T, et al. LES study of turbulent flow fields over a smooth 3-D hill and a smooth 2-D ridge[J]. Journal of Wind Engineering & Industrial Aerodynamics, 2016, 153:1-12.
    [16] Spalart P R. Direct simulation of a turbulent boundary layer up to Reθ=1410[J]. Journal of Fluid Mechanics, 1988, 187:61-98.
    [17] Lund T S, Wu X, Squires K D. Generation of turbulent inflow data for spatially-developing boundary layer simulations[J]. Journal of Computational Physics, 1998, 140(2):233-258.
    [18] Nozawa K, Tamura T. Large eddy simulation of the flow around a low-rise building immersed in a rough-wall turbulent boundary layer[J]. Journal of Wind Engineering & Industrial Aerodynamics, 2002, 90(10):1151-1162.
    [19] Kataoka H. Numerical simulations of a wind-induced vibrating square cylinder within turbulent boundary layer[J]. Journal of Wind Engineering & Industrial Aerodynamics, 2008, 96(10/11):1985-1997.
    [20] 朱伟亮, 杨庆山. 湍流边界层中低矮建筑绕流大涡模拟[J]. 建筑结构学报, 2010, 31(10):41-47.

    Zhu Weiliang, Yang Qingshan. Large eddy simulation of now around a low-rise building immersed in turbulent boundary layer[J]. Chinese Journal of Building Structures, 2010, 31(10):41-47. (in Chinese)
    [21] 王婷婷, 杨庆山. 基于FLUENT的大气边界层风场LES模拟[J]. 计算力学学报, 2012, 29(5):734-739.

    Wang Tingting, Yang Qingshan. Large eddy simulation of atmospheric boundary layer flow based on FLUENT[J]. Chinese Journal of Computational Mechanics, 2012, 29(5):734-739. (in Chinese)
    [22] Aboshosha H, Bitsuamlak G, Damatty A E. Turbulence characterization of downbursts using LES[J]. Journal of Wind Engineering & Industrial Aerodynamics, 2015, 136:44-61.
    [23] Li C, Wang J, Xiao Y. Large eddy simulation of turbulent atmospheric boundary layer through recycling-rescalingrevising method[C]//Proceeding of the Fourteenth International Symposium on Structural Engineering, Beijing, China:Science Press, 2016:705-711.
    [24] Liu K, Pletcher R H. Inflow conditions for the large eddy simulation of turbulent boundary layers:A dynamic recycling procedure[J]. Journal of Computational Physics, 2006, 219(1):1-6.
    [25] Jewkes J W, Chung Y M, Carpenter P W. Modifications to a turbulent inflow generation method for boundary-layer flows[J]. AIAA Journal, 2011, 49(1):247-250.
    [26] Stevens R J A M, Graham J, Meneveau C. A concurrent precursor inflow method for large eddy simulations and applications to finite length wind farms[J]. Renewable Energy, 2014, 68:46-50.
    [27] Spille-Kohoff A, Kaltenbach H J. Generation of turbulent inflow data with a prescribed shear-stress profile[C]//Proceedings of the Third AFOSR International Conference on DNS/LES, Arlington, Texas, United States:Greyden Press, 2001:319-326.
    [28] Morgan B, Larsson J, Kawai S, et al. Improving low-frequency characteristics of recycling/rescaling inflow turbulence generation[J]. AIAA Journal, 2011, 49(3):582-597.
    [29] Rice S O. Mathematical analysis of random noise[J]. Bell System Technical Journal, 1944, 23(3):282-332.
    [30] Shinozuka M, Sata Y. Simulation of nonstationary random process[J]. Journal of the Engineering Mechanics Division, 1967, 93(1):11-40.
    [31] Shinozuka M. Simulation of multivariate and multidimensional random processes[J]. The Journal of the Acoustical Society of America, 1971, 49(1B):357-368.
    [32] Shinozuka M, Jan C M. Digital simulation of random processes and its applications[J]. Journal of Sound and Vibration, 1972, 25(1):111-128.
    [33] Deodatis G. Simulation of ergodic multivariate stochastic processes[J]. Journal of Engineering Mechanics, 1996, 122(8):778-787.
    [34]
    [35] Yang W W, Chang T Y P, Chang C C. An efficient wind field simulation technique for bridges[J]. Journal of Wind Engineering & Industrial Aerodynamics, 1997, 67(97):697-708.
    [36] Yang J N. Simulation of random envelope processes[J]. Journal of Sound and Vibration, 1972, 21(1):73-85.
    [37] Yang J N. On the normality and accuracy of simulated random processes[J]. Journal of Sound and Vibration, 1973, 26(3):417-428.
    [38] 孙瑛, 林斌, 武岳, 等. 脉动风场数值模拟的POD-谐波合成法[J]. 哈尔滨工业大学学报, 2011, 43(12):13-17.

    Sun Ying, Lin Bin, Wu Yue, et al. WAWS/POD simulation of fluctuating wind field[J]. Journal of Harbin Institute of Technology, 2011, 43(12):13-17. (in Chinese)
    [39] Ding Q, Zhu L, Xiang H. Simulation of stationary Gaussian stochastic wind velocity field[J]. Wind and Structures, 2006, 9(3):231-243.
    [40]
    [41] 李春祥, 刘晨哲. 基于径向基神经网络的谐波叠加法[J]. 振动与冲击, 2010, 29(1):112-116.

    Li Chunxiang, Liu Chenzhe. RBF neural network based harmony superposition method[J]. Journal of Vibration and Shock, 2010, 29(1):112-116. (in Chinese)
    [42] Huang G, Liao H, Li M. New formulation of Cholesky decomposition and applications in stochastic simulation[J]. Probabilistic Engineering Mechanics, 2013, 34:40-47.
    [43] 祝志文, 黄炎. 大跨度桥梁脉动风场模拟的插值算法[J]. 振动与冲击, 2017, 36(7):156-163.

    Zhu Zhiwen, Huang Yan. Interpolation algorithm for fluctuating wind field simulation of long-span bridges[J]. Journal of Vibration and Shock, 2017, 36(7):156-163. (in Chinese)
    [44] 陶天友, 王浩. 基于Hermite插值的简化风场模拟[J]. 工程力学, 2017, 34(3):187-193.

    Tao Tianyou, Wang Hao. Reduced simulation of the wind field based on Hermite interpolation[J]. Engineering Mechanics, 2017, 34(3):187-193. (in Chinese)
    [45] Kraichnan, Robert H. Diffusion by a random velocity field[J]. Physics of Fluids, 1970, 13(1):22-31.
    [46] Smirnov A, Shi S, Celik I. Random flow generation technique for large eddy simulations and particledynamics modeling[J]. Journal of Fluids Engineering, 2001, 123(2):359-371.
    [47] Huang S H, Li Q S, Wu J R. A general inflow turbulence generator for large eddy simulation[J]. Journal of Wind Engineering & Industrial Aerodynamics, 2010, 98(10):600-617.
    [48] Castro H G, Paz R R. A time and space correlated turbulence synthesis method for large eddy simulations[J]. Journal of Computational Physics, 2013, 235(4):742-763.
    [49] Aboshosha H, Elshaer A, Bitsuamlak G T, et al. Consistent inflow turbulence generator for LES evaluation of wind-induced responses for tall buildings[J]. Journal of Wind Engineering & Industrial Aerodynamics, 2015, 142:198-216.
    [50] Yu Y, Yang Y, Xie Z. A new inflow turbulence generator for large eddy simulation evaluation of wind effects on a standard high-rise building[J]. Building and Environment, 2018, 138:300-313.
    [51] Tamura Y, Suganuma S, Kikuchi H, et al. Proper orthogonal decomposition of random wind pressure field[J]. Journal of Fluids and Structures, 1999, 13(7/8):1069-1095.
    [52] Chen X, Kareem A. Proper orthogonal decomposition-based modeling, analysis, and simulation of dynamic wind load effects on structures[J]. Journal of Engineering Mechanics, 2005, 131(4):325-339.
    [53] Bernal D. Load vectors for damage localization[J]. Journal of Engineering Mechanics, 2002, 128(1):7-14.
    [54] 陈波, 武岳, 沈世钊. 大跨度屋盖结构等效静力风荷载中共振分量的确定方法研究[J]. 工程力学, 2007, 24(1):51-55.

    Chen Bo, Wu Yue, Shen Shizhao. Study of the resonant component of equivalent static wind loads on large span roofs[J]. Engineering Mechanics, 2007, 24(1):51-55. (in Chinese)
    [55] 陈波, 杨庆山. 国家体育场多目标等效静风荷载[J]. 土木建筑与环境工程, 2009, 31(6):27-33.

    Chen Bo, Yang Qingshan. Equivalent static wind load for multiple targets of China's national stadium[J]. Journal of Civil, Architecture & Environmental Engineering, 2009, 31(6):27-33. (in Chinese)
    [56] Druault P, Lardeau S, Bonnet J P, et al. Generation of three-dimensional turbulent inlet conditions for large-eddy simulation[J]. AIAA Journal, 2004, 42(3):447-456.
    [57] Perret L, Delville J, Manceau R, et al. Generation of turbulent inflow conditions for large eddy simulation from stereoscopic PIV measurements[J]. International Journal of Heat and Fluid Flow, 2006, 27(4):576-584.
    [58] Perret L, Delville J, Manceau R, et al. Turbulent inflow conditions for large-eddy simulation based on low-order empirical model[J]. Physics of Fluids, 2008, 20(7):1521-178.
    [59] Johansson P S, Andersson H I. Generation of inflow data for inhomogeneous turbulence[J]. Theoretical and Computational Fluid Dynamics, 2004, 18(5):371-389.
    [60] Klein M, Sadiki A, Janicka J. A digital filter based generation of inflow data for spatially developing direct numerical or large eddy simulation[J]. Journal of Computational Physics, 2003, 186(2):652-665.
    [61] Kempf A M, Wysocki S, Pettit M. An efficient, parallel low-storage implementation of Klein's turbulence generator for LES and DNS[J]. Computers & Fluids, 2012, 60:58-60
    [62] Xie Z T, Castro I P. Efficient generation of inflow conditions for large eddy simulation of street-scale flows[J]. Flow Turbulence & Combustion, 2008, 81(3):449-470.
    [63] Kim Y, Castro I P, Xie Z T. Divergence-free turbulence inflow conditions for large-eddy simulations with incompressible flow solvers[J]. Computers & Fluids, 2013, 84(18):56-68.
    [64] Daniels S J, Castro I P, Xie Z T. Peak loading and surface pressure fluctuations of a tall model building[J]. Journal of Wind Engineering & Industrial Aerodynamics, 2013, 120:19-28.
    [65] Lamberti G, García-Sánchez C, Sousa J, et al. Optimizing turbulent inflow conditions for large-eddy simulations of the atmospheric boundary layer[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2018, 177:32-44.
    [66] Mathey F, Cokljat D, Bertoglio J P, et al. Assessment of the vortex method for large eddy simulation inlet conditions[J]. Progress in Computational Fluid Dynamics, 2006, 6(1/2/3):58-67.
    [67] Jarrin N, Benhamadouche S, Laurence D, et al. A synthetic-eddy method for generating inflow conditions for large-eddy simulations[J]. International Journal of Heat & Fluid Flow, 2006, 27(4):585-593.
    [68] Jarrin N, Prosser R, Uribe J C, et al. Reconstruction of turbulent fluctuations for hybrid RANS/LES simulations using a synthetic-eddy method[J]. International Journal of Heat and Fluid Flow, 2009, 30(3):435-442.
    [69] Luo Y, Liu H, Huang Q, et al. A multi-scale synthetic eddy method for generating inflow data for LES[J]. Computers & Fluids, 2017, 156:103-112.
    [70] Luo Y, Liu H, Xue H, et al. Large-eddy simulation evaluation of wind loads on a high-rise building based on the multiscale synthetic eddy method[J]. Advances in Structural Engineering, 2019, 22(4):997-1006.
  • [1] 林强, 刘敏, 杨庆山, 吴凤波, 黄国庆.  非高斯风压峰值因子估计:基于矩的转换过程法的对比研究 . 工程力学, 2020, 37(4): 78-86. doi: 10.6052/j.issn.1000-4750.2019.04.0201
    [2] 周桐, 闫渤文, 杨庆山, PhamVan Phuc, 王京学.  大气边界层大涡模拟入口湍流生成方法研究 . 工程力学, 2020, 37(7): 68-76. doi: 10.6052/j.issn.1000-4750.2019.07.0381
    [3] 胡晓兵, 杨易.  基于NSRFG方法的标准地貌风场大涡模拟研究 . 工程力学, 2020, 37(9): 112-122. doi: 10.6052/j.issn.1000-4750.2019.10.0601
    [4] 张锐, 李宏男, 王东升, 成虎.  结构时程分析中强震记录选取研究综述 . 工程力学, 2019, 36(2): 1-16. doi: 10.6052/j.issn.1000-4750.2018.01.0037
    [5] 胡伟成, 杨庆山, 闫渤文, 张建.  基于谱元法的复杂地形风场大涡模拟 . 工程力学, 2018, 35(12): 7-14. doi: 10.6052/j.issn.1000-4750.2017.08.0663
    [6] 梁霆浩, 余锡平.  非均匀拟形冠层内大气流动特征的大涡模拟研究 . 工程力学, 2017, 34(1): 248-256. doi: 10.6052/j.issn.1000-4750.2015.05.0464
    [7] 周晅毅, 祖公博, 顾明.  TTU标准模型表面风压大涡模拟及风洞试验的对比研究 . 工程力学, 2016, 33(2): 104-110. doi: 10.6052/j.issn.1000-4750.2014.06.0504
    [8] 刘克同, 汤爱平, 曹鹏.  桥梁气动导数的格子Boltzmann大涡模拟仿真 . 工程力学, 2015, 32(5): 111-119. doi: 10.6052/j.issn.1000-4750.2013.11.1053
    [9] 罗尧治, 郑延丰, 杨超, 喻莹, 俞锋, 张鹏飞.  结构复杂行为分析的有限质点法研究综述 . 工程力学, 2014, 31(8): 1-7,23. doi: 10.6052/j.issn.1000-4750.2013.05.ST14
    [10] 康啊真, 祝兵, 邢帆, 韩兴.  超大型结构物受波浪力作用的数值模拟 . 工程力学, 2014, 31(8): 108-115. doi: 10.6052/j.issn.1000-4750.2013.03.0151
    [11] 薛梅新, 朴英.  高压喷嘴空化初生的大涡模拟 . 工程力学, 2013, 30(4): 417-422. doi: 10.6052/j.issn.1000-4750.2011.12.0874
    [12] 李 启 杨庆山 朱伟亮.  湍流入口条件下建筑非定常风场的大涡模拟拟 . 工程力学, 2012, 29(12): 274-280. doi: 10.6052/j.issn.1000-4750.2011.05.0290
    [13] 孟晓亮, 郭震山, 丁泉顺, 朱乐东.  风嘴角度对封闭和半封闭箱梁涡振及颤振性能的影响 . 工程力学, 2011, 28(增刊I): 184-188,.
    [14] 袁书生, 张 健.  多室内固体可燃物火灾烟气运动的大涡模拟 . 工程力学, 2010, 27(11): 204-212.
    [15] 梁开洪, 曹树良, 陈 炎, 祝宝山.  基于特征线分离算法的大涡模拟 . 工程力学, 2010, 27(2): 41-048.
    [16] 艾辉林, 陈艾荣.  跨海大桥桥塔区风环境数值风洞模拟 . 工程力学, 2010, 27(增刊I): 196-199,.
    [17] 朱伟亮, 杨庆山.  基于LES模型的近地脉动风场数值模拟 . 工程力学, 2010, 27(9): 17-021.
    [18] 艾辉林, 陈艾荣.  基于ALE格式的动网格方法数值模拟断面气动导数 . 工程力学, 2009, 26(7): 211-215.
    [19] 王 兵.  大涡模拟与直接模拟研究稀疏气固两相湍流规律综述 . 工程力学, 2009, 26(11): 213-221.
    [20] 党会学, 陈志敏, 姚伟刚, 孟 轩.  同向旋转涡对融合机理的数值模拟研究 . 工程力学, 2007, 24(10): 0-073,.
  • 加载中
计量
  • 文章访问数:  54
  • HTML全文浏览量:  5
  • PDF下载量:  15
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-06-28
  • 修回日期:  2019-09-23

大气边界层大涡模拟入口湍流生成方法综述

doi: 10.6052/j.issn.1000-4750.2019.06.0340
    基金项目:

    中央高校基本科研业务费专项资金资助项目(2018YJS122);国家自然科学基金项目(51720105005,51608075);重庆市科委基础与前沿研究计划项目(stc2017jcyjAX0180)

    作者简介:

    杨庆山(1968-),男,河北人,教授,博士,博导,主要从事结构风工程和古建筑木结构研究(E-mail:qshyang@cqu.edu.cn);闫渤文(1989-),男,河南人,副教授,博士,博导,主要从事结构风工程研究(E-mail:bowenyancq@cqu.edu.cn);Pham Van Phuc(1978-),男,越南人,高级研究员,博士,主要从事结构风工程研究(Email:p_phuc@shimz.co.jp);王京学(1991-),女,河北人,博士生,主要从事结构风工程研究(E-mail:14121095@bjtu.edu.cn).

  • 中图分类号: O357.5

摘要: 随着计算资源的飞速发展以及数值模拟技术的不断进步,大涡模拟被越来越多地应用于结构风工程领域的研究。运用大涡模拟准确模拟结构风效应的关键问题之一是生成满足大气边界层风场特性的入口湍流条件。预前模拟法和人工合成法是目前主流的两类大涡模拟入口湍流生成方法。该文阐述了不同入口湍流生成方法的基本原理,并梳理其在结构风工程领域的发展。从结构风工程研究的角度出发,对比分析不同方法的特点及适用性。最后,针对当前大气边界层大涡模拟入口湍流生成方法存在的问题,提出了未来研究的展望。

English Abstract

周桐, 杨庆山, 闫渤文, Pham Van Phuc, 王京学. 大气边界层大涡模拟入口湍流生成方法综述[J]. 工程力学, 2020, 37(5): 15-25. doi: 10.6052/j.issn.1000-4750.2019.06.0340
引用本文: 周桐, 杨庆山, 闫渤文, Pham Van Phuc, 王京学. 大气边界层大涡模拟入口湍流生成方法综述[J]. 工程力学, 2020, 37(5): 15-25. doi: 10.6052/j.issn.1000-4750.2019.06.0340
ZHOU Tong, YANG Qing-shan, YAN Bo-wen, Pham Van Phuc, WANG Jing-xue. REVIEW OF INFLOW TURBULENCE GENERATION METHODS WITH LARGE EDDY SIMULATION FOR ATMOSPHERIC BOUNDARY LAYER[J]. Engineering Mechanics, 2020, 37(5): 15-25. doi: 10.6052/j.issn.1000-4750.2019.06.0340
Citation: ZHOU Tong, YANG Qing-shan, YAN Bo-wen, Pham Van Phuc, WANG Jing-xue. REVIEW OF INFLOW TURBULENCE GENERATION METHODS WITH LARGE EDDY SIMULATION FOR ATMOSPHERIC BOUNDARY LAYER[J]. Engineering Mechanics, 2020, 37(5): 15-25. doi: 10.6052/j.issn.1000-4750.2019.06.0340
参考文献 (70)

目录

    /

    返回文章
    返回