留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于Pushover分析方法的体外预应力自复位框架抗震性能研究

夏婉秋 鲁亮 张会会 徐颖超

夏婉秋, 鲁亮, 张会会, 徐颖超. 基于Pushover分析方法的体外预应力自复位框架抗震性能研究[J]. 工程力学, 2020, 37(S): 172-179, 186. doi: 10.6052/j.issn.1000-4750.2019.04.S032
引用本文: 夏婉秋, 鲁亮, 张会会, 徐颖超. 基于Pushover分析方法的体外预应力自复位框架抗震性能研究[J]. 工程力学, 2020, 37(S): 172-179, 186. doi: 10.6052/j.issn.1000-4750.2019.04.S032
Wan-qiu XIA, Liang LU, Hui-hui ZHANG, Ying-chao XU. STUDY ON THE SEISMIC PERFORMANCE OF THE EXTERNAL PRESTRESSED SELF-CENTERING FRAME WITH PUSHOVER ANALYSIS[J]. Engineering Mechanics, 2020, 37(S): 172-179, 186. doi: 10.6052/j.issn.1000-4750.2019.04.S032
Citation: Wan-qiu XIA, Liang LU, Hui-hui ZHANG, Ying-chao XU. STUDY ON THE SEISMIC PERFORMANCE OF THE EXTERNAL PRESTRESSED SELF-CENTERING FRAME WITH PUSHOVER ANALYSIS[J]. Engineering Mechanics, 2020, 37(S): 172-179, 186. doi: 10.6052/j.issn.1000-4750.2019.04.S032

基于Pushover分析方法的体外预应力自复位框架抗震性能研究

doi: 10.6052/j.issn.1000-4750.2019.04.S032
基金项目: 国家自然科学基金项目(51678453);国家重点研发计划项目(2016YFC0701101)
详细信息
    作者简介:

    夏婉秋(1995−),女,安徽人,硕士生,主要从事工程结构抗震研究(E-mail: xiawanqiu0902@163.com)

    张会会(1993−),女,安徽人,硕士生,主要从事工程结构抗震研究(E-mail: zhanghh1110@163.com)

    徐颖超(1991−),女,浙江人,硕士生,主要从事工程结构抗震研究(E-mail: xuyingchao1991@126.com)

    通讯作者: 鲁 亮(1969−),男,安徽人,副教授,博士,主要从事工程结构抗震研究(E-mail: 95010@tongji.edu.cn)
  • 中图分类号: TU352.1

STUDY ON THE SEISMIC PERFORMANCE OF THE EXTERNAL PRESTRESSED SELF-CENTERING FRAME WITH PUSHOVER ANALYSIS

  • 摘要: 基于Pushover分析方法,研究了体外预应力自复位框架(External Prestressed Self-centering Frame, EPSCF)结构的抗震性能。采用ABAQUS软件建立了EPSCF结构有限元模型,并与振动台试验结果进行对比,验证了模型及建模方法的可靠性和准确性;采用Pushover分析方法评定EPSCF无控及受控结构的抗震性能并对比分析其地震响应。结果表明,设置层间阻尼器的EPSCF受控结构的等效阻尼比大幅度提升,阻尼器屈服耗能是结构的主要耗能形式,在罕遇地震作用下的结构加速度和位移响应得到了有效控制,EPSCF受控结构的抗震性能优异。
  • 图  1  框架结构平面布置图 /mm

    Figure  1.  Layout of frame structure

    图  3  振动台试验对应的有限元模型

    Figure  3.  Finite element models corresponding to shaking table test

    图  2  EPSCF振动台试验

    Figure  2.  Shaking table test of EPSCF

    图  4  能力谱与需求谱曲线

    Figure  4.  Capacity spectrum curve and demand spectrum curve

    图  5  EPSCF无控结构单榀框架有限元分析模型

    Figure  5.  FEM model of a plane frame of EPSCF without dampers

    图  6  EPSCF无控结构推覆曲线

    Figure  6.  Pushover curves of EPSCF without dampers

    图  7  EPSCF无控结构能力谱与需求谱曲线

    Figure  7.  Capability spectrum curve and demand spectrum curve of EPSCF without dampers

    图  8  X型软钢金属阻尼器构造图

    Figure  8.  Construction diagram of X-type mild steel metal damper

    图  9  X型软钢金属阻尼器计算简图

    Figure  9.  Calculation diagram of X-type mild steel metal damper

    图  10  EPSCF受控结构能力谱与需求谱曲线

    Figure  10.  Capability spectrum curve and demand spectrum curve of EPSCF with dampers

    表  2  EPSCF结构数值模拟和振动台试验结果对比

    Table  2.   Comparison of numerical simulation results and shaking table test results of EPSCF structure

    参数 无控结构 受控结构
    试验 模拟 相差/(%) 试验 模拟 相差/(%)
    M/kg 8794.900 8801.200 0.07 8944.800 8951.200 0.07
    f1/Hz 1.688 1.690 1.35 2.875 2.979 3.60
    f2/Hz 10.687 10.554 −1.24 11.813 11.273 −4.57
    f3/Hz 28.812 27.413 −4.86 27.688 26.694 −3.59
    下载: 导出CSV

    表  1  模型相似关系

    Table  1.   Similitude relationships of the model

    物理参数 相似比(模型/原型)
    长度Sl 1/3
    应变Sε 1
    弹性模量SE 1
    应力Sσ 1
    质量密度Sρ 3/2
    质量SM 1/18
    频率Sf $\sqrt 6 $
    刚度SK 1/27
    时间St 1/ $\sqrt 6 $
    阻尼SC 1/54
    速度Sv $\sqrt {2/3} $
    加速度Sa 2
    下载: 导出CSV

    表  3  无控与受控EPSCF结构最大位移响应对比

    Table  3.   Comparison of maximum displacement responses between EPSCF without dampers and that with dampers

    楼层 层位移/mm 层间位移/mm 层间位移角
    无控结构 受控结构 无控结构 受控结构 无控结构 受控结构
    1 194.45 114.34 194.45 114.34 1/18.5 1/31.5
    2 381.28 224.20 186.83 109.86 1/19.3 1/32.8
    3 529.97 311.64 148.69 87.44 1/24.2 1/41.2
    4 635.46 373.67 105.49 62.03 1/34.1 1/58.0
    下载: 导出CSV
  • [1] Priestley M J N, Tao J. Seismic response of precast prestressed concrete frames with partially debonded tendons [J]. PCI Journal, 1993, 38(1): 58 − 69. doi:  10.15554/pcij.01011993.58.69
    [2] Cheok G S, Lew H S. Model precast concrete beam-to-column connections subject to cyclic loading [J]. PCI Journal, 1993, 38(4): 80 − 92. doi:  10.15554/pcij.05011991.56.67
    [3] Priestley M J N, MacRae G A. Seismic tests of precast beam-to-column joint subassemblages with unbonded tendons [J]. PCI Journal, 1996, 41(1): 64 − 81. doi:  10.15554/pcij.01011996.64.81
    [4] El-Sheikh M T, Sause R, Pessiki S, et al. Seismic behavior and design of unbonded post-tensioned precast concrete frames [J]. PCI Journal, 1999, 44(3): 54 − 71. doi:  10.15554/pcij.05011999.54.71
    [5] Roh H. Seismic behavior of structures using rocking columns and viscous dampers [D]. Buffalo: University at Buffalo, the State University of New York, 2007.
    [6] Lu L, Liu X, Chen J J, et al. Seismic performance of a controlled rocking reinforced concrete frame [J]. Advances in Structural Engineering, 2017, 20(1): 4 − 17. doi:  10.1177/1369433216645992
    [7] 鲁亮, 樊宇, 吕西林, 等. 受控摇摆式钢筋混凝土框架抗震机理研究[J]. 地震工程与工程振动, 2015, 35(1): 66 − 76. doi:  10.13197/j.eeev.2015.01.66.lul.009

    Lü Liang, Fan Yu, Lu Xilin, et al. Research on the seismic performance of a controllable rocking RC frame [J]. Earthquake Engineering and Engineering Dynamic, 2015, 35(1): 66 − 76. (in Chinese) doi:  10.13197/j.eeev.2015.01.66.lul.009
    [8] 鲁亮, 刘霞, 陈俊杰. 一种摇摆式钢筋混凝土框架节点刚度取值研究[J]. 振动与冲击, 2015, 34(13): 195 − 199.

    Lu Liang, Liu Xia, Chen Junjie. Selection of joint stiffness for a rocking reinforced concrete frame [J]. Journal of Vibration and Shock, 2015, 34(13): 195 − 199. (in Chinese)
    [9] 鲁亮, 江乐, 李鸿, 等. 柱端铰型受控摇摆式钢筋混凝土框架抗震性能的振动台试验研究[J]. 振动与冲击, 2016, 35(4): 193 − 198, 216.

    Lu Liang, Jiang Le, Li Hong, et al. Shaking table tests for aseismic performance of a controllable rocking reinforced concrete frame with column-end-hinge joints [J]. Journal of Vibration and Shock, 2016, 35(4): 193 − 198, 216. (in Chinese)
    [10] 鲁亮, 李鸿, 刘霞. 梁端铰型受控摇摆式钢筋混凝土框架抗震性能振动台试验研究[J]. 建筑结构学报, 2016, 37(3): 59 − 66.

    Lu Liang, Li Hong, Liu Xia. Shaking table test on seismic performance of controlled rocking reinforced concrete frame [J]. Journal of Building Structures, 2016, 37(3): 59 − 66. (in Chinese)
    [11] 鲁亮, 刘霞. 一种体外预应力钢筋混凝土摇摆框架抗震性能研究[J]. 振动与冲击, 2017, 36(9): 179 − 185, 252.

    Lu Liang, Liu Xia. Aseismic performance of an external prestressed rocking reinforced concrete frame [J]. Journal of Vibration and Shock, 2017, 36(9): 179 − 185, 252. (in Chinese)
    [12] Freeman S A, Nicoletti J P, Tyrell J V. Evaluation of existing buildings for seismic risk [C]// Proceeding of First US National Conference of Earthquake Engineering. Berkeley: EERI, 1975: 113 − 122.
    [13] FEMA 273/274, NEHPR guidelines for the seismic rehabilitation of buildings [S]. Washington, D.C.: Federal Emergency Management Agency, 1997.
    [14] ATC-40, Seismic evaluation and retrofit of concrete buildings [R]. Redwood City: Applied Technology Council, 1996.
    [15] 朱杰江, 吕西林, 容柏生. 复杂体型高层结构的推覆分析方法和应用[J]. 地震工程与工程振动, 2003, 23(2): 26 − 36. doi:  10.3969/j.issn.1000-1301.2003.02.005

    Zhu Jiangjie, Lü Xilin, Rong Baisheng. Push-over analysis method and its application to RC tall building with complex structural type [J]. Earthquake Engineering and Engineering Vibration, 2003, 23(2): 26 − 36. (in Chinese) doi:  10.3969/j.issn.1000-1301.2003.02.005
    [16] 吴晓涵. NosaCAD与ABAQUS和PERFORM-3D弹塑性模型转换及分析应用[J]. 建筑结构, 2012, 42(增刊2): 207 − 212.

    Wu Xiaohan. Model transformation from NosaCAD to ABAQUS and PERFORM-3D and nonlinear structure analysis by these software [J]. Building Structure, 2012, 42(Suppl2): 207 − 212. (in Chinese)
    [17] FEMA 356, Prestandard and commentary for the seismic rehabilitation of buildings [S]. Washington, D.C.: Federal Emergency Management Agency, 2000.
    [18] 张思海, 梁兴文, 邓明科. 被动耗能减震结构基于能力谱法的抗震设计方法研究[J]. 土木工程学报, 2006, 7(39): 26 − 32.

    Zhang Sihai, Liang Xingwen, Deng Mingke. A study on the capacity-spectrum seismic design method for buildings equipped with passive energy dissipation systems [J]. China Civil Engineering Journal, 2006, 7(39): 26 − 32. (in Chinese)
  • [1] 王琨, 查志远, 刘宏潮, 陈再现.  预应力型钢混凝土梁-钢管混凝土叠合柱框架中节点受剪性能分析 . 工程力学, 2020, 37(8): 1-13. doi: 10.6052/j.issn.1000-4750.2019.09.0517
    [2] 谢启芳, 张利朋, 王龙, 崔雅珍, 杨柳洁.  拔榫状态下直榫节点滞回性能有限元分析 . 工程力学, 2019, 36(S1): 138-143. doi: 10.6052/j.issn.1000-4750.2018.04.S024
    [3] 薛建阳, 董金爽, 隋龑, 刘祖强.  附设粘滞阻尼器的传统风格建筑混凝土双枋-柱节点抗震性能分析 . 工程力学, 2018, 35(1): 98-108. doi: 10.6052/j.issn.1000-4750.2016.08.0606
    [4] 郑山锁, 张晓辉, 黄威曾, 赵旭冉.  近海大气环境下锈蚀平面钢框架抗震性能试验研究及有限元分析 . 工程力学, 2018, 35(7): 62-73,82. doi: 10.6052/j.issn.1000-4750.2017.02.0127
    [5] 徐龙河, 王坤鹏, 谢行思, 李忠献.  具有复位功能的阻尼耗能支撑滞回模型与抗震性能研究 . 工程力学, 2018, 35(7): 39-46. doi: 10.6052/j.issn.1000-4750.2017.03.0204
    [6] 张微敬, 张晨骋.  钢筋套筒挤压连接的预制RC柱非线性有限元分析 . 工程力学, 2018, 35(S1): 67-72. doi: 10.6052/j.issn.1000-4750.2018.01.S006
    [7] 杨青顺, 甄伟, 陆新征, 解琳琳, 林楷奇.  带端部阻尼器伸臂桁架的抗震性能试验研究 . 工程力学, 2018, 35(2): 47-58. doi: 10.6052/j.issn.1000-4750.2017.04.0318
    [8] 卢德辉, 周云, 邓雪松, 张超.  钢管铅阻尼器构造优化及模拟分析 . 工程力学, 2017, 34(3): 76-83. doi: 10.6052/j.issn.1000-4750.2015.08.0686
    [9] 郑山锁, 张晓辉, 王晓飞, 程洋, 左英.  锈蚀钢框架柱抗震性能试验研究及有限元分析