留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

混凝土材料真实动态强度及率效应机理研究

王国盛 路德春 杜修力 李萌 穆嵩

王国盛, 路德春, 杜修力, 李萌, 穆嵩. 混凝土材料真实动态强度及率效应机理研究[J]. 工程力学, 2018, 35(6): 58-67. doi: 10.6052/j.issn.1000-4750.2017.02.0101
引用本文: 王国盛, 路德春, 杜修力, 李萌, 穆嵩. 混凝土材料真实动态强度及率效应机理研究[J]. 工程力学, 2018, 35(6): 58-67. doi: 10.6052/j.issn.1000-4750.2017.02.0101
WANG Guo-sheng, LU De-chun, DU Xiu-li, LI Meng, MU Song. RESEARCH ON THE ACTUAL DYNAMIC STRENGTH AND THE RATE EFFECT MECHANISMS FOR CONCRETE MATERIALS[J]. Engineering Mechanics, 2018, 35(6): 58-67. doi: 10.6052/j.issn.1000-4750.2017.02.0101
Citation: WANG Guo-sheng, LU De-chun, DU Xiu-li, LI Meng, MU Song. RESEARCH ON THE ACTUAL DYNAMIC STRENGTH AND THE RATE EFFECT MECHANISMS FOR CONCRETE MATERIALS[J]. Engineering Mechanics, 2018, 35(6): 58-67. doi: 10.6052/j.issn.1000-4750.2017.02.0101

混凝土材料真实动态强度及率效应机理研究

doi: 10.6052/j.issn.1000-4750.2017.02.0101
基金项目: 国家自然科学基金项目(51421005,51522802,51778026);北京市自然科学基金重点项目(8161001)
详细信息
    作者简介:

    王国盛(1990-),男,内蒙古人,博士生,主要从事混凝土动态力学性能研究(E-mail:wangguosheng-12345@163.com);杜修力(1962-),男,四川人,教授,博士,博导,主要从事结构抗震(E-mail:duxiuli@bjut.edu.cn);李萌(1990-),男,内蒙古人,硕士生,主要从事混凝土材料动态力学性能研究(E-mail:limengi@emails.bjut.edu.cn);穆嵩(1992-),男,河北人,硕士生,主要从事混凝土材料动态力学性能研究(E-mail:musongi@emails.bjut.edu.cn).

    通讯作者: 路德春(1977-),男,黑龙江人,教授,博士,博导,主要从事土动力学与岩土地震工程研究(E-mail:dechun@bjut.edu.cn).
  • 中图分类号: TU528.01

RESEARCH ON THE ACTUAL DYNAMIC STRENGTH AND THE RATE EFFECT MECHANISMS FOR CONCRETE MATERIALS

  • 摘要: 混凝土的动态承载力包括真实动态强度和惯性承载力两部分,并且真实动态强度存在极限动态强度。以往的研究并没有区分真实动态强度和惯性承载力,过高地估计了混凝土的真实动态强度。该文研究了混凝土材料应变率相关强度的物理机制,将混凝土的宏观承载力分为真实动态强度和惯性效应引起的附加承载力,分别揭示了真实动态强度与惯性效应的物理机制。物理机制表明混凝土的真实动态强度不是无限增加的,而是存在一个极限值,这与混凝土材料非线性单轴动态S准则的规律相同。因此,利用S准则来描述混凝土的真实动态强度。通过与动态单轴压缩试验结果和动态单轴拉伸试验结果比较表明,S准则能够合理地描述混凝土材料的真实动态强度规律,并且能够很好地反映混凝土材料的极限动态强度。
  • [1] Yan D, Lin G. Dynamic behaviour of concrete in biaxial compression[J]. Magazine of Concrete Research, 2007, 59(1):45-52.
    [2] Wang S, Zhang M H, Quek S T. Mechanical behavior of fiber-reinforced high-strength concrete subjected to high strain-rate compressive loading[J]. Construction and Building Materials, 2012, 31(6):1-11.
    [3] Wu S, Chen X, Zhou J. Influence of strain rate and water content on mechanical behavior of dam concrete[J]. Construction and Building Materials, 2012, 36(4):448-457.
    [4] Xiao S, Hai H. Effects of load histories on dynamic biaxial compressive damage behaviours of concrete[J]. Magazine of Concrete Research, 2012, 64(5):445-455.
    [5] Hao Y, Hao H. Dynamic compressive behaviour of spiral steel fibre reinforced concrete in split Hopkinson pressure bar tests[J]. Construction and Building Materials, 2013, 48(48):521-532.
    [6] Fang Q, Zhang J. Three-dimensional modelling of steel fiber reinforced concrete material under intense dynamic loading[J]. Construction and Building Materials, 2013, 44(7):118-132.
    [7] Shi L, Wang L, Song Y, et al. Dynamic multiaxial strength and failure criterion of dam concrete[J]. Construction and Building Materials, 2014, 66(1):181-191.
    [8] 何远明, 霍静思, 陈柏生, 等. 高温下混凝土SHPB动态力学性能试验研究[J]. 工程力学, 2012, 29(9):200-208. He Yuanming, Huo Jingsi, Chen Baisheng, et al. Impact tests on dynamic behavior of concrete at elevated temperatures[J]. Engineering Mechanics, 2012, 29(9):200-208. (in Chinese)
    [9] John R, Shah S P, Jeng Y S. A fracture mechanics model to predict the rate sensitivity of mode I fracture of concrete[J]. Cement and Concrete Composites, 1987, 17(2):249-262.
    [10] 胡时胜, 王道荣, 刘剑飞. 混凝土材料动态力学性能的实验研究[J]. 工程力学, 2001, 18(5):115-126. Hu Shisheng, Wang Daorong, Liu Jianfei. Experimental study of dynamic mechanical behavior of concrete[J]. Engineering Mechanics, 2001, 18(5):115-126. (in Chinese)
    [11] 杜修力, 窦国钦, 李亮, 等. 纤维高强混凝土的动态力学性能试验研究[J]. 工程力学, 2011, 28(4):138-144. Du Xiuli, Dou Guoqin, Li Liang, et al. Experimental study on dynamic mechanical properties of fiber reinforced high strength concrete[J]. Engineering Mechanics, 2011, 28(4):138-144. (in Chinese)
    [12] Reinhardt H W, Rossi P, Mier J G M V. Joint investigation of concrete at high rates of loading[J]. Materials and Structures, 1990, 23(3):213-216.
    [13] Wu H, Zhang Q, Huang F, et al. Experimental and numerical investigation on the dynamic tensile strength of concrete[J]. International Journal of Impact Engineering, 2005, 32(1/2/3/4):605-617.
    [14] Erzar B, Forquin P. Experiments and mesoscopic modelling of dynamic testing of concrete[J]. Mechanics of Materials, 2011, 43(9):505-527.
    [15] Wang C Q, Xiao J Z, Sun Z P. Seismic analysis on recycled aggregate concrete frame considering strain rate effect[J]. International Journal of Concrete Structures and Materials, 2016, 10(3):307-323.
    [16] Shen L, Wang L C, Song Y P, et al. Comparison between dynamic mechanical properties of dam and sieved concrete under biaxial tension-compression[J]. Construction and Building Materials, 2017, 132:43-50.
    [17] Yao Y, Bonakdar A, Faber J, et al. Distributed cracking mechanisms in textile-reinforced concrete under high speed tensile tests[J]. Materials and Structures, 2016, 49(7):2781-2798.
    [18] Chen X D, Bu J W, Fan X Q, et al. Effect of loading frequency and stress level on low cycle fatigue behavior of plain concrete in direct tension[J]. Construction and Building Materials, 2017, 133:367-375.
    [19] Su Y, Li J, Wu C Q, et al. Influences of nano-particles on dynamic strength of ultra-high performance concrete[J]. Composites Part B, 2016, 91:595-609.
    [20] Comite Euro-International Du Beton[J]. CEB FIP Model Code, 1990.
    [21] Fujikake K, Mori K, Uebayashi K, et al. Dynamic properties of concrete materials with high rates of tri-axial compressive loads[J]. Structures under Shock and Impact Vi, 2000, 8:511-522.
    [22] Gebbeken N, Greulich S. A new material model for SFRC under high dynamic loadings[C]//. International Confernce on Interaction of the Effects of Munitions with Structures, Mannheim, Germany,2003, 1-16.
    [23] Li Q M, Meng H. About the dynamic strength enhancement of concrete-like materials in a split Hopkinson pressure bar test[J]. International Journal of Solids and Structures, 2003, 40(2):343-360.
    [24] Katayama M, Itoh M, Tamura S, et al. Numerical analysis method for the RC and geological structures subjected to extreme loading by energetic materials[J]. International Journal of Impact Engineering, 2007, 34(9):1546-1561.
    [25] Ngo T, Mendis P, Krauthammer T. Behavior of ultrahigh-strength subjected to prestressed concrete panels blast loading[J]. Journal of Structural Engineering-Asce, 2007, 133(11):1582-1590.
    [26] Hao Y, Hao H, Jiang G P, et al. Experimental confirmation of some factors influencing dynamic concrete compressive strengths in high-speed impact tests[J]. Cement and Concrete Research, 2013, 52(10):63-70.
    [27] Xu H, Wen H M. Semi-empirical equations for the dynamic strength enhancement of concrete-like materials[J]. International Journal of Impact Engineering, 2013, 60(60):76-81.
    [28] Swan G, Cook J, Bruce S, et al. Strain rate effects in Kimmeridge Bay shale[J]. International Journal of Rock Mechanics and Mining Sciences and Geomechnaics Abstracts, 1989, 26(2):135-149.
    [29] Zhang Q B, Zhao J. A review of dynamic experimental techniques and mechanical behaviour of rock materials[J]. Rock Mechanics and Rock Engineering, 2014, 47(4):1411-1478.
    [30] Ožbolt J, Bede N, Sharma A, et al. Dynamic fracture of concrete L-specimen:Experimental and numerical study[J]. Engineering Fracture Mechanics, 2015, 148:27-41.
    [31] Bažant Z P, Bai S P, Gettu R. Fracture of rock:effect of loading rate[J]. Engineering Fracture Mechanics, 1993, 45(3):393-398.
    [32] Ožbolt J, Sharma A, Reinhardt H W. Dynamic fracture of concrete-compact tension specimen[J]. International Journal of Solids and Structures, 2011, 48(10):1534-1543.
    [33] Rossi P, Toutlemonde F. Effect of loading rate on the tensile behaviour of concrete:description of the physical mechanisms[J]. Materials and Structures, 1996, 29(2):116-118.
    [34] Kipp M E, Grady D E, Chen E P. Strain-rate dependent fracture initiation[J]. International Journal of Fracture, 1980, 16(5):471-478.
    [35] Qi C, Wang M, Qian Q. Strain-rate effects on the strength and fragmentation size of rocks[J]. International Journal of Impact Engineering, 2009, 36(12):1355-1364.
    [36] 戚承志, 钱七虎. 岩石等脆性材料动力强度依赖应变率的物理机制[J]. 岩石力学与工程学报, 2003, 22(2):177-181. Qi Chengzhi, Qian Qihu. Physical mechanism of dependence of material strength on strain rate for rock-like material[J]. Chinese Journal of Rock Mechanics and Engineering, 2003, 22(2):177-181. (in Chinese)
    [37] Cusatis G. Strain-rate effects on concrete behavior[J]. International Journal of Impact Engineering, 2011, 38(4):162-170.
    [38] 宋玉普. 混凝土的动力本构模型和破坏准则[M]. 北京:中国科学出版社, 2013. Song Yupu. Dynamic constitutive models and yield criteria for concrete[M]. Beijing:Science Press, 2013. (in Chinese)
    [39] Grady D E. Shock-wave properties of brittle solids[J]. Office of Scientific & Technical Information Technical Reports, 1996, 370(1):9-20.
    [40] Grady D E. Shock-wave compression of brittle solids[J]. Mechanics of Materials, 1998, 29(3-4):181-203.
    [41] Yu S S, Lu Y B, Cai Y. The strain-rate effect of engineering materials and its unified model[J]. Latin American Journal of Solids and Structures, 2013, 10(4):833-844.
    [42] 杜修力, 王阳, 路德春. 混凝土材料的非线性单轴动态强度准则[J]. 水利学报, 2010, 41(3):300-309. Du Xiuli, Wang Yang, Lu Dechun. Non-linear uniaxial dynamic strength criterion for concrete[J]. Journal of Hydraulic Engineering, 2010, 41(3):300-309. (in Chinese)
    [43] 唐长国, 朱金华. 金属材料屈服强度的应变率效应和热激活理论[J]. 金属学报, 1995, 31(6):248-253. Tang Changguo, Zhu Jinhua. Correlation between yield stress and strain rate for metallic materials and thermal activation approach[J]. Acta Metallurgica Sinica, 1995, 31(6):248-253. (in Chinese)
    [44] Campbell J D, Ferguson W G. The temperature and strain-rate dependence of the shear strength of mild steel[J]. Philosophical Magazine, 1970, 169(21):63-82.
    [45] 王海龙, 李庆斌. 不同加载速率下饱和混凝土的劈拉试验研究及强度变化机理[J]. 工程力学, 2007, 24(2):105-109. Wang Hailong, Li Qingbin. Experiments on saturated concrete under different splitting tensile rate and mechanism on strength change[J]. Engineering Mechanics, 2007, 24(2):105-109. (in Chinese)
    [46] Du X L, Lu D C, Gong Q M, et al. Nonlinear unified strength criterion for concrete under three-dimensional stress states[J]. Journal of Engineering Mechanics-Asce, 2010, 136(1):51-59.
    [47] Lu D C, Du X L, Wang G S, et al. A three-dimensional elastoplastic constitutive model for concrete[J]. Computers & Structures, 2016, 163(8):41-55.
    [48] 杜修力, 王国盛, 路德春. 混凝土材料非线性多轴动态强度准则[J]. 中国科学:技术科学, 2014, 44(12):1319-1332. Du Xiuli, Wang Guosheng, Lu Dechun. Nonlinear multiaxial dynamic strength criterion for concrete material[J]. Scientia Sinica Technologica, 2014, 44(12):1319-1332. (in Chinese)
    [49] 王国盛, 路德春, 杜修力, 等. 基于S准则发展的混凝土动态多轴强度准则[J]. 力学学报, 2016, 48(3):636-653. Wang Guosheng, Lu Dechun, Du Xiuli, et al. Dynamic multiaxial strength criterion for concrete developed based on the S criterion[J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(3):636-653. (in Chinese)
    [50] Gorham D A. Specimen inertia in high strain-rate compression[J]. Journal of Physics D Applied Physics, 2000, 22(12):1888-1893.
    [51] Gorham D A. The effect of specimen dimensions on high strain rate compression measurements of copper[J]. Journal of Physics D Applied Physics, 1991, 24(8):1489-1492.
    [52] Chen T, Li Q, Guan J. Effect of radial inertia confinement on dynamic compressive strength of concrete in shpb tests[C]//International Conference on Civil Engineering, Architecture and Sustainable Infrastructure, Switzerland, 2013:215-219.
    [53] Lu D C, Wang G S, Du X L, et al. A nonlinear dynamic uniaxial strength criterion that considers the ultimate dynamic strength of concrete[J]. International Journal of Impact Engineering, 2017, 103:124-137.
    [54] Lu D C, Wang G S. Reply to the comments on "A nonlinear dynamic uniaxial strength criterion that considers the ultimate dynamic strength of concrete by Dechun Lu, Guosheng Wang, Xiuli Du, Yang Wang. Int J Impact Eng 103(2017), 124-137" by Xu and Wen[J]. International Journal of Impact Engineering, 2017, 109:429-432.
    [55] 路德春, 李萌, 王国盛, 等. 静动组合载荷下混凝土率效应机理及强度准则[J]. 力学学报, 2017, 49(4):940-952. Lu Dechun, Li Meng, Wang Guosheng, et al. Study on strain rate effect and strength criterion of concrete under static-dynamic coupled loading[J]. Chinese Journal of Theoretical and Applied Mechanics, 2017, 49(4):940-952. (in Chinese)
    [56] Su H Y, Xu J Y, Ren W B. Experimental study on the dynamic compressive mechanical properties of concrete at elevated temperature[J]. Materials and Design, 2014, 56(4):579-588.
    [57] 焦楚杰, 孙伟, 高培正. 钢纤维超高强混凝土动态力学性能[J]. 工程力学, 2006, 23(8):86-89. Jiao Chujie, Sun Wei, Gao Peizheng. Dynamic mechanical properties of steel-fiber reinforced ultra-high strength concrete[J]. Engineering Mechanics, 2006, 23(8):86-89. (in Chinese)
    [58] Lu Y, Xu K. Modelling of dynamic behaviour of concrete materials under blast loading[J]. International Journal of Solids and Structures, 2004, 41(1):131-143.
  • [1] 孟龙, 黄瑞源, 蒋东, 肖凯涛, 李平.  不同强度混凝土高温下动态劈拉性能研究 . 工程力学, 2021, 38(3): 202-213. doi: 10.6052/j.issn.1000-4750.2020.05.0310
    [2] 管俊峰, 鲁猛, 王昊, 姚贤华, 李列列, 张敏, 胡圣能.  几何与非几何相似试件确定混凝土韧度及强度 . 工程力学, 2021, 38(): 1-19. doi: 10.6052/j.issn.1000-4750.2020.08.0573
    [3] 陆钰佳, 陈素文, 张洋.  中高应变率和不同温度下离子型中间膜的拉伸力学性能及本构关系 . 工程力学, 2021, 38(2): 101-109. doi: 10.6052/j.issn.1000-4750.2020.04.0204
    [4] 管俊峰, 刘泽鹏, 姚贤华, 李列列, 何双华, 张敏.  确定混凝土开裂与拉伸强度及双K断裂参数 . 工程力学, 2020, 37(12): 124-137. doi: 10.6052/j.issn.1000-4750.2020.02.0084
    [5] 金浏, 杨旺贤, 余文轩, 杜修力.  基于细观模拟的轻骨料混凝土动态压缩破坏及尺寸效应分析 . 工程力学, 2020, 37(3): 56-65. doi: 10.6052/j.issn.1000-4750.2019.01.0012
    [6] 金浏, 余文轩, 杜修力, 张帅, 杨旺贤, 李冬.  基于细观模拟的混凝土动态压缩强度尺寸效应研究 . 工程力学, 2019, 36(11): 50-61. doi: 10.6052/j.issn.1000-4750.2018.06.0363
    [7] 徐世烺, 陈超, 李庆华, 赵昕.  超高韧性水泥基复合材料动态压缩力学性能的数值模拟研究 . 工程力学, 2019, 36(9): 50-59. doi: 10.6052/j.issn.1000-4750.2018.03.0147
    [8] 金浏, 余文轩, 杜修力, 张帅, 李冬.  低应变率下混凝土动态拉伸破坏尺寸效应细观模拟 . 工程力学, 2019, 36(8): 59-69,78. doi: 10.6052/j.issn.1000-4750.2018.03.0144
    [9] 金浏, 郝慧敏, 张仁波, 杜修力.  高温下混凝土动态压缩行为细观数值研究 . 工程力学, 2019, 36(6): 70-78,118. doi: 10.6052/j.issn.1000-4750.2018.01.0041
    [10] 李潇, 方秦, 孔祥振, 吴昊.  砂浆材料SHPB实验及惯性效应的数值模拟研究 . 工程力学, 2018, 35(7): 187-193. doi: 10.6052/j.issn.1000-4750.2017.03.0244
    [11] 罗威, 肖云逸, 何栋尔, 章子华.  快速荷载下CFRP-高温后混凝土界面正拉粘结性能试验 . 工程力学, 2018, 35(S1): 307-312,324. doi: 10.6052/j.issn.1000-4750.2017.06.S059
    [12] 李潇, 方秦, 孔祥振, 吴昊.  数值模拟中混凝土类材料应变率效应曲线的惯性效应修正 . 工程力学, 2018, 35(12): 46-53. doi: 10.6052/j.issn.1000-4750.2017.10.0764
    [13] 李艳, 范文, 赵均海, 翟越.  中低速长杆弹侵彻半无限岩石靶的动态响应研究 . 工程力学, 2017, 34(9): 139-149. doi: 10.6052/j.issn.1000-4750.2016.04.0334
    [14] 康翔杰, 刘艳辉, 许浒, 赵世春, 余志祥.  低速冲击碰撞有限元分析中混凝土动态破坏面修正方法 . 工程力学, 2016, 33(3): 135-142. doi: 10.6052/j.issn.1000-4750.2014.08.0681
    [15] 王立成, 邢立坤, 宋玉普.  混凝土劈裂抗拉强度和弯曲抗压强度尺寸效应的细观数值分析 . 工程力学, 2014, 31(10): 69-76. doi: 10.6052/j.issn.1000-4750.2013.03.0259
    [16] 许斌, 曾翔.  钢筋混凝土长柱快速轴心受压试验与模拟研究 . 工程力学, 2014, 31(4): 210-217. doi: 10.6052/j.issn.1000-4750.2012.10.0811
    [17] 曾翔, 许斌.  考虑箍筋约束效应的快速轴压加载下钢筋混凝土短柱性能数值分析 . 工程力学, 2014, 31(9): 190-197. doi: 10.6052/j.issn.1000-4750.2013.04.0325
    [18] 张 峰, 刘小燕, 李术才.  海水侵蚀后混凝土三轴强度准则研究 . 工程力学, 2010, 27(9): 209-215.
    [19] 阎 石, 王 丹, 张 亮, 孙 静.  爆炸荷载作用下钢筋混凝土柱损伤FEM分析 . 工程力学, 2008, 25(增刊Ⅰ): 0-093.
    [20] 徐世烺, 赵艳华.  混凝土裂缝扩展的断裂过程准则与解析 . 工程力学, 2008, 25(增刊Ⅱ): 20-033.
  • 加载中
计量
  • 文章访问数:  56
  • HTML全文浏览量:  1
  • PDF下载量:  29
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-02-13
  • 修回日期:  2017-09-29
  • 刊出日期:  2018-06-25

混凝土材料真实动态强度及率效应机理研究

doi: 10.6052/j.issn.1000-4750.2017.02.0101
    基金项目:  国家自然科学基金项目(51421005,51522802,51778026);北京市自然科学基金重点项目(8161001)
    作者简介:

    王国盛(1990-),男,内蒙古人,博士生,主要从事混凝土动态力学性能研究(E-mail:wangguosheng-12345@163.com);杜修力(1962-),男,四川人,教授,博士,博导,主要从事结构抗震(E-mail:duxiuli@bjut.edu.cn);李萌(1990-),男,内蒙古人,硕士生,主要从事混凝土材料动态力学性能研究(E-mail:limengi@emails.bjut.edu.cn);穆嵩(1992-),男,河北人,硕士生,主要从事混凝土材料动态力学性能研究(E-mail:musongi@emails.bjut.edu.cn).

    通讯作者: 路德春(1977-),男,黑龙江人,教授,博士,博导,主要从事土动力学与岩土地震工程研究(E-mail:dechun@bjut.edu.cn).
  • 中图分类号: TU528.01

摘要: 混凝土的动态承载力包括真实动态强度和惯性承载力两部分,并且真实动态强度存在极限动态强度。以往的研究并没有区分真实动态强度和惯性承载力,过高地估计了混凝土的真实动态强度。该文研究了混凝土材料应变率相关强度的物理机制,将混凝土的宏观承载力分为真实动态强度和惯性效应引起的附加承载力,分别揭示了真实动态强度与惯性效应的物理机制。物理机制表明混凝土的真实动态强度不是无限增加的,而是存在一个极限值,这与混凝土材料非线性单轴动态S准则的规律相同。因此,利用S准则来描述混凝土的真实动态强度。通过与动态单轴压缩试验结果和动态单轴拉伸试验结果比较表明,S准则能够合理地描述混凝土材料的真实动态强度规律,并且能够很好地反映混凝土材料的极限动态强度。

English Abstract

王国盛, 路德春, 杜修力, 李萌, 穆嵩. 混凝土材料真实动态强度及率效应机理研究[J]. 工程力学, 2018, 35(6): 58-67. doi: 10.6052/j.issn.1000-4750.2017.02.0101
引用本文: 王国盛, 路德春, 杜修力, 李萌, 穆嵩. 混凝土材料真实动态强度及率效应机理研究[J]. 工程力学, 2018, 35(6): 58-67. doi: 10.6052/j.issn.1000-4750.2017.02.0101
WANG Guo-sheng, LU De-chun, DU Xiu-li, LI Meng, MU Song. RESEARCH ON THE ACTUAL DYNAMIC STRENGTH AND THE RATE EFFECT MECHANISMS FOR CONCRETE MATERIALS[J]. Engineering Mechanics, 2018, 35(6): 58-67. doi: 10.6052/j.issn.1000-4750.2017.02.0101
Citation: WANG Guo-sheng, LU De-chun, DU Xiu-li, LI Meng, MU Song. RESEARCH ON THE ACTUAL DYNAMIC STRENGTH AND THE RATE EFFECT MECHANISMS FOR CONCRETE MATERIALS[J]. Engineering Mechanics, 2018, 35(6): 58-67. doi: 10.6052/j.issn.1000-4750.2017.02.0101
参考文献 (58)

目录

    /

    返回文章
    返回