留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

横观各向同性岩石力学-化学-损伤耦合有限元分析

王永亮 庄茁 柳占立 杨恒林

王永亮, 庄茁, 柳占立, 杨恒林. 横观各向同性岩石力学-化学-损伤耦合有限元分析[J]. 工程力学, 2017, 34(9): 102-109. doi: 10.6052/j.issn.1000-4750.2016.04.0287
引用本文: 王永亮, 庄茁, 柳占立, 杨恒林. 横观各向同性岩石力学-化学-损伤耦合有限元分析[J]. 工程力学, 2017, 34(9): 102-109. doi: 10.6052/j.issn.1000-4750.2016.04.0287
WANG Yong-liang, ZHUANG Zhuo, LIU Zhan-li, YANG Heng-lin. FINITE ELEMENT ANALYSIS OF TRANSVERSELY ISOTROPIC ROCK WITH MECHANICAL-CHEMICAL-DAMAGE COUPLING[J]. Engineering Mechanics, 2017, 34(9): 102-109. doi: 10.6052/j.issn.1000-4750.2016.04.0287
Citation: WANG Yong-liang, ZHUANG Zhuo, LIU Zhan-li, YANG Heng-lin. FINITE ELEMENT ANALYSIS OF TRANSVERSELY ISOTROPIC ROCK WITH MECHANICAL-CHEMICAL-DAMAGE COUPLING[J]. Engineering Mechanics, 2017, 34(9): 102-109. doi: 10.6052/j.issn.1000-4750.2016.04.0287

横观各向同性岩石力学-化学-损伤耦合有限元分析

doi: 10.6052/j.issn.1000-4750.2016.04.0287
基金项目: 国家自然科学基金项目(11372157,11302115,51608301);教育部博士学科点专项科研基金项目(20120002110075);全国优秀博士学位论文作者专项资金项目(201326);中国博士后科学基金项目(2015M571030,2016M601170)
详细信息
    作者简介:

    庄茁(1952-),男,辽宁沈阳人,教授,博士,中国力学学会常务理事、北京力学会理事长,从事非线性有限元和断裂力学研究(E-mail:zhuangz@tsinghua.edu.cn);柳占立(1981-),男,河南周口人,副教授,博士,从事非线性有限元和断裂力学研究(E-mail:liuzhanli@tsinghua.edu.cn);杨恒林(1973-),男,辽宁抚顺人,高工,博士,从事石油工程岩石力学研究(E-mail:yhldri@cnpc.com.cn).

    通讯作者: 王永亮(1985-),男,河北唐山人,博士后,从事非线性有限元和结构工程研究(E-mail:wangyongliang@tsinghua.edu.cn).
  • 中图分类号: TU452;TE37

FINITE ELEMENT ANALYSIS OF TRANSVERSELY ISOTROPIC ROCK WITH MECHANICAL-CHEMICAL-DAMAGE COUPLING

  • 摘要: 该文基于层理性岩石的水化作用和连续损伤特性,建立力学-化学-损伤耦合的有限元(FEM)求解方法,开展含钻井孔岩石的井壁应力和围岩损伤演化分析。该文发展横观各向同性Biot本构关系,采用Weibull分布函数表征岩石的非均质性;考虑水化作用引起的损伤,结合当前应力状态的应力损伤得到损伤张量,对弹性模量和渗透率进行损伤分析,实现层理性岩石在水化和荷载作用下的连续损伤演化,形成一套渗流-应力-化学-损伤(HMCD)耦合分析方法。该文给出数值算例,将含损伤横观各向同性模型用于研究层理性岩石的水化特性,表明岩石的非均匀性和水化作用对井壁应力解答具有重要影响,该有限元求解方法可对岩石水化、损伤进行可靠、有效的数值分析。
  • [1] 庄茁, 柳占立, 王永亮. 页岩油气高效开发中的基础理论与关键力学问题[J]. 力学季刊, 2015, 33(1):8-17. Zhuang Zhuo, Liu Zhanli, Wang Yongliang. Fundamental theory and key mechanical problems of shale oil gas effective extraction[J]. Chinese Quarterly of Mechanics, 2015, 33(1):8-17. (in Chinese)
    [2] 杨恒林, 申瑞臣, 付利. 含气页岩组分构成与岩石力学特征[J]. 石油钻探技术, 2013, 41(5):31-35. Yang Henglin, Shen Ruichen, Fu Li. composition and mechanical properties of gas shale[J]. Pertroleum Drilling Techniques, 2013, 41(5):31-35. (in Chinese)
    [3] Lomba Rosana F T, Chenevert M E, Sharma Mukul M. The role of osmotic effects in fluid flow through shale[J]. Journal of Petroleum Science and Engineering, 2000, 25(1):25-35.
    [4] 黄荣樽, 陈勉, 邓金根, 王康平, 陈治喜. 泥页岩井壁稳定力学与化学耦合研究[J]. 钻井液与完井液, 1995, 12(3):15-21. Huang Rongzun, Chen Mian, Deng Jin'gen, Wang Kangping, Chen Zhixi. Study on shale stability of wellbore by mechanics coupling with chemistry method[J]. Drilling Fluid and Completion Fluid, 1995, 12(3):15-21. (in Chinese)
    [5] Remvik F. Shale fluid interaction under simulated down-hole conditions and its effects on borehole stability[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1993, 30(7):1115-1118.
    [6] Tan C P, Richards B G, Rahman S S. Managing physical-chemical wellbore instability in shale with the chemical potential mechanism[C]. Adelaide, Australia:SPE Asia Pacific Oil and Gas Conference. Society of Petroleum Engineers, 1996:107-116.
    [7] Ekbote S, Abousleiman Y. Porochemoelastic solution for an inclined borehole in a transversely isotropic formation[J]. Journal of Engineering Mechanics, 2006, 132(7):754-763.
    [8] Tran M H, Abousleiman Y N. Anisotropic porochemoelectroelastic Mandel's problem solutions for applications in reservoir modeling and laboratory characterization[J]. Mechanics Research Communications, 2013, 47(1):89-96.
    [9] Tran M H, Abousleiman Y N. Anisotropic porochemoelectroelastic solution for an inclined wellbore drilled in shale[J]. Journal of Applied Mechanics, 2013, 80(2):1-14.
    [10] Krajcinovic D, Lemaitre J. Continuum damage mechanics theory and applications[M]. New York:Springer-Verlag, 1987:37-90.
    [11] 王永亮, 柳占立, 林三春, 庄茁. 基于连续损伤的岩石渗流有限元分析[J]. 工程力学, 2016, 33(11):29-37. Wang Yongliang, Liu Zhanli, Lin Sanchun, Zhuang Zhuo. Finite element analysis of seepage in rock based on continuum damage evolution[J]. Engineering Mechanics, 2016, 33(11):29-37. (in Chinese)
    [12] Wang Yongliang, Liu zhanli, Yang Henglin, Shao Zhichun, Zhuang zhuo. FE analysis of rock with hydraulic-mechanical coupling based on continuum damage evolution[J]. Mathematical Problems in Engineering, 2016, 16(1):1-9.
    [13] Wang Yongliang, Liu Zhanli, Yang Henglin, Zhuang Zhuo. Finite element analysis for wellbore stability of transversely isotropic rock with hydraulic-mechanical-damage coupling[J]. Science China Technological Sciences, 2017, 60(1):133-145.
    [14] Biot M A. Theory of elasticity and consolidation for a porous anisotropic solid[J]. Journal of Applied Physics, 1955, 26(2):182-185.
    [15] 高峰, 谢和平, 赵鹏. Weibull模量和岩石强度的分形性质[J]. 科学通报, 1993, 38(15):1435-1438. Gao Feng, Xie Heping, Zhao Peng. Weibull modulus and fractal properties of rock strength[J]. Chinese Science Bulletin, 1993, 38(15):1435-1438. (in Chinese)
    [16] 庄茁, 蒋持平. 工程断裂与损伤[M]. 北京:机械工业出版社, 2004:97-108. Zhuang Zhuo, Jiang Chiping. Engineering fracture and damage[M]. Beijing:China Machine Press, 2004:97-108. (in Chinese)
    [17] Detournay E, Cheng A H D. Fundamentals of Poroelasticicty[J]. Analysis and Design Methods, 1993, 25(5):113-171.
    [18] COMSOL Multiphysics user's guide[R]. Stockholm:COMSOL Inc., 2010.
  • [1] 王珊.  基于Kirchhoff板中裂纹尖端辛本征解的有限元应力恢复方法 . 工程力学, 2018, 35(5): 10-16. doi: 10.6052/j.issn.1000-4750.2017.01.0082
    [2] 周晓敏, 管华栋.  磁西矿千米深井不均匀原岩应力场有限元模型研究 . 工程力学, 2016, 33(增刊): 306-311. doi: 10.6052/j.issn.1000-4750.2015.05.S039
    [3] 李上明, 吴连军.  基于连分式与有限元法的坝库耦合瞬态分析方法 . 工程力学, 2016, 33(4): 9-16. doi: 10.6052/j.issn.1000-4750.2014.09.0803
    [4] 王永亮, 柳占立, 林三春, 庄茁.  基于连续损伤的岩石渗流有限元分析 . 工程力学, 2016, 33(11): 29-37. doi: 10.6052/j.issn.1000-4750.2015.03.0229
    [5] 陈志英, 刘林强, 董湘怀.  基于不同强化模型的GTN损伤模型及其在板料回弹有限元分析中的应用 . 工程力学, 2012, 29(7): 305-312. doi: 10.6052/j.issn.1000-4750.2010.12.0891
    [6] 何天虎, 关明智.  考虑热松弛的热弹耦合二维问题的有限元法 . 工程力学, 2011, 28(12): 1-6.
    [7] 何天虎, 关明智.  有限元法求解广义热弹耦合一维热冲击问题 . 工程力学, 2010, 27(6): 35-039,.
    [8] 贺小帆, 董彦民, 闫友为, 刘文珽.  独立多细节结构疲劳寿命分布的数值模拟与分析 . 工程力学, 2010, 27(8): 217-222.
    [9] 杨绿峰, 徐 华, 李 冉, 彭 俚.  广义参数有限元法计算应力强度因子 . 工程力学, 2009, 26(3): 48-054.
    [10] 周素霞, 谢基龙, 李 伟.  空心车轴表面裂纹前缘应力强度因子的有限元研究 . 工程力学, 2009, 26(3): 43-047,.
    [11] 陈 瑛, 乔丕忠, 姜弘道, 任青文.  FRP-混凝土三点受弯梁损伤粘结模型有限元分析 . 工程力学, 2008, 25(3): 0-125,.
    [12] 郑波, 王安稳.  弹性压应力波下直杆分叉动力失稳特征值有限元分析 . 工程力学, 2006, 23(12): 36-40.
    [13] 李锦辉, 王媛, 胡强.  三维稳定渗流的随机变分原理及有限元法 . 工程力学, 2006, 23(6): 21-24.
    [14] 严波, 文光华, 张晓敏.  板坯连铸结晶器内铸坯凝固及变形的热力耦合有限元分析 . 工程力学, 2001, 18(1): 110-118.
    [15] 邓文龙, 赵锡宏.  横观各向同性土介质与结构物共同作用的有限元与边界元耦合分析 . 工程力学, 1996, 13(4): 74-81.
    [16] 董毓利, 谢和平, 李世平.  砼受压损伤力学本构模型的研究 . 工程力学, 1996, 13(1): 44-53.
    [17] 许金余, 吴彰春, 冷培义.  弹性地基板的无界边界元──有限元耦合计算法 . 工程力学, 1994, 11(3): 137-143.
    [18] 孙穆, 林晓辉.  重载径向轴承三维弹性流体润滑的有限元和边界元耦合数值分析 . 工程力学, 1992, 9(4): 50-57.
    [19] 杨国平, 谢滨, 崔京浩, 吴浚郊, 邢秋顺.  松散型砂静压造型应力场的量测与有限元分析 . 工程力学, 1992, 9(2): 107-117.
    [20] 沈伟跃, 赵饧宏.  有限元-无限元耦合单桩弹性分析法 . 工程力学, 1990, 7(3): 52-64.
  • 加载中
计量
  • 文章访问数:  279
  • HTML全文浏览量:  5
  • PDF下载量:  128
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-04-20
  • 修回日期:  2016-10-25
  • 刊出日期:  2017-09-25

横观各向同性岩石力学-化学-损伤耦合有限元分析

doi: 10.6052/j.issn.1000-4750.2016.04.0287
    基金项目:  国家自然科学基金项目(11372157,11302115,51608301);教育部博士学科点专项科研基金项目(20120002110075);全国优秀博士学位论文作者专项资金项目(201326);中国博士后科学基金项目(2015M571030,2016M601170)
    作者简介:

    庄茁(1952-),男,辽宁沈阳人,教授,博士,中国力学学会常务理事、北京力学会理事长,从事非线性有限元和断裂力学研究(E-mail:zhuangz@tsinghua.edu.cn);柳占立(1981-),男,河南周口人,副教授,博士,从事非线性有限元和断裂力学研究(E-mail:liuzhanli@tsinghua.edu.cn);杨恒林(1973-),男,辽宁抚顺人,高工,博士,从事石油工程岩石力学研究(E-mail:yhldri@cnpc.com.cn).

    通讯作者: 王永亮(1985-),男,河北唐山人,博士后,从事非线性有限元和结构工程研究(E-mail:wangyongliang@tsinghua.edu.cn).
  • 中图分类号: TU452;TE37

摘要: 该文基于层理性岩石的水化作用和连续损伤特性,建立力学-化学-损伤耦合的有限元(FEM)求解方法,开展含钻井孔岩石的井壁应力和围岩损伤演化分析。该文发展横观各向同性Biot本构关系,采用Weibull分布函数表征岩石的非均质性;考虑水化作用引起的损伤,结合当前应力状态的应力损伤得到损伤张量,对弹性模量和渗透率进行损伤分析,实现层理性岩石在水化和荷载作用下的连续损伤演化,形成一套渗流-应力-化学-损伤(HMCD)耦合分析方法。该文给出数值算例,将含损伤横观各向同性模型用于研究层理性岩石的水化特性,表明岩石的非均匀性和水化作用对井壁应力解答具有重要影响,该有限元求解方法可对岩石水化、损伤进行可靠、有效的数值分析。

English Abstract

王永亮, 庄茁, 柳占立, 杨恒林. 横观各向同性岩石力学-化学-损伤耦合有限元分析[J]. 工程力学, 2017, 34(9): 102-109. doi: 10.6052/j.issn.1000-4750.2016.04.0287
引用本文: 王永亮, 庄茁, 柳占立, 杨恒林. 横观各向同性岩石力学-化学-损伤耦合有限元分析[J]. 工程力学, 2017, 34(9): 102-109. doi: 10.6052/j.issn.1000-4750.2016.04.0287
WANG Yong-liang, ZHUANG Zhuo, LIU Zhan-li, YANG Heng-lin. FINITE ELEMENT ANALYSIS OF TRANSVERSELY ISOTROPIC ROCK WITH MECHANICAL-CHEMICAL-DAMAGE COUPLING[J]. Engineering Mechanics, 2017, 34(9): 102-109. doi: 10.6052/j.issn.1000-4750.2016.04.0287
Citation: WANG Yong-liang, ZHUANG Zhuo, LIU Zhan-li, YANG Heng-lin. FINITE ELEMENT ANALYSIS OF TRANSVERSELY ISOTROPIC ROCK WITH MECHANICAL-CHEMICAL-DAMAGE COUPLING[J]. Engineering Mechanics, 2017, 34(9): 102-109. doi: 10.6052/j.issn.1000-4750.2016.04.0287
参考文献 (18)

目录

    /

    返回文章
    返回