留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

考虑箍筋约束效应的快速轴压加载下钢筋混凝土短柱性能数值分析

曾翔 许斌

曾翔, 许斌. 考虑箍筋约束效应的快速轴压加载下钢筋混凝土短柱性能数值分析[J]. 工程力学, 2014, 31(9): 190-197. doi: 10.6052/j.issn.1000-4750.2013.04.0325
引用本文: 曾翔, 许斌. 考虑箍筋约束效应的快速轴压加载下钢筋混凝土短柱性能数值分析[J]. 工程力学, 2014, 31(9): 190-197. doi: 10.6052/j.issn.1000-4750.2013.04.0325
ZENG Xiang, XU Bin. NUMERICAL SIMULATION ON THE DYNAMIC BEHAVIOR OF SHORT RC COLUMNS SUBJECTED TO CONCENTRIC RAPID LOADING CONSIDERING CONFINEMENT EFFECT OF STIRRUPS[J]. Engineering Mechanics, 2014, 31(9): 190-197. doi: 10.6052/j.issn.1000-4750.2013.04.0325
Citation: ZENG Xiang, XU Bin. NUMERICAL SIMULATION ON THE DYNAMIC BEHAVIOR OF SHORT RC COLUMNS SUBJECTED TO CONCENTRIC RAPID LOADING CONSIDERING CONFINEMENT EFFECT OF STIRRUPS[J]. Engineering Mechanics, 2014, 31(9): 190-197. doi: 10.6052/j.issn.1000-4750.2013.04.0325

考虑箍筋约束效应的快速轴压加载下钢筋混凝土短柱性能数值分析

doi: 10.6052/j.issn.1000-4750.2013.04.0325
基金项目: 国家自然科学基金重大研究计划重点项目(90715033); 国家自然科学基金重大研究计划培育项目(91015007)
详细信息
  • 中图分类号: TU375.3

NUMERICAL SIMULATION ON THE DYNAMIC BEHAVIOR OF SHORT RC COLUMNS SUBJECTED TO CONCENTRIC RAPID LOADING CONSIDERING CONFINEMENT EFFECT OF STIRRUPS

  • 摘要: 为了研究在地震作用下应变率效应对约束钢筋混凝土轴压短柱力学性能的影响,该文建议了同时考虑应变率效应和箍筋约束效应的混凝土塑性模型等效单轴受压本构曲线,建立了分析约束钢筋混凝土轴压短柱在快速加载下动力行为的有限元模型。通过模拟结果与文献中试验研究结果的比较,表明该模型可有效描述约束钢筋混凝土短柱在地震作用下考虑混凝土材料应变率敏感性时的力学性能,建议的等效单轴受压本构曲线是合理的。利用该有限元模型,分析了配置箍筋构形、箍筋间距和纵筋配筋率这三个可影响约束效应的参数对约束钢筋混凝土短柱在考虑率效应时的力学性能的影响。结果表明随应变率的提高,轴压短柱的承载力明显提高,但延性降低,力-轴向变形曲线下降段变陡。箍筋构形、间距以及纵筋配筋率对约束钢筋混凝土轴压短柱的动力力学性能具有重要的影响。
  • [1] P, Obaseki K. Strain rate-dependent interaction diagram for reinforced concrete section [J]. ACI Journal Proceedings, 1986, 83(1): 108―116.
    [2] M S. Curvature ductility of reinforced concrete beams under low and high strain rates [J]. ACI Structural Journal, 1995, 92(5): 526―534.
    [3] 闫东明, 肖诗云, 等. 应变速率对混凝土特性及工程结构地震响应的影响[J]. 土木工程学报, 2005, 38(11): 1―8. Lin Gao, Yan Dongming, Xiao Shiyun, et al. Strain rate effects on the behavior of concrete and the seismic response of concrete structures [J]. China Civil Engineering Journal, 2005, 38(11): 1―8. (in Chinese)
    [4] Euro-International du Béton, CEB-FIP Model Code 1990 [S]. 1993.
    [5] P H, Perry S H. Compressive behaviour of concrete at high strain rates [J]. Materials and Structures, 1991, 24(6): 425―450.
    [6] L J, Ross C A. Review of strain rate effects for concrete in tension [J]. ACI Materials Journal, 1998, 95(6): 735―739.
    [7] D M, Lin G, Chen G D. Dynamic properties of plain concrete in triaxial stress state [J]. ACI Materials Journal, 2009, 106(1): 89―94.
    [8] 刘铁军, 滕军, 等. 混凝土柱单轴动态抗压特性的应变率效应研究[J]. 振动与冲击, 2012, 31(2): 145―150. Zou Dujian, Liu Tiejun, Teng Jun, et al. The research on strain rate effect of compressive behaviour of concrete column [J]. Journal of Vibration and Shock, 2012, 31(2): 145―150. (in Chinese)
    [9] H C, Erki M A, Seckin M. Review of effects of loading rate on reinforced concrete [J]. Journal of Structural Engineering, 1991, 117(12): 3660―3679.
    [10] 李宏男. 建筑钢筋动态试验及本构模型[J].土木工程学报, 2010, 43(4): 70―75. Li Min, Li Hongnan. Dynamic test and constitutive model for reinforcing steel [J]. China Civil Engineering Journal, 2010, 43(4): 70―75. (in Chinese)
    [11] D, Frascadore R, Ludovico M D, et al. Influence of strain rate on the seismic response of RC structures [J]. Engineering Structures, 2012, 35: 29―36.
    [12] S. Seismic performance of reinforced concrete columns with 90 degree end hooks for shear reinforcement under high speed loading [EB]. http://www.iitk.ac.in/nicee/wcee/article/0116.pdf,2000.
    [13] G L, Ashford S A. Effects of large velocity pulses on reinforced concrete bridge columns [R]. California: University of California, Berkeley, Pacific Earthquake Engineering Research Center, 2002.
    [14] J, Suzuki N, Kaneko T, et al. Dynamic loading test of reinforced concrete columns for identification of strain rate effect [C]// Proceedings of the First NEES/E-Defense Workshop on Collapse Simulation of Reinforced Concrete Building Structures. Pacific Earthquake Engineering Research Center, Berkeley, California, 2005: 291―304.
    [15] W, Saouma V, Haussmann G, et al. Experimental investigations of loading rate effects in reinforced concrete columns [J]. Journal of Structural Engineering, 2012, 138(8): 1032―1041.
    [16] 龙业平. 基于纤维模型的钢筋混凝土柱应变率效应研究[J]. 工程力学, 2011, 28(7): 103―116. Xu Bin, Long Yeping. Study on the behavior of reinforced concrete columns with fiber model considering strain rate effect [J]. Engineering Mechanics, 2011, 28(7): 103―116. (in Chinese)
    [17] 李宏男. 应变率对钢筋混凝土柱动态特性的影响[J]. 地震工程与工程振动, 2011, 31(6): 67―72. Wang Debin, Li Hongnan. Effects of strain rate on dynamic behavior of reinforced concrete column [J]. Journal of Earthquake Engineering and Engineering Vibration, 2011, 31(6): 67―72. (in Chinese)
    [18] K F, Hansen R J, Yang C Y. Dynamic tests of reinforced concrete columns [J]. ACI Journal Proceedings, 1964, 61(3): 317―334.
    [19] S, Minami K, Wakabayashi M. Stability of slender reinforced concrete members subjected to static and dynamic loads [C]// Proceedings of Ninth World Conference on Earthquake Engineering, Tokyo-Kyoto, Japan, 1988, Ⅷ: 901―906.
    [20] 罗家谦. 钢筋混凝土轴压和偏压构件在快速变形下的性能[M]//清华大学抗震抗爆工程研究室. 科学研究报告集(第4集) 钢筋混凝土结构构件在冲击荷载下的性能. 北京: 清华大学出版社, 1986: 33―44. Chen Zhaoyuan, Luo Jiaqian. The behavior of axial and eccentric loaded RC columns under rapid rate of deformation [M]// Science Report Collection of Tsinghua Resisting Earthquake and Blast Loading Institute-The Characteristics of R/C Structure Member under Blast Loading, (4). Beijing: Tsinghua University Press, 1986: 33―44. (in Chinese)
    [21] 许东. 应变率效应对钢筋混凝土柱的影响[J]. 防灾减灾工程学报, 2009, 29(6): 668―675. Xiao Shiyun, Xu Dong. Influence of strain rates on reinforced concrete column [J]. Journal of Disaster Prevention and Mitigation Engineering, 2009, 29(6): 668―675. (in Chinese)
    [22] 曾翔. 钢筋混凝土长柱快速轴心受压试验与模拟研究[J]. 工程力学, 2014, 31(4): 210―217. Xu Bin, Zeng Xiang. Experimental study and finite element analysis on the dynamic behavior of slender RC columns under concentric compressive rapid loadings [J]. Engineering Mechanics, 2014, 31(4): 210―217. (in Chinese)
    [23] B D, Park R, Priestley M J N. Stress-strain behavior of concrete confined by overlapping hoops at low and high strain rates [J]. ACI Journal Proceedings, 1982, 79(1): 13―27.
    [24] P, Sim J. Axial behavior of reinforced concrete columns under dynamic loads [J]. ACI Journal Proceedings, 1986, 83(6): 1018―1025.
    [25] L, Park R, Tanaka. H. Constitutive behavior of high-strength concrete under dynamic loads [J]. ACI Structural Journal, 2000, 97(4): 619―629.
    [26] Systèmes. Abaqus analysis user’s manual (6.10)[EB]. http://abaqus.me.chalmers.se/v6.10/books/ usb/default.htm, 2010..
    [27] 318-08, Building code requirements for structural concrete (ACI 318-08) and commentary-An ACI standard [S]. 2008.
    [28] 50010-2002, 混凝土结构设计规范[S]. 北京: 中国建筑工业出版社, 2002. GB 50010-2002, Code for design of concrete structures [S]. Beijing: China Architecture and Building Press, 2002. (in Chinese)
    [29] H S, Yang K H, Lee Y H, et al. Strength and ductility of laterally confined concrete columns [J]. Canadian Journal of Civil Engineering, 2002, 29(6): 820―830.
    [30] ' geron F, Paultre P. Uniaxial confinement model for normal- and high-strength concrete columns [J]. Journal of Structural Engineering, 2003, 129(2): 241―252.
    [31] J B, Priestley M J N, Park R. Theoretical stress-strain model for confined concrete [J]. Journal of Structural Engineering, 1988, 114(8): 1804―1826.
    [32] J P, Cavanagh T. Confinement effectiveness of crossties in RC [J]. Journal of Structural Engineering, 1985, 111(10): 2105―2120.
    [33] Doormaal J, Weerheijm J, Sluys L J. Experimental and numerical determination of the dynamic fracture energy of concrete [J]. Journal de Physique IV, 1994, 4(8): 501―506.
    [34] P A. Test for the rate effect on concrete fracture energy [M]. Jones N, Brebbia C A, Jones N, Manolis G D, et al. Structures Under Shock and Impact V. Boston: Computational Mechanics Publications in Southampton, 1998: 461―470.
    [35] G, Zhang X X, Yu R C, et al. Effect of loading rate on fracture energy of high-strength concrete [J]. Strain, 2011, 47(6): 518―524.
    [36] E, Davison B, Tyas A. Structural integrity of steel connections subjected to rapid rates of loading [DB]. http://ascelibrary.org/doi/pdf/10.1061/ 40753% 28171%29217, 2005.
  • [1] 陆钰佳, 陈素文, 张洋.  中高应变率和不同温度下离子型中间膜的拉伸力学性能及本构关系 . 工程力学, 2021, 38(2): 101-109. doi: 10.6052/j.issn.1000-4750.2020.04.0204
    [2] 杨志坚, 雷岳强.  预应力高强混凝土管桩的抗剪性能有限元分析 . 工程力学, 2020, 37(S): 200-207. doi: 10.6052/j.issn.1000-4750.2019.04.S036
    [3] 金浏, 杨旺贤, 余文轩, 杜修力.  基于细观模拟的轻骨料混凝土动态压缩破坏及尺寸效应分析 . 工程力学, 2020, 37(3): 56-65. doi: 10.6052/j.issn.1000-4750.2019.01.0012
    [4] 王国盛, 路德春, 杜修力, 李萌, 穆嵩.  混凝土材料真实动态强度及率效应机理研究 . 工程力学, 2018, 35(6): 58-67. doi: 10.6052/j.issn.1000-4750.2017.02.0101
    [5] 李潇, 方秦, 孔祥振, 吴昊.  数值模拟中混凝土类材料应变率效应曲线的惯性效应修正 . 工程力学, 2018, 35(12): 46-53. doi: 10.6052/j.issn.1000-4750.2017.10.0764
    [6] 张帅, 金浏, 李冬, 杜修力.  结构尺寸对钢筋混凝土短柱抗震性能影响:细观分析 . 工程力学, 2018, 35(12): 164-174. doi: 10.6052/j.issn.1000-4750.2017.10.0765
    [7] 闫秋实, 邵慧芳, 李亮.  冲击荷载作用下装配式钢筋混凝土梁力学性能研究 . 工程力学, 2017, 34(4): 196-205. doi: 10.6052/j.issn.1000-4750.2016.03.0239
    [8] 袁辉辉, 吴庆雄, 陈宝春, 吕银花.  平缀管式等截面钢管混凝土格构柱抗震性能试验与有限元分析 . 工程力学, 2016, 33(10): 226-235. doi: 10.6052/j.issn.1000-4750.2015.05.0373
    [9] 康翔杰, 刘艳辉, 许浒, 赵世春, 余志祥.  低速冲击碰撞有限元分析中混凝土动态破坏面修正方法 . 工程力学, 2016, 33(3): 135-142. doi: 10.6052/j.issn.1000-4750.2014.08.0681
    [10] 李帼昌, 李文明.  一种角钢式屈曲约束支撑与混凝土梁柱连接节点有限元分析 . 工程力学, 2016, 33(增刊): 67-71. doi: 10.6052/j.issn.1000-4750.2015.05.S005
    [11] 张有佳, 李小军.  钢板混凝土组合墙轴压受力性能有限元分析 . 工程力学, 2016, 33(8): 84-92. doi: 10.6052/j.issn.1000-4750.2014.14.1079
    [12] 李帼昌, 王硕, 田磊, 鲍成园.  屈曲约束支撑混凝土框架节点性能的有限元分析 . 工程力学, 2013, 30(增刊): 212-216. doi: 10.6052/j.issn.1000-4750.2012.06.S060
    [13] 何远明, 霍静思, 陈柏生, 黄政宇.  高温下混凝土SHPB动态力学性能试验研究 . 工程力学, 2012, 29(9): 200-208. doi: 10.6052/j.issn.1000-4750.2010.12.0910
    [14] 张风亮, 赵鸿铁, 薛建阳, 马辉, 张锡成.  古建筑木结构屋盖梁架体系动力性能分析 . 工程力学, 2012, 29(8): 184-188,201. doi: 10.6052/j.issn.1000-4750.2010.11.0817
    [15] 禚 一, 李忠献.  钢筋混凝土纤维梁柱单元实用模拟平台 . 工程力学, 2011, 28(4): 102-108,. doi: 10.6052/j.issn.1000-4750.2009.09.0624
    [16] 彭 刚, 刘德富, 戴会超.  钢纤维混凝土动态压缩性能及全曲线模型研究 . 工程力学, 2009, 26(2): 142-147.
    [17] 阎 石, 王 丹, 张 亮, 孙 静.  爆炸荷载作用下钢筋混凝土柱损伤FEM分析 . 工程力学, 2008, 25(增刊Ⅰ): 0-093.
    [18] 徐礼华, 凡 红, 刘胜兵, 邢 丹.  方钢管混凝土柱-钢梁节点抗震性能试验研究与有限元分析 . 工程力学, 2008, 25(2): 0-131.
    [19] 陆新征, 叶列平, 滕锦光, 庄江波, 江见鲸.  FRP片材与混凝土粘结性能的精细有限元分析 . 工程力学, 2006, 23(5): 74-82.
    [20] 陆新征, 谭壮, 叶列平, 江见鲸.  FRP布-混凝土界面粘结性能的有限元分析 . 工程力学, 2004, 21(6): 45-50.
  • 加载中
计量
  • 文章访问数:  219
  • HTML全文浏览量:  0
  • PDF下载量:  140
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-04-13
  • 刊出日期:  2014-09-25

考虑箍筋约束效应的快速轴压加载下钢筋混凝土短柱性能数值分析

doi: 10.6052/j.issn.1000-4750.2013.04.0325
    基金项目:  国家自然科学基金重大研究计划重点项目(90715033); 国家自然科学基金重大研究计划培育项目(91015007)
  • 中图分类号: TU375.3

摘要: 为了研究在地震作用下应变率效应对约束钢筋混凝土轴压短柱力学性能的影响,该文建议了同时考虑应变率效应和箍筋约束效应的混凝土塑性模型等效单轴受压本构曲线,建立了分析约束钢筋混凝土轴压短柱在快速加载下动力行为的有限元模型。通过模拟结果与文献中试验研究结果的比较,表明该模型可有效描述约束钢筋混凝土短柱在地震作用下考虑混凝土材料应变率敏感性时的力学性能,建议的等效单轴受压本构曲线是合理的。利用该有限元模型,分析了配置箍筋构形、箍筋间距和纵筋配筋率这三个可影响约束效应的参数对约束钢筋混凝土短柱在考虑率效应时的力学性能的影响。结果表明随应变率的提高,轴压短柱的承载力明显提高,但延性降低,力-轴向变形曲线下降段变陡。箍筋构形、间距以及纵筋配筋率对约束钢筋混凝土轴压短柱的动力力学性能具有重要的影响。

English Abstract

曾翔, 许斌. 考虑箍筋约束效应的快速轴压加载下钢筋混凝土短柱性能数值分析[J]. 工程力学, 2014, 31(9): 190-197. doi: 10.6052/j.issn.1000-4750.2013.04.0325
引用本文: 曾翔, 许斌. 考虑箍筋约束效应的快速轴压加载下钢筋混凝土短柱性能数值分析[J]. 工程力学, 2014, 31(9): 190-197. doi: 10.6052/j.issn.1000-4750.2013.04.0325
ZENG Xiang, XU Bin. NUMERICAL SIMULATION ON THE DYNAMIC BEHAVIOR OF SHORT RC COLUMNS SUBJECTED TO CONCENTRIC RAPID LOADING CONSIDERING CONFINEMENT EFFECT OF STIRRUPS[J]. Engineering Mechanics, 2014, 31(9): 190-197. doi: 10.6052/j.issn.1000-4750.2013.04.0325
Citation: ZENG Xiang, XU Bin. NUMERICAL SIMULATION ON THE DYNAMIC BEHAVIOR OF SHORT RC COLUMNS SUBJECTED TO CONCENTRIC RAPID LOADING CONSIDERING CONFINEMENT EFFECT OF STIRRUPS[J]. Engineering Mechanics, 2014, 31(9): 190-197. doi: 10.6052/j.issn.1000-4750.2013.04.0325
参考文献 (36)

目录

    /

    返回文章
    返回