STUDY ON AXIAL COMPRESSION STABILITY BEHAVIOR OF STEEL TUBULAR MEMBER WITH SEMI-RIGID CONNECTIONS IN TRANSMISSION TOWERS
-
摘要:
为了研究输电塔半刚性连接钢管构件的轴压稳定性能,对60根钢管试件进行了轴压试验,分析了其失稳破坏模式和稳定承载力,并与现行设计规范计算的承载力进行了对比;建立了半刚性连接钢管构件的有限元模型,经与试验结果对比验证后开展了参数分析,研究了初始转动刚度、径厚比、材料强度以及初始缺陷对半刚性连接钢管构件的稳定系数-长细比曲线的影响;基于有限元分析的结果提出了半刚性连接钢管构件的轴压稳定计算公式。研究结果表明:半刚性连接构件的试验稳定承载力均大于铰接构件的试验稳定承载力,在所有试验工况中两者的相对差距最小为5.6%;中国和美国现行设计规范计算得到的钢管构件稳定承载力总体偏保守,分别约为试验结果的0.78倍和0.89倍;影响半刚性连接钢管构件稳定承载力的主要因素为长细比、初始转动刚度以及边界条件;提出的半刚性连接钢管构件轴压稳定计算公式能准确地预测其稳定系数并具有良好的适用性,可为实际工程提供参考。
Abstract:To study the axial compression stability behavior of steel tubular members with semi-rigid connections in transmission towers, the axial compression test of 60 steel tubular members was firstly conducted, in which the failure mode was analyzed and the stability bearing capacity was compared with calculated results of existing design codes. The finite element (FE) model of steel tubular members with semi-rigid connections was established. After the validation with experimental results, the parametric analysis was carried out, and the investigated are the effect of initial rotational stiffness, diameter-thickness ratio, yield strength and initial imperfection on the stability coefficient-slenderness ratio curve. One stability design formula for steel tubular members with semi-rigid connections was proposed upon FE analysis results. The results show that: the experimental stability bearing capacity of steel tubular members with semi-rigid connections is larger than that with pinned connections, in which the minimum relative error is 5.6% in all experiment cases. The stability bearing capacity calculated by Chinese and American existing design codes exhibits overall conservatism, in which the calculated results are respectively 0.78 and 0.89 times of experimental results. The main factors which affect the stability bearing capacity of steel tubular members with semi-rigid connections are the slenderness ratio, initial rotational stiffness and, boundary condition. The formula proposed could accurately predict the stability coefficient with good applicability, which can provide a reference for actual associated engineering.
-
-
表 1 试件主要参数
Table 1 Main parameters of test specimens
组号 试件编号 截面尺寸/mm 长度/mm 长细比 边界条件 转动刚度/(kN·m·rad−1) 1 DK0λ80 140×43848 80 两端铰接 0 2 DK0λ100 140×44810 100 两端铰接 0 3 DK0λ120 140×45772 120 两端铰接 0 4 DK0λ140 127×46091 140 两端铰接 0 5 SK50λ80 140×43848 80 一端铰接一端半刚性连接 50 6 SK50λ100 140×44810 100 一端铰接一端半刚性连接 50 7 SK50λ120 140×45772 120 一端铰接一端半刚性连接 50 8 SK50λ140 127×46091 140 一端铰接一端半刚性连接 50 9 DK50λ80 140×43848 80 两端半刚性连接 50 10 DK50λ100 140×44810 100 两端半刚性连接 50 11 DK50λ120 140×45772 120 两端半刚性连接 50 12 DK50λ140 127×46091 140 两端半刚性连接 50 13 SK75λ80 140×43848 80 一端铰接一端半刚性连接 75 14 SK75λ100 140×44810 100 一端铰接一端半刚性连接 75 15 DK75λ80 140×43848 80 两端半刚性连接 75 16 DK75λ100 140×44810 100 两端半刚性连接 75 17 SK100λ80 140×43848 80 一端铰接一端半刚性连接 100 18 SK100λ100 140×44810 100 一端铰接一端半刚性连接 100 19 DK100λ80 140×43848 80 两端半刚性连接 100 20 DK100λ100 140×44810 100 两端半刚性连接 100 表 2 钢材材料性能
Table 2 Mechanical properties of steel
长细比 屈服强度fy/MPa 极限强度fu/MPa 弹性模量E/GPa 伸长率δ/(%) 80 383 496 212 25.57 100 372 483 204 22.34 120 364 540 199 26.19 140 369 504 203 24.84 表 3 钢管构件的稳定承载力
Table 3 Stability bearing capacity of steel tubular members
/kN 试件编号 试验值FT 试验均值
FTA中标计算值
FD美标计算值
FA有限元模型
计算值FEFD/FTA FA/FTA FE/FTA -1 -2 -3 DK0λ80 467.2 473.3 472.3 470.9 414.0 462.9 475.0 0.88 0.98 1.01 DK0λ100 307.6 311.8 313.7 311.0 288.9 342.1 319.0 0.93 1.10 1.03 DK0λ120 224.9 227.0 229.9 227.3 206.1 233.1 233.1 0.91 1.03 1.03 DK0λ140 156.2 162.8 168.2 162.4 143.4 158.0 160.8 0.88 0.97 0.99 SK50λ80 512.5 512.6 496.3 507.1 414.0 462.9 499.6 0.82 0.91 0.99 SK50λ100 373.9 367.1 363.1 368.0 288.9 342.1 355.6 0.79 0.93 0.97 SK50λ120 254.9 252.4 245.6 251.0 206.1 233.1 247.5 0.82 0.93 0.99 SK50λ140 169.3 171.2 174.0 171.5 143.4 158.0 170.6 0.84 0.92 0.99 DK50λ80 550.3 547.7 550.1 549.4 414.0 462.9 549.3 0.75 0.84 1.00 DK50λ100 399.9 404.0 387.1 397.0 288.9 342.1 382.5 0.73 0.86 0.96 DK50λ120 287.2 277.4 287.9 284.2 206.1 233.1 270.5 0.73 0.82 0.95 DK50λ140 174.0 178.6 177.2 176.6 143.4 158.0 184.9 0.81 0.89 1.05 SK75λ80 518.7 518.5 528.7 522.0 414.0 462.9 521.5 0.79 0.89 1.00 SK75λ100 392.8 384.9 384.8 387.5 288.9 342.1 373.1 0.75 0.88 0.96 DK75λ80 582.6 570.9 571.1 574.9 414.0 462.9 584.2 0.72 0.81 1.02 DK75λ100 437.2 426.4 419.2 427.6 288.9 342.1 443.0 0.68 0.80 1.04 SK100λ80 541.2 533.8 560.8 545.3 414.0 462.9 546.8 0.76 0.85 1.00 SK100λ100 411.5 407.7 406.0 408.4 288.9 342.1 382.2 0.71 0.84 0.94 DK100λ80 635.5 617.6 610.8 621.3 414.0 462.9 584.7 0.67 0.75 0.94 DK100λ100 455.8 447.7 456.0 453.2 288.9 342.1 424.6 0.64 0.75 0.94 平均值 0.78 0.89 0.99 标准差 0.08 0.09 0.03 表 4 稳定系数计算公式待定系数的拟合结果
Table 4 Fitting results of undetermined coefficients for stability coefficient formula
边界条件 拟合待定系数 a1 a2 a3 DK=50.99 kN·m·rad−1 11.2097 −3.8505 1.3778 DK=102.32 kN·m·rad−1 9.2400 −3.0463 1.2905 DK=201.34 kN·m·rad−1 7.1850 −2.3429 1.2288 DK=333.06 kN·m·rad−1 5.7896 −1.9502 1.2063 SK=50.99 kN·m·rad−1 12.5180 −4.3786 1.4344 SK=102.32 kN·m·rad−1 11.3954 −3.9304 1.3867 SK=201.34 kN·m·rad−1 10.0598 −3.4790 1.3485 SK=333.06 kN·m·rad−1 8.9494 −3.1240 1.3202 -
[1] 俞登科, 李正良, 李茂华, 等. 基于矩方法的特高压输电塔抗风可靠度分析[J]. 工程力学, 2013, 30(5): 311 − 316. doi: 10.6052/j.issn.1000-4750.2011.11.0803 YU Dengke, LI Zhengliang, LI Maohua, et al. Wind-resistant reliability analysis of UHV transmission tower based on moment methods [J]. Engineering Mechanics, 2013, 30(5): 311 − 316. (in Chinese) doi: 10.6052/j.issn.1000-4750.2011.11.0803
[2] RAO N P, KNIGHT G M S, LAKSHMANAN N, et al. Investigation of transmission line tower failures [J]. Engineering Failure Analysis, 2010, 17(5): 1127 − 1141. doi: 10.1016/j.engfailanal.2010.01.008
[3] 陈波, 宋欣欣, 吴镜泊. 输电塔线体系力学模型研究进展[J]. 工程力学, 2021, 38(5): 1 − 21. doi: 10.6052/j.issn.1000-4750.2020.08.ST07 CHEN Bo, SONG Xinxin, WU Jingbo. Advances in mechanical models of transmission tower-line systems [J]. Engineering Mechanics, 2021, 38(5): 1 − 21. (in Chinese) doi: 10.6052/j.issn.1000-4750.2020.08.ST07
[4] LIANG S G, ZOU L H, WANG D H, et al. Investigation on wind tunnel tests of a full aeroelastic model of electrical transmission tower-line system [J]. Engineering Structures, 2015, 85: 63 − 72. doi: 10.1016/j.engstruct.2014.11.042
[5] 赵爽, 晏致涛, 李正良, 等. 基于风洞试验的苏通大跨越输电塔风振系数研究[J]. 建筑结构学报, 2019, 40(11): 35 − 44. doi: 10.14006/j.jzjgxb.2017.0833 ZHAO Shuang, YAN Zhitao, LI Zhengliang, et al. Investigation on wind-induced vibration coefficients of Sutong long span transmission tower based on wind tunnel tests [J]. Journal of Building Structures, 2019, 40(11): 35 − 44. (in Chinese) doi: 10.14006/j.jzjgxb.2017.0833
[6] LI Y, LI Z L, SAVORY E, et al. Wind tunnel measurement of overall and sectional drag coefficients for a super high-rise steel tube transmission tower [J]. Journal of Wind Engineering and Industrial Aerodynamics, 2020, 206: 104363. doi: 10.1016/j.jweia.2020.104363
[7] 李佳鸿, 李正良, 王涛. 基于神经网络的输电塔钢管构件涡激振动幅值预测方法[J]. 工程力学, 2024, 41(1): 64 − 75. doi: 10.6052/j.issn.1000-4750.2022.02.0188 LI Jiahong, LI Zhengliang, WANG Tao. Prediction method for vortex-induced vibration amplitude of steel tubes in transmission towers based on neural network [J]. Engineering Mechanics, 2024, 41(1): 64 − 75. (in Chinese) doi: 10.6052/j.issn.1000-4750.2022.02.0188
[8] 鲍侃袁, 沈国辉, 孙炳楠, 等. 高耸钢管塔K型结点极限承载力的试验研究与理论分析[J]. 工程力学, 2008, 25(12): 114 − 122. BAO Kanyuan, SHEN Guohui, SUN Bingnan, et al. Experimental study and theoretical analysis of ultimate strength of steel tubular K-joints of tall towers [J]. Engineering Mechanics, 2008, 25(12): 114 − 122. (in Chinese)
[9] 杨风利, 朱彬荣, 邢海军. 输电铁塔螺栓节点连接滑移特性及模型参数研究[J]. 工程力学, 2017, 34(10): 116 − 127. doi: 10.6052/j.issn.1000-4750.2016.05.0403 YANG Fengli, ZHU Binrong, XING Haijun. The slip characteristics and parametric study of bolted connections for transmission towers [J]. Engineering Mechanics, 2017, 34(10): 116 − 127. (in Chinese) doi: 10.6052/j.issn.1000-4750.2016.05.0403
[10] QU S Z, WU X H, SUN Q. Experimental and numerical study on ultimate behaviour of high-strength steel tubular K-joints with external annular steel plates on chord circumference [J]. Engineering Structures, 2018, 165: 457 − 470. doi: 10.1016/j.engstruct.2018.03.025
[11] LI F, DENG H Z, HU X Y. Design resistance of longitudinal gusset-tube K-joints with 1/4 annular plates in transmission towers [J]. Thin-Walled Structures, 2019, 144: 106271. doi: 10.1016/j.tws.2019.106271
[12] 王激扬, 陈勇, 郭勇, 等. 窄基输电塔分离式K型节点的受力性能试验研究[J]. 工程力学, 2019, 36(增刊 1): 66 − 70. doi: 10.6052/j.issn.1000-4750.2018.04.S009 WANG Jiyang, CHEN Yong, GUO Yong, et al. Experimental study on the mechanical behavior of detached tubular K-joints of narrow foundation transmission towers [J]. Engineering Mechanics, 2019, 36(Suppl 1): 66 − 70. (in Chinese) doi: 10.6052/j.issn.1000-4750.2018.04.S009
[13] 李开禧, 肖允徽. 逆算单元长度法计算单轴失稳时钢压杆的临界力[J]. 重庆建筑工程学院学报, 1982, 4(4): 26 − 45. LI Kaixi, XIAO Yunhui. Calculation of the critical force of the steel struts with the inverse calculation segment length method [J]. Journal of Chongqing Architecture University, 1982, 4(4): 26 − 45. (in Chinese)
[14] 李开禧, 肖允徽, 铙晓峰, 等. 钢压杆的柱子曲线[J]. 重庆建筑工程学院学报, 1985(1): 24 − 33. LI Kaixi, XIAO Yunhui, Nao Xiaofeng, et al. Column curves for steel compression member [J]. Column Curves for Steel Compression Member, 1985(1): 24 − 33. (in Chinese)
[15] 沈祖炎, 陈扬骥, 陈学潮. 钢管结构极限承载力计算的力学模型[J]. 同济大学学报, 1988(3): 279 − 292. SHEN Zuyan, CHEN Yangji, CHEN Xuechao. A mechanical model for the analysis of ultimate strength of tubular structures [J]. Journal of Tongji University, 1988(3): 279 − 292. (in Chinese)
[16] 曹世山, 张大长, 丁阳. Q345轴压钢管整体稳定和局部稳定分析[J]. 钢结构, 2016, 31(10): 15 − 19. doi: 10.13206/j.gjg201610004 CAO Shishan, ZHANG Dachang, DING Yang. Overall buckling and local buckling analysis of axial compression Q345 steel tubes [J]. Steel Construction, 2016, 31(10): 15 − 19. (in Chinese) doi: 10.13206/j.gjg201610004
[17] 施刚, 姜雪, 周文静, 等. Q420镀锌焊接圆管轴压整体稳定试验研究[J]. 哈尔滨工业大学学报, 2013, 45(10): 75 − 80. doi: 10.11918/j.issn.0367-6234.2013.10.014 SHI Gang, JIANG Xue, ZHOU Wenjing, et al. Experimental study on overall buckling behavior of Q420 high strength welded galvanized tubes under axial compression [J]. Journal of Harbin Institute of Technology, 2013, 45(10): 75 − 80. (in Chinese) doi: 10.11918/j.issn.0367-6234.2013.10.014
[18] 施刚, 姜雪, 周文静, 等. Q420焊接圆钢管轴心受压稳定性能试验和设计方法研究[J]. 工程力学, 2015, 32(2): 64 − 73. doi: 10.6052/j.issn.1000-4750.2013.07.0611 SHI Gang, JIANG Xue, ZHOU Wenjing, et al. Experimental study on the buckling behavior of Q420 high strength steel welded tubes under axial compression and design methods [J]. Engineering Mechanics, 2015, 32(2): 64 − 73. (in Chinese) doi: 10.6052/j.issn.1000-4750.2013.07.0611
[19] 郭咏华, 李晓彦, 张斌, 等. 高强钢轴心受压钢管整体稳定性承载力试验研究及数值分析[J]. 工程力学, 2013, 30(8): 111 − 118, 132. doi: 10.6052/j.issn.1000-4750.2015.08.0666 GUO Yonghua, LI Xiaoyan, ZHANG Bin, et al. Experimental and numerical investigation of axial compression high strength steel tube [J]. Engineering Mechanics, 2013, 30(8): 111 − 118, 132. (in Chinese) doi: 10.6052/j.issn.1000-4750.2015.08.0666
[20] 王辉, 李晓彦, 孙清, 等. 高强钢管轴压构件整体稳定性承载力的试验研究[J]. 工业建筑, 2014, 44(11): 145 − 149, 66. WANG Hui, LI Xiaoyan, SUN Qing, et al. Experimental research on overall stability bearing capacity of high strength steel tube components [J]. Industrial Construction, 2014, 44(11): 145 − 149, 66. (in Chinese)
[21] 杨隆宇, 李正良, 魏磊, 等. 高强钢管轴压承载力研究[J]. 西安建筑科技大学学报(自然科学版), 2010, 42(2): 201 − 204, 210. doi: 10.15986/j.1006-7930.2010.02.020 YANG Longyu, LI Zhengliang, WEI Lei, et al. An investigation of high strength steel tubes' ultimate load capacity under axial compression [J]. Journal of Xi’an University of Architecture & Technology (Natural Science Edition), 2010, 42(2): 201 − 204, 210. (in Chinese) doi: 10.15986/j.1006-7930.2010.02.020
[22] 杨隆宇, 李正良, 刘红军. 铰支轴心受压高强钢管的局部稳定强度折减系数[J]. 四川大学学报(工程科学版), 2010, 42(4): 203 − 208. doi: 10.15961/j.jsuese.2010.04.025 YANG Longyu, LI Zhengliang, LIU Hongjun, et al. Strength reduction factor caused by local stability for simply supported high strength steel tube subjected to axial compression load [J]. Journal of Sichuan University (Engineering Science Edition), 2010, 42(4): 203 − 208. (in Chinese) doi: 10.15961/j.jsuese.2010.04.025
[23] 吴海洋, 包永忠, 郭念. 输电铁塔钢管构件轴压承载力研究[J]. 电力科学与工程, 2014, 30(11): 47 − 51, 56. doi: 10.3969/j.issn.1672-0792.2014.11.010 WU Haiyang, BAO Yongzhong, GUO Nian. Research on the axial compressive bearing capacity of steel-tube element of power transmission tower [J]. Electric Power Science and Engineering, 2014, 30(11): 47 − 51, 56. (in Chinese) doi: 10.3969/j.issn.1672-0792.2014.11.010
[24] 吴海洋, 陈小红. 输电铁塔钢管构件非线性屈曲荷载理论和试验研究[J]. 钢结构, 2017, 32(12): 7 − 11. doi: 10.13206/j.gjg201712002 WU Haiyang, CHEN Xiaohong. Theoretical and experimental research on the nonlinear buckling load of steel-pipe member of transmission tower [J]. Steel Construction, 2017, 32(12): 7 − 11. (in Chinese) doi: 10.13206/j.gjg201712002
[25] DL/T 5486−2020, 架空输电线路杆塔结构设计技术规程 [S]. 北京: 中国电力出版社, 2020. DL/T 5486−2020, Technical code for design of tower structures of UHV overhead transmission line [S]. Beijing: China Electric Power Press, 2020. (in Chinese)
[26] ASCE 10-15-2015, Design of latticed steel transmission structures [S]. Reston: ASCE, 2015.
[27] TANG Z Q, LI Z L, WANG T. Direct prediction method for semi-rigid behavior of K-joint in transmission towers based on surrogate model [J]. International Journal of Structural Stability and Dynamics, 2023, 23(3): 2350027. doi: 10.1142/S021945542350027X
[28] 俞登科, 杨靖波, 李正良, 等. 考虑节点半刚性的输电塔钢管构件稳定承载力分析[J]. 钢结构(中英文), 2022, 37(5): 36 − 43. YU Dengke, YANG Jingbo, LI Zhengliang, et al. Analysis on stability bearing capacity of steel tubular members considering semi-rigid joints in transmission towers [J]. Steel Construction (Chinese & English), 2022, 37(5): 36 − 43. (in Chinese)
[29] GB/T 228.1−2010, 金属材料 拉伸试验 第1部分: 室温试验方法 [S]. 北京: 中国标准出版社, 2011. GB/T 228.1−2010, Metallic materials-Tensile testing-Part 1: Method of test at room temperature [S]. Beijing: Standards Press of China, 2011. (in Chinese)
[30] GB 50017−2017, 钢结构设计标准 [S]. 北京: 中国建筑工业出版社, 2017. GB 50017−2017, Standard for design of steel structures [S]. Beijing: China Architecture & Building Press, 2017. (in Chinese)
[31] TANG Z Q, LI Z L, WANG T. GPR-based prediction and uncertainty quantification for bearing capacity of steel tubular members considering semi-rigid connections in transmission towers [J]. Engineering Failure Analysis, 2022, 142: 106854. doi: 10.1016/j.engfailanal.2022.106854
[32] 王辉. 高强钢管轴心受压构件稳定性及管板节点极限承载力试验与理论研究 [D]. 西安: 西安建筑科技大学, 2016. WANG Hui. Experimental and theoretical study on the stability of axially compressed component of high-strength steeltube and ultimate bearing capacity of tube-gusset joint [D]. Xi’an: Xi’an University of Architecture and Technology, 2016. (in Chinese)
[33] CHEN W F, ROSS D A. Tests of fabricated tubular columns [J]. Journal of the Structural Division, 1977, 103(3): 619 − 634. doi: 10.1061/JSDEAG.0004586