NEW PROGRESS IN REDUCED ELEMENT: AN ADAPTIVE FINITE ELEMENT METHOD WITH BUILT-IN ERROR ESTIMATOR IN MAXIMUM NORM
-
摘要:
该文基于初值问题中降阶单元的成功实践,进一步对一般边值问题提出无需超收敛计算、无需结构化网格、无需结点位移修正的降阶单元;进而提出以降阶单元作为最终解,且内置了最大模误差估计器的自适应有限元算法。该文对这一研究进展做简要介绍,并给出一维和二维边值问题的初步算例,以展示本法的可行性、有效性和可靠性。
Abstract:Based on the successful performance of the reduced element for initial value problems, the reduced element for general boundary value problems is proposed without the needs for super-convergence calculations, structural meshes and nodal accuracy improvement. An adaptive finite element algorithm with the solution of the reduced element and a built-in maximum norm error estimator as the final results is subsequently proposed. This paper gives a brief report to this research progress and provides preliminary numerical examples in one- and two-dimensional boundary value problems to exhibit the feasibility, effectiveness and reliability of the proposed algorithm.
-
表 1 一维常规单元和降阶单元位移解的收敛阶
Table 1 Convergence orders of displacement solutions for one-dimensional conventional and reduced elements
单元类型 内部收敛阶 端点收敛阶 常规线性元 h2 h2 常规二次元 h3 h4 降阶线性元 h2 h4 -
[1] BABUŠKA I, RHEINBOLDT W C. Adaptive approaches and reliability estimations in finite element analysis [J]. Computer Methods in Applied Mechanics and Engineering, 1979, 17/18: 519 − 540. doi: 10.1016/0045-7825(79)90042-2
[2] ZIENKIEWICZ O C, ZHU J Z. A simple error estimator and adaptive procedure for practical engineering analysis [J]. International Journal for Numerical Methods in Engineering, 1987, 24(2): 337 − 357. doi: 10.1002/nme.1620240206
[3] YUAN S, HE X F. Self-adaptive strategy for one-dimensional finite element method based on element energy projection method [J]. Applied Mathematics and Mechanics, 2006, 27(11): 1461 − 1474. doi: 10.1007/s10483-006-1103-1
[4] YUAN S, DU Y, XING Q Y, et al. Self-adaptive one-dimensional nonlinear finite element method based on element energy projection method [J]. Applied Mathematics and Mechanics, 2014, 35(10): 1223 − 1232. doi: 10.1007/s10483-014-1869-9
[5] DONG Y Y, YUAN S, XING Q Y. Adaptive finite element analysis with local mesh refinement based on a
posteriori error estimate of element energy projection technique [J]. Engineering Computations, 2019, 36(6): 2010 − 2033. doi: 10.1108/EC-11-2018-0523 [6] JIANG K F, YUAN S, XING Q Y. An adaptive nonlinear finite element analysis of minimal surface problem based on element energy projection technique [J]. Engineering Computations, 2020, 37(8): 2847 − 2869. doi: 10.1108/EC-08-2019-0369
[7] YUAN S, SUN H H. A general adaptive finite element eigen-algorithm stemming from Wittrick-Williams algorithm [J]. Thin-Walled Structures, 2021, 161: 107448. doi: 10.1016/j.tws.2021.107448
[8] SUN H H, YUAN S. Adaptive finite element analysis of free vibration of elastic membranes via element energy projection technique [J]. Engineering Computations, 2021, 38(8): 3492 − 3516.
[9] HUANG Z M, YUAN S, XING Q Y. Nodal accuracy improvement technique for linear elements with application to adaptivity [J]. Applied Sciences, 2023, 13(5): 2844. doi: 10.3390/app13052844
[10] 袁驷, 刘泽洲, 邢沁妍. 二维变分不等式问题的自适应有限元分析[J]. 工程力学, 2016, 33(1): 11 − 17. doi: 10.6052/j.issn.1000-4750.2015.06.ST01 YUAN Si, LIU Zezhou, XING Qinyan. Self-adaptive FEM analysis for 2D variational inequality problems [J]. Engineering Mechanics, 2016, 33(1): 11 − 17. (in Chinese) doi: 10.6052/j.issn.1000-4750.2015.06.ST01
[11] STRANG G, FIX G J. An analysis of the finite element method [M]. Englewood Clifs: Prentice-Hall, 1973: 39 − 50.
[12] DOUGLAS J JR. Galerkin approximations for the two point boundary problem using continuous, piecewise polynomial spaces [J]. Numerische Mathematik, 1974, 22(2): 99 − 109. doi: 10.1007/BF01436724
[13] HULME B L. One-step piecewise polynomial Galerkin methods for initial value problems [J]. Mathematics of Computation, 1972, 26(118): 415 − 426. doi: 10.1090/S0025-5718-1972-0321301-2
[14] 陈传淼, 黄云清. 有限元高精度理论 [M]. 长沙: 湖南科学技术出版社, 1995: 235 − 309. CHEN Chuanmiao, HUANG Yunqing. High accuracy theory of finite element methods [M]. Changsha: Hunan Science & Technology Press, 1995: 235 − 309. (in Chinese)
[15] 袁驷, 袁全. 自适应步长时程分析的新进展: 从凝聚单元到降阶单元[J]. 工程力学, 2023, 40(1): 32 − 39. doi: 10.6052/j.issn.1000-4750.2022.05.ST01 YUAN Si, YUAN Quan. New progress in adaptive time-stepping for time integration analysis: From condensed element to reduced element [J]. Engineering Mechanics, 2023, 40(1): 32 − 39. (in Chinese) doi: 10.6052/j.issn.1000-4750.2022.05.ST01
[16] YUAN Si, YUAN Quan. Condensed Galerkin element of degree m for first-order initial-value problem with O( h2 m +2) super-convergent nodal solutions [J]. Applied Mathematics and Mechanics, 2022, 43(4): 603 − 614. doi: 10.1007/s10483-022-2831-6
[17] 袁驷, 袁全. 运动方程自适应步长求解的高性能Galerkin时程单元初探[J]. 工程力学, 2022, 39(1): 21 − 26. YUAN Si, YUAN Quan. An initial study of a novel high-performance Galerkin finite element and applying for the adaptive time-step method in solving motion equation [J]. Engineering Mechanics, 2022, 39(1): 21 − 26. (in Chinese)
[18] ZIENKIEWICZ O C, ZHU J Z. The superconvergent patch recovery and a posteriori error estimates. Part 2: Error estimates and adaptivity [J]. International Journal for Numerical Methods in Engineering, 1992, 33(7): 1365 − 1382. doi: 10.1002/nme.1620330703
[19] COOK R D. A plane hybrid element with rotational d. o. f. and adjustable stiffness [J]. International Journal for Numerical Methods in Engineering, 1987, 24(8): 1499 − 1508. doi: 10.1002/nme.1620240807
[20] YUNUS S M, SAIGAL S, COOK R D. On improved hybrid finite elements with rotational degrees of freedom [J]. International Journal for Numerical Methods in Engineering, 1989, 28(4): 785 − 800. doi: 10.1002/nme.1620280405
-
期刊类型引用(5)
1. 袁驷,袁全. 时空降阶单元及其自适应分析初探. 工程力学. 2025(01): 10-19 . 本站查看
2. 杨帅,袁驷. 几种自适应有限元方法的对比分析. 工程力学. 2025(S1): 1-8 . 本站查看
3. 袁全,袁驷. Timoshenko梁厚薄通用降阶单元的构造及其自适应求解. 工程力学. 2025(S1): 23-29 . 本站查看
4. 袁驷,袁全,杨帅,王亦平,刘海阳. 内置了最大模误差估计器的自适应有限元法——研究进展与展望. 土木工程学报. 2024(06): 43-58 . 百度学术
5. 傅向荣,王钰,赵阳,陈璞,孙树立. 超协调元. 工程力学. 2024(S1): 7-14 . 本站查看
其他类型引用(6)