Loading [MathJax]/jax/output/SVG/jax.js

降阶单元的新进展:内置了最大模误差估计器的自适应有限元法初探

袁驷, 杨帅, 袁全, 王亦平

袁驷, 杨帅, 袁全, 王亦平. 降阶单元的新进展:内置了最大模误差估计器的自适应有限元法初探[J]. 工程力学, 2024, 41(3): 1-8. DOI: 10.6052/j.issn.1000-4750.2023.07.ST04
引用本文: 袁驷, 杨帅, 袁全, 王亦平. 降阶单元的新进展:内置了最大模误差估计器的自适应有限元法初探[J]. 工程力学, 2024, 41(3): 1-8. DOI: 10.6052/j.issn.1000-4750.2023.07.ST04
YUAN Si, YANG Shuai, YUAN Quan, WANG Yi-ping. NEW PROGRESS IN REDUCED ELEMENT: AN ADAPTIVE FINITE ELEMENT METHOD WITH BUILT-IN ERROR ESTIMATOR IN MAXIMUM NORM[J]. Engineering Mechanics, 2024, 41(3): 1-8. DOI: 10.6052/j.issn.1000-4750.2023.07.ST04
Citation: YUAN Si, YANG Shuai, YUAN Quan, WANG Yi-ping. NEW PROGRESS IN REDUCED ELEMENT: AN ADAPTIVE FINITE ELEMENT METHOD WITH BUILT-IN ERROR ESTIMATOR IN MAXIMUM NORM[J]. Engineering Mechanics, 2024, 41(3): 1-8. DOI: 10.6052/j.issn.1000-4750.2023.07.ST04

降阶单元的新进展:内置了最大模误差估计器的自适应有限元法初探

基金项目: 国家自然科学基金项目(51878383,51378293)
详细信息
    作者简介:

    杨 帅(1997−),男,河北人,博士生,主要从事结构工程研究(E-mail: s-yang20@mails.tsinghua.edu.cn)

    袁 全(1993−),男,北京人,博士,主要从事结构工程研究(E-mail: quany@tsinghua.edu.cn)

    王亦平(2000−),男,湖南人,博士生,主要从事结构工程研究(E-mail: wangyipi22@mails.tsinghua.edu.cn)

    通讯作者:

    袁 驷(1953−),男,北京人,教授,博士,主要从事结构工程研究(E-mail: yuans@tsinghua.edu.cn)

  • 中图分类号: O342

NEW PROGRESS IN REDUCED ELEMENT: AN ADAPTIVE FINITE ELEMENT METHOD WITH BUILT-IN ERROR ESTIMATOR IN MAXIMUM NORM

  • 摘要:

    该文基于初值问题中降阶单元的成功实践,进一步对一般边值问题提出无需超收敛计算、无需结构化网格、无需结点位移修正的降阶单元;进而提出以降阶单元作为最终解,且内置了最大模误差估计器的自适应有限元算法。该文对这一研究进展做简要介绍,并给出一维和二维边值问题的初步算例,以展示本法的可行性、有效性和可靠性。

    Abstract:

    Based on the successful performance of the reduced element for initial value problems, the reduced element for general boundary value problems is proposed without the needs for super-convergence calculations, structural meshes and nodal accuracy improvement. An adaptive finite element algorithm with the solution of the reduced element and a built-in maximum norm error estimator as the final results is subsequently proposed. This paper gives a brief report to this research progress and provides preliminary numerical examples in one- and two-dimensional boundary value problems to exhibit the feasibility, effectiveness and reliability of the proposed algorithm.

  • 图  1   一维降阶单元示意图

    Figure  1.   Schematic diagram of one-dimensional reduced element

    图  2   二维降阶单元示意图

    Figure  2.   Schematic diagram of two-dimensional reduced element

    图  3   例1的位移精确解

    Figure  3.   Exact displacement solution for example 1

    图  4   降阶法误差比(Ne=16,Nadp=0)

    Figure  4.   Error ratio of reduced order method (Ne=16,Nadp=0)

    图  5   双阶法误差比(Ne=16,Nadp=0)

    Figure  5.   Error ratio of double order method (Ne=16,Nadp=0)

    图  6   降阶法误差比(Ne=32,Nadp=1)

    Figure  6.   Error ratio of reduced order method (Ne=32,Nadp=1)

    图  7   双阶法误差比(Ne=32,Nadp=1)

    Figure  7.   Error ratio of double order method (Ne=32,Nadp=1)

    图  8   降阶法误差比(Ne=123,Nadp=5)

    Figure  8.   Error ratio of reduced order method (Ne=123,Nadp=5)

    图  9   双阶法误差比(Ne=349,Nadp=8)

    Figure  9.   Error ratio of double order method (Ne=349,Nadp=8)

    图  10   四边形区域示意图及初始网格

    Figure  10.   Schematic diagram of quadrilateral area and initial mesh

    图  11   例2最终网格划分

    Figure  11.   Final mesh of example 2

    图  12   例2初始网格域内误差比¯ehR的分布

    Figure  12.   Error ratio ¯ehR on the initial mesh of example 2

    图  13   例2最终网格域内误差比¯ehR的分布

    Figure  13.   Error ratio ¯ehR on the final mesh of example 2

    图  14   例3最终网格划分

    Figure  14.   Final mesh of example 3

    图  15   例3域内误差比¯ehR的分布

    Figure  15.   Error ratio ¯ehR of example 3

    图  16   Cook梁示意图及初始网格

    Figure  16.   Schematic diagram of Cook beam and initial mesh

    图  17   例4最终网格划分

    Figure  17.   Final mesh of example 4

    图  18   例4域内误差比¯ehR(u)的分布

    Figure  18.   Error ratio ¯ehR(u) of example 4

    图  19   例4域内误差比¯ehR(v)的分布

    Figure  19.   Error ratio ¯ehR(v) of example 4

    表  1   一维常规单元和降阶单元位移解的收敛阶

    Table  1   Convergence orders of displacement solutions for one-dimensional conventional and reduced elements

    单元类型内部收敛阶端点收敛阶
    常规线性元h2h2
    常规二次元h3h4
    降阶线性元h2h4
    下载: 导出CSV
  • [1]

    BABUŠKA I, RHEINBOLDT W C. Adaptive approaches and reliability estimations in finite element analysis [J]. Computer Methods in Applied Mechanics and Engineering, 1979, 17/18: 519 − 540. doi: 10.1016/0045-7825(79)90042-2

    [2]

    ZIENKIEWICZ O C, ZHU J Z. A simple error estimator and adaptive procedure for practical engineering analysis [J]. International Journal for Numerical Methods in Engineering, 1987, 24(2): 337 − 357. doi: 10.1002/nme.1620240206

    [3]

    YUAN S, HE X F. Self-adaptive strategy for one-dimensional finite element method based on element energy projection method [J]. Applied Mathematics and Mechanics, 2006, 27(11): 1461 − 1474. doi: 10.1007/s10483-006-1103-1

    [4]

    YUAN S, DU Y, XING Q Y, et al. Self-adaptive one-dimensional nonlinear finite element method based on element energy projection method [J]. Applied Mathematics and Mechanics, 2014, 35(10): 1223 − 1232. doi: 10.1007/s10483-014-1869-9

    [5]

    DONG Y Y, YUAN S, XING Q Y. Adaptive finite element analysis with local mesh refinement based on a posteriori error estimate of element energy projection technique [J]. Engineering Computations, 2019, 36(6): 2010 − 2033. doi: 10.1108/EC-11-2018-0523

    [6]

    JIANG K F, YUAN S, XING Q Y. An adaptive nonlinear finite element analysis of minimal surface problem based on element energy projection technique [J]. Engineering Computations, 2020, 37(8): 2847 − 2869. doi: 10.1108/EC-08-2019-0369

    [7]

    YUAN S, SUN H H. A general adaptive finite element eigen-algorithm stemming from Wittrick-Williams algorithm [J]. Thin-Walled Structures, 2021, 161: 107448. doi: 10.1016/j.tws.2021.107448

    [8]

    SUN H H, YUAN S. Adaptive finite element analysis of free vibration of elastic membranes via element energy projection technique [J]. Engineering Computations, 2021, 38(8): 3492 − 3516.

    [9]

    HUANG Z M, YUAN S, XING Q Y. Nodal accuracy improvement technique for linear elements with application to adaptivity [J]. Applied Sciences, 2023, 13(5): 2844. doi: 10.3390/app13052844

    [10] 袁驷, 刘泽洲, 邢沁妍. 二维变分不等式问题的自适应有限元分析[J]. 工程力学, 2016, 33(1): 11 − 17. doi: 10.6052/j.issn.1000-4750.2015.06.ST01

    YUAN Si, LIU Zezhou, XING Qinyan. Self-adaptive FEM analysis for 2D variational inequality problems [J]. Engineering Mechanics, 2016, 33(1): 11 − 17. (in Chinese) doi: 10.6052/j.issn.1000-4750.2015.06.ST01

    [11]

    STRANG G, FIX G J. An analysis of the finite element method [M]. Englewood Clifs: Prentice-Hall, 1973: 39 − 50.

    [12]

    DOUGLAS J JR. Galerkin approximations for the two point boundary problem using continuous, piecewise polynomial spaces [J]. Numerische Mathematik, 1974, 22(2): 99 − 109. doi: 10.1007/BF01436724

    [13]

    HULME B L. One-step piecewise polynomial Galerkin methods for initial value problems [J]. Mathematics of Computation, 1972, 26(118): 415 − 426. doi: 10.1090/S0025-5718-1972-0321301-2

    [14] 陈传淼, 黄云清. 有限元高精度理论 [M]. 长沙: 湖南科学技术出版社, 1995: 235 − 309.

    CHEN Chuanmiao, HUANG Yunqing. High accuracy theory of finite element methods [M]. Changsha: Hunan Science & Technology Press, 1995: 235 − 309. (in Chinese)

    [15] 袁驷, 袁全. 自适应步长时程分析的新进展: 从凝聚单元到降阶单元[J]. 工程力学, 2023, 40(1): 32 − 39. doi: 10.6052/j.issn.1000-4750.2022.05.ST01

    YUAN Si, YUAN Quan. New progress in adaptive time-stepping for time integration analysis: From condensed element to reduced element [J]. Engineering Mechanics, 2023, 40(1): 32 − 39. (in Chinese) doi: 10.6052/j.issn.1000-4750.2022.05.ST01

    [16]

    YUAN Si, YUAN Quan. Condensed Galerkin element of degree m for first-order initial-value problem with O( h2 m +2) super-convergent nodal solutions [J]. Applied Mathematics and Mechanics, 2022, 43(4): 603 − 614. doi: 10.1007/s10483-022-2831-6

    [17] 袁驷, 袁全. 运动方程自适应步长求解的高性能Galerkin时程单元初探[J]. 工程力学, 2022, 39(1): 21 − 26.

    YUAN Si, YUAN Quan. An initial study of a novel high-performance Galerkin finite element and applying for the adaptive time-step method in solving motion equation [J]. Engineering Mechanics, 2022, 39(1): 21 − 26. (in Chinese)

    [18]

    ZIENKIEWICZ O C, ZHU J Z. The superconvergent patch recovery and a posteriori error estimates. Part 2: Error estimates and adaptivity [J]. International Journal for Numerical Methods in Engineering, 1992, 33(7): 1365 − 1382. doi: 10.1002/nme.1620330703

    [19]

    COOK R D. A plane hybrid element with rotational d. o. f. and adjustable stiffness [J]. International Journal for Numerical Methods in Engineering, 1987, 24(8): 1499 − 1508. doi: 10.1002/nme.1620240807

    [20]

    YUNUS S M, SAIGAL S, COOK R D. On improved hybrid finite elements with rotational degrees of freedom [J]. International Journal for Numerical Methods in Engineering, 1989, 28(4): 785 − 800. doi: 10.1002/nme.1620280405

  • 期刊类型引用(5)

    1. 袁驷,袁全. 时空降阶单元及其自适应分析初探. 工程力学. 2025(01): 10-19 . 本站查看
    2. 杨帅,袁驷. 几种自适应有限元方法的对比分析. 工程力学. 2025(S1): 1-8 . 本站查看
    3. 袁全,袁驷. Timoshenko梁厚薄通用降阶单元的构造及其自适应求解. 工程力学. 2025(S1): 23-29 . 本站查看
    4. 袁驷,袁全,杨帅,王亦平,刘海阳. 内置了最大模误差估计器的自适应有限元法——研究进展与展望. 土木工程学报. 2024(06): 43-58 . 百度学术
    5. 傅向荣,王钰,赵阳,陈璞,孙树立. 超协调元. 工程力学. 2024(S1): 7-14 . 本站查看

    其他类型引用(6)

图(19)  /  表(1)
计量
  • 文章访问数:  319
  • HTML全文浏览量:  54
  • PDF下载量:  107
  • 被引次数: 11
出版历程
  • 收稿日期:  2023-07-13
  • 修回日期:  2023-07-24
  • 网络出版日期:  2023-12-26
  • 刊出日期:  2024-03-24

目录

    WANG Yi-ping, wangyipi22@mails.tsinghua.edu.cn

    1. On this Site
    2. On Google Scholar
    3. On PubMed

    /

    返回文章
    返回