基于贝叶斯功率谱变量分离方法的实桥模态参数识别

秦超, 颜王吉, 孙倩, 任伟新

秦超, 颜王吉, 孙倩, 任伟新. 基于贝叶斯功率谱变量分离方法的实桥模态参数识别[J]. 工程力学, 2019, 36(10): 212-222. DOI: 10.6052/j.issn.1000-4750.2018.11.0604
引用本文: 秦超, 颜王吉, 孙倩, 任伟新. 基于贝叶斯功率谱变量分离方法的实桥模态参数识别[J]. 工程力学, 2019, 36(10): 212-222. DOI: 10.6052/j.issn.1000-4750.2018.11.0604
QIN Chao, YAN Wang-ji, SUN Qian, REN Wei-xin. OPERATIONAL MODAL ANALYSIS OF BRIDGE ENGINEERING BASED ON BAYESIAN SPECTRAL DENSITY APPROACH USING A VARIABLE SEPARATION TECHNIQUE[J]. Engineering Mechanics, 2019, 36(10): 212-222. DOI: 10.6052/j.issn.1000-4750.2018.11.0604
Citation: QIN Chao, YAN Wang-ji, SUN Qian, REN Wei-xin. OPERATIONAL MODAL ANALYSIS OF BRIDGE ENGINEERING BASED ON BAYESIAN SPECTRAL DENSITY APPROACH USING A VARIABLE SEPARATION TECHNIQUE[J]. Engineering Mechanics, 2019, 36(10): 212-222. DOI: 10.6052/j.issn.1000-4750.2018.11.0604

基于贝叶斯功率谱变量分离方法的实桥模态参数识别

基金项目: 国家重点研发计划项目(2016YFE0113400);国家自然科学基金项目(51778203,51778204);中央高校基本科研业务费专项资金项目(PA2017GDQT0022)
详细信息
    作者简介:

    秦超(1994-),男,安徽芜湖人,硕士生,从事桥梁结构稳定与振动研究(E-mail:2576557243@qq.com);孙倩(1990-),女,安徽六安人,博士生,从事振动信号处理研究(E-mail:sqhorse90@126.com);任伟新(1960-),男,湖南长沙人,长江学者特聘教授,博士,博导,主要从事桥梁结构稳定与振动研究(E-mail:renwx@hfut.edu.cn).

    通讯作者:

    颜王吉(1985-),男,浙江金华人,教授,博士,博导,主要从事健康监测、振动信号处理和系统识别研究(E-mail:yanwj0202@163.com).

  • 中图分类号: U441.3

OPERATIONAL MODAL ANALYSIS OF BRIDGE ENGINEERING BASED ON BAYESIAN SPECTRAL DENSITY APPROACH USING A VARIABLE SEPARATION TECHNIQUE

  • 摘要: 工程结构参数识别不可避免地受到测试噪声和模型不确定性的影响,因此在模态参数识别过程中引入贝叶斯方法进行不确定性量化,具有较为重要的意义。通过对自功率谱和互功率谱的统计特性进行分析表明,功率谱迹(自功率谱之和)的概率密度函数与振型无关,因此可以实现振型参数与其它参数(频率、阻尼比、模态激励和预测误差等)的分离。以此变量分离原理为依据,可以实现"两阶段贝叶斯参数识别方法"进行模态参数的快速识别。该文基于西宁北川河钢管混凝土拱桥环境激励振动测试数据,对该方法的有效性和准确性进行了验证,通过功率谱迹驱动的贝叶斯方法识别出了频率、阻尼比、模态激励和预测误差等参数的最优值和不确定性,然后基于功率谱矩阵驱动的贝叶斯方法识别出了振型的最优值和不确定性,并将该文方法识别的结果与不同方法进行了对比。实桥模态分析表明,该方法解决了传统贝叶斯功率谱方法进行模态参数不确定性量化存在计算耗时及矩阵病态等问题,且能够有效地量化大型土木工程结构模态参数识别的不确定性。最后,该文对频带宽度进行了分析,揭示了该文方法识别的预测误差受频带影响较为明显。
    Abstract: Operational modal analysis is inevitably affected by multiple uncertainties such as measurement noise, modeling error, etc. The Bayesian operational modal analysis is a promising candidate for ambient modal analysis since it presents a rigorous way for deriving the optimal modal properties and their associated uncertainties. It has been revealed that the interaction between spectrum variables (e.g., frequency, damping ratio as well as the magnitude of modal excitation and prediction error) and spatial variables (e.g., mode shape components) can be decoupled completely by analyzing the statistics of auto-power spectral density and cross-power spectral density. Based on the variable separation technique, a two-stage fast Bayesian spectral density approach (BSDA) could be proposed for operational modal analysis. In this study, the efficiency and accuracy of the methodology are verified by using the ambient vibration testing data of Bei-chuan River steel arch bridge located in China. The spectrum variables and their associated uncertainties can be identified in the first stage, based on the statistical properties of the trace of a spectral density matrix, while the spatial variables and their uncertainties can be extracted instantaneously in the second stage by using the statistical properties of a power spectral density matrix. The analysis results are compared with different classic approaches. Comparison results indicate that the proposed method can achieve satisfactory results and it can resolve the difficulties of computational inefficiency and ill-conditioning of conventional BSDA. Finally, the effects of bandwidth on the identification results are investigated in detail. Investigation results indicate that the uncertainty of prediction errors are more vulnerable to the frequency band.
  • [1] 闫培雷, 孙柏涛. 基于环境激励法的高层钢筋混凝土剪力墙结构自振周期经验公式研究[J]. 工程力学, 2019, 36(2):87-95. Yan Peilei, Sun Baitao. Study on empirical formula of natural vibration period of high-rise reinforced concrete shear wall structure based on environmental motivation method[J]. Engineering Mechanics, 2019, 36(2):87-95. (in Chinese)
    [2] 张肖雄, 贺佳. 基于扩展卡尔曼滤波的结构参数和荷载识别研究[J]. 工程力学, 2019, 36(4):221-230. Zhang Xiaoxiong, He Jia. Identification of structural parameters and unknown excitations based on the extended Kalman filter[J]. Engineering Mechanics, 2019, 36(4):221-230. (in Chinese)
    [3] 刘宇飞, 辛克贵, 樊健生, 等. 环境激励下结构模态参数识别方法综述[J]. 工程力学, 2014, 31(4):46-53. Liu Yufei, Xin Kegui, Fan Jansheng, et al. A review of structure modal identification methods through ambient excitation[J]. Engineering Mechanics, 2014, 31(4):46-53. (in Chinese)
    [4] 孙倩, 颜王吉, 任伟新. 基于响应传递比的桥梁结构工作模态参数识别[J]. 工程力学, 2017, 34(11):194-201. Sun Qian, Yan WangJi, Ren Weixin. Operational modal analysis for bridge engineering based on the dynamic transmissibility measurements[J]. Engineering Mechanics, 2017, 34(11):194-201. (in Chinese)
    [5] 颜王吉, 王朋朋, 孙倩, 等. 基于振动响应传递比函数的系统识别研究进展[J]. 工程力学, 2018, 35(5):1-9, 26. Yan Wangji, Wang Pengpeng, Sun Qian, et al. Recent advances in system identification using the transmissibility function[J]. Engineering Mechanics, 2018, 35(5):1-9, 26. (in Chinese)
    [6] 颜王吉, 曹诗泽, 任伟新. 结构系统识别不确定性分析的Bayes方法及其进展[J]. 应用数学和力学, 2017, 38(1):44-59. Yan Wangji, Cao Shize, Ren Weixin. Uncertainty quantification for system identification utilizing the Bayesian theory and its recent advances[J]. Applied Mathematics & Mechanics, 2017, 38(1):44-59. (in Chinese)
    [7] Ni Y C, Zhang F L. Fast Bayesian frequency domain modal identification from seismic response data[J]. Computers & Structures, 2019, 212:225-235.
    [8] Ni Y C, Zhang F L. Fast Bayesian approach for modal identification using forced vibration data considering the ambient effect[J]. Mechanical Systems & Signal Processing, 2018, 105:113-128.
    [9] Beck J L, Katafygiotis L S. Updating models and their uncertainties. I:Bayesian statistical framework[J]. Journal of Engineering Mechanics, 1998, 124(4):455-461.
    [10] Katafygiotis L S, Beck J L. Updating models and their uncertainties. Ⅱ:Model identifiability[J]. Journal of Engineering Mechanics, 1998, 124(4):463-467.
    [11] Yuen K V, Katafygiotis L S. Bayesian time-domain approach for modal updating using ambient data[J]. Probabilistic Engineering Mechanics, 2001, 16(3):219-231.
    [12] Katafygiotis L S, Yuen K V. Bayesian spectral density approach for modal updating using ambient data[J]. Earthquake Engineering & Structural Dynamics, 2001, 30(8):1103-1123.
    [13] Yuen K V, Katafygiotis L S. Bayesian fast Fourier transform approach for modal updating using ambient data[J]. Advances in Structural Engineering, 2003, 6(2):81-95.
    [14] Au S K. Fast Bayesian FFT method for ambient modal identification with separated modes[J]. Journal of Engineering Mechanics, 2011, 137(3):214-226.
    [15] Au S K. Fast Bayesian ambient modal identification in the frequency domain. Part I:Posterior most probable value[J]. Mechanical Systems & Signal Processing, 2012, 26:60-75.
    [16] Au S K. Fast Bayesian ambient modal identification in the frequency domain. Part Ⅱ:Posterior uncertainty[J]. Mechanical Systems & Signal Processing, 2012, 26:76-90.
    [17] 韩建平, 郑沛娟. 环境激励下基于快速贝叶斯FFT的实桥模态参数识别[J]. 工程力学, 2014, 31(4):119-125. Han Jianping, Zheng Peijuan. Modal parameter identification of an actual bridge by fast Bayesian FFT method under ambient excitation[J]. Engineering Mechanics, 2014, 31(4):119-125. (in Chinese)
    [18] 黄铭枫, 吴承卉, 徐卿, 等. 基于实测数据的某高层建筑结构动力参数和气动阻尼识别[J]. 振动与冲击, 2017, 36(10):31-37. Huang Mingfeng, Wu Chenghui, Xu Qing, et al. Structural dynamic and aerodynamic parameters identification for a tall building with full-scale measurements[J]. Journal of Vibration & Shock, 2017, 36(10):31-37. (in Chinese)
    [19] Yan W J, Katafygiotis L S. A two-stage fast Bayesian spectral density approach for ambient modal analysis. Part I:Posterior most probable value and uncertainty[J]. Mechanical Systems & Signal Processing, 2015, 54:139-155.
    [20] Yan W J, Katafygiotis L S. A two-stage fast Bayesian spectral density approach for ambient modal analysis. Part Ⅱ:Mode shape assembly and case studies[J]. Mechanical Systems & Signal Processing, 2015, 54:156-171.
    [21] Au S K, Zhang F L. On assessing the posterior mode shape uncertainty in ambient modal identification[J]. Probabilistic Engineering Mechanics, 2011, 26(3):427-434.
    [22] Yuen K V, Katafygiotis L S, Beck J L. Spectral density estimation of stochastic vector processes[J]. Probabilistic Engineering Mechanics, 2002, 17(3):265-272.
    [23] Goodman N R. Statistical analysis based on a certain multivariate complex Gaussian distribution (an introduction)[J]. The Annals of mathematical statistics, 1963, 34(1):152-177.
    [24] Mathai A M. Moments of the trace of a noncentral Wishart matrix[J]. Communications in Statistics-Theory & Methods, 1980, 9(8):795-801.
    [25] Brookes M. The matrix reference manual, http://www.ee.ic.ac.uk/hp/staff/dmb/matrix/intro.html(on line), 2005.
    [26] Anstreicher K, Wolkowicz H. On Lagrangian relaxation of quadratic matrix constraints[J]. SIAM Journal on Matrix Analysis & Applications, 2000, 22(1):41-55.
    [27] Au S K. Uncertainty law in ambient modal identification. Part I:Theory[J]. Mechanical Systems & Signal Processing, 2014, 48(1/2):15-33.
    [28] Zong Z H, Jaishi B, Ge J P, et al. Dynamic analysis of a half-through concrete-filled steel tubular arch bridge[J]. Engineering Structures, 2005, 27(1):3-15.
    [29] Au S K. Uncertainty law in ambient modal identification. Part Ⅱ:Implication and field verification[J]. Mechanical Systems & Signal Processing, 2014, 48(1/2):34-48.
    [30] Yan W J, Katafygiotis L S. An analytical investigation into the propagation properties of uncertainty in a two-stage fast Bayesian spectral density approach for ambient modal analysis[J]. Mechanical Systems & Signal Processing, 2019, 118:503-533.
    [31] Au S K. Insights on the Bayesian spectral density method for operational modal analysis[J]. Mechanical Systems & Signal Processing, 2016, 66:1-12.
    [32] Brincker R, Zhang L, Andersen P. Modal identification of output-only systems using frequency domain decomposition[J]. Smart Materials & Structures, 2001, 10(3):441-445.
  • 期刊类型引用(13)

    1. 李阿坦,朱逸尘,张立奎,熊文,赵先民. 考虑环境因素的桥梁动力学特性识别方法. 重庆交通大学学报(自然科学版). 2024(11): 18-26 . 百度学术
    2. 慕何青,庞振浩,王浩,苏成. 结构影响线识别:反问题可识别性分析与降维贝叶斯不确定性量化. 工程力学. 2023(01): 51-62 . 本站查看
    3. 杨志林,罗漪,王海峰. 基于数据库的优化随机子空间法识别精度评价. 工程力学. 2023(04): 116-128+192 . 本站查看
    4. 王佩祥,吴清泰,李宾宾. 单点激振模态参数识别渐近不确定性及实验验证. 工程力学. 2023(S1): 6-10 . 本站查看
    5. 陈政清,华旭刚,封周权,崔冰,张吉仁. 大型桥梁结构阻尼特性及识别方法研究综述. 中国公路学报. 2023(07): 1-30 . 百度学术
    6. 杨朝勇,茅建校,王浩,张一鸣. 贝叶斯方法在大跨度斜拉桥模态参数识别中的应用研究. 振动工程学报. 2022(03): 691-698 . 百度学术
    7. 汪学栋,胡育佳. 基于贝叶斯运行模态法的外圆磨床动力学模态参数识别. 精密制造与自动化. 2022(02): 50-55 . 百度学术
    8. 王代君,陈星,龚惠云,熊玮. 基于贝叶斯估计的振动基频提取及预测算法. 交通科技. 2022(05): 44-48 . 百度学术
    9. 刘威,杨娜,白凡,常鹏. 基于敏感性分析的协方差随机子空间方法参数优化. 工程力学. 2021(02): 157-167+178 . 本站查看
    10. 周伟,冯仲仁,王雄江. 基于改进经验傅里叶分解的工作模态分析. 振动与冲击. 2021(09): 48-54 . 百度学术
    11. 刘玲玲,颜王吉,李丹,任伟新,秦超. 桥梁结构多测组振型融合的两阶段快速贝叶斯方法研究. 噪声与振动控制. 2021(04): 182-189+197 . 百度学术
    12. 施袁锋,朱正言,陈鹏,戴靠山. 基于EM算法和模态形式的状态空间模型自降阶工作模态分析. 工程力学. 2021(09): 15-25 . 本站查看
    13. 黄鑫,苏亮. 加速度采样时长对贝叶斯模态识别的影响探究. 低温建筑技术. 2020(02): 66-71 . 百度学术

    其他类型引用(13)

计量
  • 文章访问数:  716
  • HTML全文浏览量:  61
  • PDF下载量:  143
  • 被引次数: 26
出版历程
  • 收稿日期:  2018-11-12
  • 修回日期:  2019-05-23
  • 刊出日期:  2019-10-24

目录

    /

    返回文章
    返回