加筋土整体式桥地震反应研究

申大为, 徐明, 刘鹏飞

申大为, 徐明, 刘鹏飞. 加筋土整体式桥地震反应研究[J]. 工程力学, 2018, 35(10): 135-143. DOI: 10.6052/j.issn.1000-4750.2017.07.0538
引用本文: 申大为, 徐明, 刘鹏飞. 加筋土整体式桥地震反应研究[J]. 工程力学, 2018, 35(10): 135-143. DOI: 10.6052/j.issn.1000-4750.2017.07.0538
SHEN Da-wei, XU Ming, LIU Peng-fei. ANALYSIS OF THE SEISMIC RESPONSE OF GEOSYNTHETIC-REINFORCED SOIL INTEGRAL BRIDGE ABUTMENTS[J]. Engineering Mechanics, 2018, 35(10): 135-143. DOI: 10.6052/j.issn.1000-4750.2017.07.0538
Citation: SHEN Da-wei, XU Ming, LIU Peng-fei. ANALYSIS OF THE SEISMIC RESPONSE OF GEOSYNTHETIC-REINFORCED SOIL INTEGRAL BRIDGE ABUTMENTS[J]. Engineering Mechanics, 2018, 35(10): 135-143. DOI: 10.6052/j.issn.1000-4750.2017.07.0538

加筋土整体式桥地震反应研究

基金项目: 国家自然科学基金项目(41272280);国家973计划项目(2014CB047003)
详细信息
    作者简介:

    申大为(1991-),男,河北人,博士生,主要从事地下工程方面的研究(E-mail:sdw13@mails.tsinghua.edu.cn);刘鹏飞(1989-),男,河南人,硕士生,主要从事地下工程方面的研究(E-mail:thuliupf08@163.com).

    通讯作者:

    徐明(1974-),男,湖北人,副教授,博士,博导,主要从事岩土力学和地下工程的教学及研究(E-mail:mingxu@tsinghua.edu.cn).

  • 中图分类号: U442.5+5

ANALYSIS OF THE SEISMIC RESPONSE OF GEOSYNTHETIC-REINFORCED SOIL INTEGRAL BRIDGE ABUTMENTS

  • 摘要: 加筋土整体式桥结合了整体式桥和加筋土的优点,是一种新型的桥梁形式,但目前对加筋土整体式桥的动力响应还很缺乏认识。该文对典型的单跨加筋土整体式桥的地震反应进行数值模拟,分析了地震峰值加速度对桥台弯矩、位移、筋材拉力的影响,并对比了另外3种桥型(整体式桥、加筋土简支梁桥、简支梁桥)在地震作用下桥台弯矩、位移和筋材拉力分布的区别。研究结果表明,地震作用下,简支梁桥台水平位移很大,有发生“落梁”的危险,整体式桥的水平位移更小,且加筋土整体式桥相比其他3种桥型抗震稳定性最高;地震时桥台弯矩和筋材拉力均显著增大;静力时每层筋材的最大拉力一般在筋材端部,而地震时是在筋材内部回填土滑移面附近。
    Abstract: The geosynthetic-reinforced soil integral bridge combines the advantages of the integral bridge and geosynthetic-reinforced soil. However, there is great uncertainty about the dynamic response of this kind of new bridges. This paper presents the findings from a series of dynamic numerical simulations about the geosynthetic-reinforced soil integral bridges (IB-GRS) and compares the dynamic performance with three other types of bridges-the integral bridge (IB), geosynthetic-reinforced soil conventional bridge (CB-GRS) and simply supported bridge (CB). The results show that during an earthquake, the horizontal displacement of CB and CB-GRS is so large that the girder might collapse, while the horizontal displacement of IB and IB-GRS is much smaller. The IB-GRS bridge has the highest dynamic stability among the four bridge types. During the earthquake, the abutment bending moment and the axial force of geosynthetic layers have a remarkable increment. In the seismic process, the maximum axial force of each geosynthetic layer is found to take place inside the reinforcement across the slip plane of backfill, not at the end of the reinforcement near the abutment.
  • [1] Maruri R F, Petro S H. Integral abutments and jointless bridges (IAJB) 2004 survey summary[C]. Integral Abutment and Jointless Bridges (IAJB 2005), 2005.
    [2] Xu M, Clayton C R I, Bloodworth A G. The earth pressure behind full-height frame integral abutments supporting granular backfill[J]. Canadian Geotechnical Journal, 2007, 44(3):284-298.
    [3] Xu M, Bloodworth A G, Clayton C R I. Behavior of a Stiff Clay behind Embedded Integral Abutments[J]. Journal of Geotechnical & Geoenvironmental Engineering, 2007, 133(6):721-730.
    [4] 徐明, 刘鹏飞. 整体式桥台研究综述[J]. 工程力学, 2016, 33(4):1-8. Xu Ming, Liu Pengfei. Research on integral bridge abutments[J]. Engineering Mechanics, 2016, 33(4):1-8. (in Chinese)
    [5] Peng J, Shao X, Jin X. Research on lifetime performance-based bridge design method[J]. Bridge Maintenance, Safety, Management, Life-Cycle Performance and Cost. Cruz, Frangopol & Neves (eds), 2006.
    [6] Her Majesty's Stationery Office. Design for durability[S]. Design Manual for Roads and Bridges, 1995, 1(3):7.
    [7] 交通运输部. 2016年交通运输行业发展统计公报[J]. 交通财会, 2017(5):92-96. Ministry of Transport of China. Statistical communique on the development of transportation industry[J]. Finance & Accounting for Communications, 2017(5):92-96. (in Chinese)
    [8] Barker K J, Carder D R. Performance of the two integral bridges forming the A62 Manchester road overbridge[J]. TRL Report 436. Crowthorne:Transport Research Laboratory, 2000.
    [9] Huntley S A, Valsangkar A J. Field monitoring of earth pressures on integral bridge abutments[J]. Canadian Geotechnical Journal, 2013, 50(8):841-857.
    [10] Hoppe E J, Gomez J P. Field study of an integral backwall bridge. Bridge Design[R]. Bridge Design, 1996.
    [11] Kim W, Laman J. Seven-year field monitoring of four integral abutment bridges[J]. Journal of Performance of Constructed Facilities, 2012, 26(1):54-64.
    [12] Barker K J, Carder D R. The long term monitoring of stresses behind three integral bridge abutments[R]. Camberley, Surry, UK:Concrete Bridge Development Group, 2006.
    [13] England G L, Tsang C M, Bush D. Integral bridges-a fundamental approach to the time temperature loading problem[M]. London:Thomas Telford, 2000.
    [14] Ng C, Springman S, Norrish A. Soil-structure interaction of spread-base integral bridge abutments[J]. Soils and Foundations, 1998, 38(1):145-162.
    [15] Clayton C R I, Xu M, Bloodworth A G. A laboratory study of the development of earth pressure behind integral bridge abutments[J]. Géotechnique, 2006, 56(8):561-571.
    [16] 徐明. 整体式桥台后粗粒土填料力学特性的试验研究[J]. 土木工程学报, 2010, 57(5):136-141. Xu Ming. Test research of mechanical properties of coarse-grained soil filler behind integral abutment[J]. China Civil Engineering Journal, 2010, 57(5):136-141. (in Chinese)
    [17] LaFave J M, Riddle J K, Jarrett M W, et al. Numerical simulations of steel integral abutment bridges under thermal loading[J]. Journal of Bridge Engineering, 2016, 21(10).
    [18] 石丽峰, 徐明. 整体式桥台地震反应机理分析[J]. 岩土力学, 2014, 35(11):3289-3297. Shi Lifeng, Xu Ming. Study of the seismic response of integral bridge abutments[J]. Rock and Soil Mechanics, 2014, 35(11):3289-3297. (in Chinese)
    [19] Erhan S, Dicleli M. Parametric study on the effect of structural and geotechnical properties on the seismic performance of integral bridges[J]. Bulletin of Earthquake Engineering, 2017, 15(10):1-29.
    [20] Tatsuoka F, Hirakawa D, Nojiri M, et al. A new type of integral bridge comprising geosynthetic-reinforced soil walls[J]. Geosynthetics International, 2009, 16(4):301-326.
    [21] Tatsuoka F, Tateyama M, Koda M, et al. Seismic design, construction and performance of geosynthetic-reinforced soil retaining walls and bridge abutments for railways in Japan[C]. Geo-Congress 2013:1143-1157.
    [22] Tatsuoka F, Tateyama M, Koda M, et al. Research and construction of geosynthetic-reinforced soil integral bridges[J]. Transportation Geotechnics, 2016, 8:4-25.
    [23] Zadehmohamad M, Bolouri Bazaz J. Cyclic behaviour of geocell-reinforced backfill behind integral bridge abutment[J]. International Journal of Geotechnical Engineering, 2017, 11(1):1-13.
    [24] 刘华北, 汪磊, 王春海, 等. 土工合成材料加筋土挡墙筋材内力分析[J]. 工程力学, 2017, 34(2):1-11. Liu Huabei, Wang Lei, Wang Chunhai, et al. Analysis methods for the reinforcement loads of geosynthetic-reinforced soil retaining walls[J]. Engineering Mechanics, 2017, 34(2):1-11. (in Chinese)
    [25] Green R A, Olgun C G, Cameron W I. Response and modeling of cantilever retaining walls subjected to seismic motions[J]. Computer -Aided Civil and Infrastructure Engineering, 2008, 23(4):309-322.
    [26] 杨广庆. 土工格栅加筋土结构理论及工程应用[M]. 北京:科学出版社, 2010. Yang Guangqing. Theory and engineering application of geogrids reinforced soil structure[M]. Beijing:Science Press, 2010. (in Chinese)
    [27] Bathurst R J, Hatami K. Seismic response analysis of a geosynthetic-reinforced soil retaining wall[J]. Geosynthetics International, 1998, 5(1-2):127-166.
    [28] Purkar M S, Kute S Y, Publication I. Numerical model for reinforced soil segmental walls under surcharge loading[J]. International Journal of Civil Engineering & Technology, 2013, 4(1):1-15.
    [29] Yu Y, Damians I P, Bathurst R J. Influence of choice of FLAC and PLAXIS interface models on reinforced soil-structure interactions[J]. Computers & Geotechnics, 2015, 65:164-174.
    [30] Bloodworth A G, Xu M, Banks J R, et al. Predicting the Earth Pressure on Integral Bridge Abutments[J]. Journal of Bridge Engineering, 2011, 17(2):371-381.
    [31] The Stationery Office. The design of integral bridges[R]. Design Manual for Roads and Bridges, 1997, 1(3):12.
    [32] Matsuzawa H, Hazarika H. Analyses of active earth pressure against rigid retaining wall subjected to different modes of movement[J]. Journal of the Japanese Geotechnical Society Soils & Foundation, 1996, 36(3):51-65.
计量
  • 文章访问数:  423
  • HTML全文浏览量:  57
  • PDF下载量:  65
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-07-12
  • 修回日期:  2018-01-01
  • 刊出日期:  2018-10-28

目录

    LIU Peng-fei

    1. On this Site
    2. On Google Scholar
    3. On PubMed

    /

    返回文章
    返回