金 峰, 方修君. 扩展有限元法及与其它数值方法的联系[J]. 工程力学, 2008, 25(增刊Ⅰ): 1-017.
引用本文: 金 峰, 方修君. 扩展有限元法及与其它数值方法的联系[J]. 工程力学, 2008, 25(增刊Ⅰ): 1-017.
JIN Feng, FANG Xiu-jun. THE EXTENDED FINITE ELEMENT METHOD AND ITS RELATIONS WITH OTHER NUMERICAL METHODS[J]. Engineering Mechanics, 2008, 25(增刊Ⅰ): 1-017.
Citation: JIN Feng, FANG Xiu-jun. THE EXTENDED FINITE ELEMENT METHOD AND ITS RELATIONS WITH OTHER NUMERICAL METHODS[J]. Engineering Mechanics, 2008, 25(增刊Ⅰ): 1-017.

扩展有限元法及与其它数值方法的联系

THE EXTENDED FINITE ELEMENT METHOD AND ITS RELATIONS WITH OTHER NUMERICAL METHODS

  • 摘要: 对扩展有限元方法(XFEM)的发展及其与其他数值方法的联系进行了综述。该文主要包括以下内容:首先对无网格法的发展背景和历程进行了介绍,并从近似位移场构造的角度对众多的无网格法进行了比较分析;从单位分解理论的形式出发,阐述了XFEM的特点及其与传统有限元法、无网格方法的联系;归纳了关于XFEM的应用研究及其自身理论发展的主要研究方向,并对XFEM的发展进行了展望。

     

    Abstract: The development of an extended finite element method (XFEM) is investigated and the relation between XFEM and some other numerical methods is illustrated. First, the backgrounds and the development of meshfree methods are surveyed. Comparative analysis of them is given from the phase of approximation construction. Based on the general form of partition of unity, the characteristics of XFEM and the relations with conventional FE and other meshfree methods are presented. The main research domain about the applications and theory foundation of XFEM are summarized. And the prospect of XFEM is evaluated.

     

/

返回文章
返回