徐胜乙, 方根深, 张明杰, ØISETHOle, 葛耀君. 大跨度桥梁多阶涡振MTMD控制效果与布置优化[J]. 工程力学, 2024, 41(S): 23-30. DOI: 10.6052/j.issn.1000-4750.2023.05.S009
引用本文: 徐胜乙, 方根深, 张明杰, ØISETHOle, 葛耀君. 大跨度桥梁多阶涡振MTMD控制效果与布置优化[J]. 工程力学, 2024, 41(S): 23-30. DOI: 10.6052/j.issn.1000-4750.2023.05.S009
XU Sheng-yi, FANG Gen-shen, ZHANG Ming-jie, ØISETH Ole, GE Yao-jun. CONTROL PERFORMANCE AND LAYOUT OPTIMIZATION OF MULTIPLE MODE VORTEX-INDUCED VIBRATION USING TUNED MASS DAMPER FOR LONG-SPAN CONTINUOUS BRIDGE[J]. Engineering Mechanics, 2024, 41(S): 23-30. DOI: 10.6052/j.issn.1000-4750.2023.05.S009
Citation: XU Sheng-yi, FANG Gen-shen, ZHANG Ming-jie, ØISETH Ole, GE Yao-jun. CONTROL PERFORMANCE AND LAYOUT OPTIMIZATION OF MULTIPLE MODE VORTEX-INDUCED VIBRATION USING TUNED MASS DAMPER FOR LONG-SPAN CONTINUOUS BRIDGE[J]. Engineering Mechanics, 2024, 41(S): 23-30. DOI: 10.6052/j.issn.1000-4750.2023.05.S009

大跨度桥梁多阶涡振MTMD控制效果与布置优化

CONTROL PERFORMANCE AND LAYOUT OPTIMIZATION OF MULTIPLE MODE VORTEX-INDUCED VIBRATION USING TUNED MASS DAMPER FOR LONG-SPAN CONTINUOUS BRIDGE

  • 摘要: 调谐质量阻尼器(TMD)在结构减振方面有显著效果。传统桥梁涡激振动控制通常只考虑单一模态,并使用简化的气动力模型,而多跨桥梁等结构具有频率密集的多阶模态,忽略相邻非涡振模态对TMD的影响可能导致涡振振幅计算产生较大误差,TMD控制效果无法达到最优。该文介绍了一种针对结构多模态涡振控制的多个TMD布置优化方法,考虑了非涡振模态影响,并采用多项式涡激力模型推导了模态坐标中力-结构-MTMD的控制方程,同时提出了一种量化各非涡振模态对涡振计算的贡献和识别有显著贡献非涡振模态的新方法。以多跨桥梁为研究案例,对多个TMD控制效果和布置优化开展了对比研究,与逐模态设计结果相比,该文通过全局优化确定最优MTMD参数显示出更优的控制性能,明确了多项式模型在TMD安装后准确预测涡振振幅的适用性,突显出非涡振模态在TMD优化中的重要性。

     

    Abstract: Tuned mass dampers (TMDs) effectively reduce structural vibrations. Traditional research on vortex-induced vibration (VIV) control in flexible structures often considers only a single mode and uses basic aerodynamic force models, which may not accurately capture amplitude-dependent damping. However, structures adopted by long-span bridges display multiple modes with frequencies closed each other, and ignoring secondary modes can lead to errors due to their impact on the stiffness and performance of a designing TMD. This study introduces an optimization framework of multiple TMDs adopted in multi-mode VIV control of flexible structures, using a multi-span bridge as a case study. It incorporates secondary modes and nonlinear aerodynamic effects, deriving force-structure-MTMDs system equations in modal coordinates with a polynomial aerodynamic force model. A novel approach is presented to quantify each mode's contribution and to identify essential secondary modes. The results show that the polynomial model accurately predicts the amplitude after TMD installation. Optimal MTMD parameters are determined through global optimization and compared with mode-by-mode design, showing better control performance.

     

/

返回文章
返回