RESEARCH ON OPERATIONAL SAFETY OF EMPTY GONDOLA CARS IN FREIGHT TRAINS SUBJECTED TO CROSSWIND
-
摘要:
为了探究侧风对货物列车敞车空载条件下运行性能的影响,建立了考虑机车和多节敞车的货物列车空气动力学模型,研究了不同风速和风向角下列车的气动特性。进一步基于Cooper理论建立了瞬态侧风风谱,模拟了敞车空载及侧风运营条件下的非定常气动载荷。最后建立了考虑气动载荷的列车动力学模型,分析了侧向随机风作用下车辆的动力学性能,并给出运行建议安全域。研究结果表明:侧风作用下列车前部敞车受到的气动侧力和升力最大;风向角为90°条件下横风对车辆运行安全性影响最显著,且各项安全性指标随风速增大迅速增大;当风速超过20 m/s时,敞车空载运行安全性随风速增大迅速恶化。
Abstract:To investigate the effects of crosswind on dynamics performances of empty gondola cars in freight trains, the aerodynamic model of a freight train with locomotive and multiple empty gondola cars was established, and the aerodynamic characteristics of the train under different wind speeds and wind angles were studied. The crosswind spectrum was further developed based on the Cooper theory, and the unsteady aerodynamic loads applied to the wagons under side wind were calculated. Finally, the dynamic model of the train considering aerodynamic loads was established, and the dynamics performances of empty gondola cars affected by stochastic crosswind were simulated, and the operating safety threshold was suggested. The simulation results indicate that the front gondola car suffers from the largest side force and lift force among all wagons. The crosswind affects the running safety of empty gondola cars more significantly under the wind angle of 90°, and all safety indices increase rapidly with the wind speed. As the wind speed exceeds 20 m/s, the running safety of the empty gondola cars deteriorates rapidly with increasing wind speed.
-
Keywords:
- gondola car /
- crosswind /
- unsteady aerodynamic loads /
- dynamics /
- running safety
-
-
表 1 网格无关性验证
Table 1 Mesh independence test
编号 基础尺寸/
m网格数量/
万侧力/
kN侧力相对
误差/(%)升力/
kN升力相对
误差/(%)mesh1 0.9 1065 44.66 − 19.29 − mesh2 1.0 1284 45.05 0.87 19.55 1.35 mesh3 1.1 1618 45.38 0.73 19.77 1.13 表 2 敞车1空载运营条件下受到的侧力
Table 2 Side force applied to the first empty gondola car
/kN 风向角/(°) 风速/(m·s-1) 10 15 20 25 30 30 −3.75 −5.12 −7.12 −9.74 −12.99 60 −3.70 −10.04 −18.65 −29.52 −42.66 90 −7.17 −13.39 −20.96 −31.50 −45.05 120 −4.22 −9.99 −16.23 −22.94 −30.12 150 −1.96 −3.54 −5.68 −8.36 −11.58 表 3 敞车1空载运营条件下受到的升力
Table 3 Lift force applied to the first empty gondola car
/kN 风向角/(°) 风速/(m·s-1) 10 15 20 25 30 30 −3.00 −0.54 2.17 5.13 8.34 60 3.31 6.78 10.52 14.53 18.81 90 4.59 8.58 13.12 18.22 19.55 120 3.10 3.54 4.69 6.56 9.14 150 1.80 3.03 4.27 5.52 6.78 -
[1] 孟少伟, 冯涛, 张广泽, 等. 川藏铁路雅安至昌都段风吹雪空间分异特征及易发性评价[J]. 地球科学, 2022, 47(3): 987 − 994. MENG Shaowei, FENG Tao, ZHANG Guangze, et al. Spatial differentiation characteristics and susceptibility evaluation of wind-blown snow along the Ya’an-Qamdo section of the Sichuan-Tibet railway [J]. Earth Science, 2022, 47(3): 987 − 994. (in Chinese)
[2] 薛春晓, 蒋富强, 程建军, 等. 兰新铁路百里风区挡沙墙防沙效益研究[J]. 冰川冻土, 2011, 33(4): 859 − 862. XUE Chunxiao, JIANG Fuqiang, CHENG Jianjun, et al. Research on sand preventing benefit of sand retaining wall in a strong wind sector along Lanzhou-Xinjiang railway [J]. Journal of Glaciology and Geocryology, 2011, 33(4): 859 − 862. (in Chinese)
[3] 高广军, 段丽丽, 苗秀娟. 青藏线棚车在强横风下的倾覆稳定性[J]. 中南大学学报(自然科学版), 2011, 42(4): 1150 − 1155. GAO Guangjun, DUAN Lili, MIAO Xiujuan. Overturning stability of box-car on Qinghai—Tibet railway line with strong cross wind [J]. Journal of Central South University (Science and Technology), 2011, 42(4): 1150 − 1155. (in Chinese)
[4] SOPER D, BAKER C, STERLING M. An experimental investigation to assess the influence of container loading configuration on the effects of a crosswind on a container freight train [J]. Journal of Wind Engineering and Industrial Aerodynamics, 2015, 145: 304 − 317. doi: 10.1016/j.jweia.2015.03.002
[5] 李德仓, 陈晓强, 孟建军, 等. 恶劣环境下铁路行车安全研究综述[J]. 交通信息与安全, 2022, 40(4): 26 − 37. LI Decang, CHEN Xiaoqiang, MENG Jianjun, et al. A review on railway traffic safety under harsh environments [J]. Journal of Transport Information and Safety, 2022, 40(4): 26 − 37. (in Chinese)
[6] 何华, 田红旗, 熊小慧, 等. 横风作用下敞车的气动性能研究[J]. 中国铁道科学, 2006, 27(3): 73 − 78. doi: 10.3321/j.issn:1001-4632.2006.03.013 HE Hua, TIAN Hongqi, XIONG Xiaohui, et al. Study on the aerodynamics performance of gondola car under cross wind [J]. China Railway Science, 2006, 27(3): 73 − 78. (in Chinese) doi: 10.3321/j.issn:1001-4632.2006.03.013
[7] 李波, 陈文龙, 杨庆山, 等. 下击暴流作用下高速列车运行安全性能评估[J]. 工程力学, 2021, 38(10): 248 − 256. doi: 10.6052/j.issn.1000-4750.2020.09.0640 LI Bo, CHEN Wenlong, YANG Qingshan, et al. Evaluating the safety of high-speed trains at the action of downburst [J]. Engineering Mechanics, 2021, 38(10): 248 − 256. (in Chinese) doi: 10.6052/j.issn.1000-4750.2020.09.0640
[8] 操金鑫, 秦宇辉, 曹曙阳, 等. 考虑高架桥和风屏障影响的高速列车龙卷风荷载特性研究[J]. 工程力学, 2021, 38(4): 150 − 158, 178. doi: 10.6052/j.issn.1000-4750.2020.06.0360 CAO Jinxin, QIN Yuhui, CAO Shuyang, et al. Tornado wind load characteristics of a high-speed train considering the effect of the viaduct and wind screen [J]. Engineering Mechanics, 2021, 38(4): 150 − 158, 178. (in Chinese) doi: 10.6052/j.issn.1000-4750.2020.06.0360
[9] NIU J Q, ZHANG Y C, LI R, et al. Aerodynamic simulation of effects of one- and two-side windbreak walls on a moving train running on a double track railway line subjected to strong crosswind [J]. Journal of Wind Engineering and Industrial Aerodynamics, 2022, 221: 104912. doi: 10.1016/j.jweia.2022.104912
[10] DENG E, YANG W C, LEI M F, et al. Aerodynamic loads and traffic safety of high-speed trains when passing through two windproof facilities under crosswind: A comparative study [J]. Engineering Structures, 2019, 188: 320 − 339. doi: 10.1016/j.engstruct.2019.01.080
[11] ZHANG D Q, ZHONG M, HU G, et al. Numerical study of the unsteady crosswind response of high-speed train under local structure-induced unsteady winds by MBS [J]. Engineering Structures, 2023, 281: 115788. doi: 10.1016/j.engstruct.2023.115788
[12] ZHOU D, YU D Z, WU L L, et al. Numerical investigation of the evolution of aerodynamic behaviour when a high-speed train accelerates under crosswind conditions [J]. Alexandria Engineering Journal, 2023, 72: 51 − 66. doi: 10.1016/j.aej.2023.03.064
[13] 周丹, 田红旗, 杨明智, 等. 强侧风作用下不同类型铁路货车在青藏线路堤上运行时的气动性能比较[J]. 铁道学报, 2007, 29(5): 32 − 36. doi: 10.3321/j.issn:1001-8360.2007.05.006 ZHOU Dan, TIAN Hongqi, YANG Mingzhi, et al. Comparison of aerodynamic performance of different kinds of wagons running on embankment of the Qinghai-Tibet railway under strong cross-wind [J]. Journal of the China Railway Society, 2007, 29(5): 32 − 36. (in Chinese) doi: 10.3321/j.issn:1001-8360.2007.05.006
[14] HUO X S, LIU T H, CHEN Z W, et al. Effect of the formation type with different freight vehicles on the train aerodynamic performance [J]. Vehicle System Dynamics, 2022, 60(11): 3868 − 3896. doi: 10.1080/00423114.2021.1981951
[15] SOPER D, BAKER C. A full-scale experimental investigation of passenger and freight train aerodynamics [J]. Proceedings of the Institution of Mechanical Engineers, Part F:Journal of Rail and Rapid Transit, 2020, 234(5): 482 − 497. doi: 10.1177/0954409719844431
[16] WU Q, SPIRYAGIN M, COLE C, et al. Railway wagon dynamics subjected to wind, in-train forces and track geometry defects [J]. Journal of Advances in Vehicle Engineering, 2016, 2(2): 75 − 81.
[17] 薛蕊, 任尊松, 查浩, 等. 非稳态横风对货运动车组车体-集装器系统横向振动特性的影响[J]. 振动工程学报, 2020, 33(3): 540 − 549. doi: 10.16385/j.cnki.issn.1004-4523.2020.03.013 XUE Rui, REN Zunsong, ZHA Hao, et al. The lateral vibration characteristic of the carbody-container coupled model of high-speed freight EMU under unsteady crosswind [J]. Journal of Vibration Engineering, 2020, 33(3): 540 − 549. (in Chinese) doi: 10.16385/j.cnki.issn.1004-4523.2020.03.013
[18] YAO Z Y, ZHANG N, CHEN X Z, et al. The effect of moving train on the aerodynamic performances of train-bridge system with a crosswind [J]. Engineering Applications of Computational Fluid Mechanics, 2020, 14(1): 222 − 235. doi: 10.1080/19942060.2019.1704886
[19] BS EN 14067-6, Railway applications – Aerodynamics-Part 6: Requirements and test procedures for cross wind assessment [S]. London: British Standard Institute, 2018.
[20] MENTER F R. Two-equation eddy-viscosity turbulence models for engineering applications [J]. AIAA Journal, 1994, 32(8): 1598 − 1605. doi: 10.2514/3.12149
[21] SHUR M L, SPALART P R, STRELETS M K, et al. A hybrid RANS-LES approach with delayed-DES and wall-modelled LES capabilities [J]. International Journal of Heat and Fluid Flow, 2008, 29(6): 1638 − 1649. doi: 10.1016/j.ijheatfluidflow.2008.07.001
[22] 刘雯, 郭迪龙, 张子健, 等. 基于POD分解的高速列车尾流动力学特性研究[J]. 铁道学报, 2020, 42(9): 49 − 57. doi: 10.3969/j.issn.1001-8360.2020.09.007 LIU Wen, GUO Dilong, ZHANG Zijian, et al. Study of dynamic characteristics in wake flow of high-speed train based on POD [J]. Journal of the China Railway Society, 2020, 42(9): 49 − 57. (in Chinese) doi: 10.3969/j.issn.1001-8360.2020.09.007
[23] DENG E, YANG W C, HE X H, et al. Aerodynamic response of high-speed trains under crosswind in a bridge-tunnel section with or without a wind barrier [J]. Journal of Wind Engineering and Industrial Aerodynamics, 2021, 210: 104502. doi: 10.1016/j.jweia.2020.104502
[24] GUO Z J, LIU T H, YU M, et al. Numerical study for the aerodynamic performance of double unit train under crosswind [J]. Journal of Wind Engineering and Industrial Aerodynamics, 2019, 191: 203 − 214. doi: 10.1016/j.jweia.2019.06.014
[25] 姚志勇, 张楠, 程泽农. 横风下移动列车非定常气动力计算[J]. 工程力学, 2020, 37(10): 238 − 246. doi: 10.6052/j.issn.1000-4750.2019.12.0730 YAO Zhiyong, ZHANG Nan, CHENG Zenong. Calculation of the unsteady aerodynamic forces on moving trains under crosswinds [J]. Engineering Mechanics, 2020, 37(10): 238 − 246. (in Chinese) doi: 10.6052/j.issn.1000-4750.2019.12.0730
[26] GE X, LING L, GUO L R, et al. Dynamic derailment simulation of an empty wagon passing a turnout in the through route [J]. Vehicle System Dynamics, 2022, 60(4): 1148 − 1169. doi: 10.1080/00423114.2020.1849744
[27] SOPER D, BAKER C, STERLING M. Experimental investigation of the slipstream development around a container freight train using a moving model facility [J]. Journal of Wind Engineering and Industrial Aerodynamics, 2014, 135: 105 − 117. doi: 10.1016/j.jweia.2014.10.001
[28] 李人宪, 翟婉明. 磁悬浮列车横风稳定性的数值分析[J]. 交通运输工程学报, 2001, 1(1): 99 − 101. LI Renxian, ZHAI Wanming. Numerical analysis of crosswind stability of magnetically levitated trains [J]. Journal of Traffic and Transportation Engineering, 2001, 1(1): 99 − 101. (in Chinese)
[29] 张亮, 张继业, 李田, 等. 横风下高速列车的非定常气动特性及安全性[J]. 机械工程学报, 2016, 52(6): 124 − 135. doi: 10.3901/JME.2016.06.124 ZHANG Liang, ZHANG Jiye, LI Tian, et al. Unsteady aerodynamic characteristics and safety of high-speed trains under crosswinds [J]. Journal of Mechanical Engineering, 2016, 52(6): 124 − 135. (in Chinese) doi: 10.3901/JME.2016.06.124
[30] 王开云, 翟婉明, 刘建新, 等. 提速列车与曲线轨道的横向相互动力作用研究[J]. 中国铁道科学, 2005, 26(6): 38 − 43. doi: 10.3321/j.issn:1001-4632.2005.06.008 WANG Kaiyun, ZHAI Wanming, LIU Jianxin, et al. Research on the lateral dynamic interaction between speed-increased train and curved track [J]. China Railway Science, 2005, 26(6): 38 − 43. (in Chinese) doi: 10.3321/j.issn:1001-4632.2005.06.008
[31] 翟婉明. 车辆-轨道耦合动力学[M]. 第4版. 北京: 科学出版社, 2015: 272. ZHAI Wanming. Vehicle-track coupled dynamics [M]. 4th ed. Beijing: Science Press, 2015: 272. (in Chinese)