留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

混凝土与各向同性岩石强度理论研究进展

丁发兴 吴霞 向平 余志武 龚琛杰

丁发兴, 吴霞, 向平, 余志武, 龚琛杰. 混凝土与各向同性岩石强度理论研究进展[J]. 工程力学, 2020, 37(2): 1-15. doi: 10.6052/j.issn.1000-4750.2019.05.ST07
引用本文: 丁发兴, 吴霞, 向平, 余志武, 龚琛杰. 混凝土与各向同性岩石强度理论研究进展[J]. 工程力学, 2020, 37(2): 1-15. doi: 10.6052/j.issn.1000-4750.2019.05.ST07
DING Fa-xing, WU Xia, XIANG Ping, YU Zhi-wu, GONG Chen-jie. REVIEWS ON STRENGTH THEORIES OF CONCRETE AND ISOTROPIC ROCK[J]. Engineering Mechanics, 2020, 37(2): 1-15. doi: 10.6052/j.issn.1000-4750.2019.05.ST07
Citation: DING Fa-xing, WU Xia, XIANG Ping, YU Zhi-wu, GONG Chen-jie. REVIEWS ON STRENGTH THEORIES OF CONCRETE AND ISOTROPIC ROCK[J]. Engineering Mechanics, 2020, 37(2): 1-15. doi: 10.6052/j.issn.1000-4750.2019.05.ST07

混凝土与各向同性岩石强度理论研究进展

doi: 10.6052/j.issn.1000-4750.2019.05.ST07
基金项目: 国家重点研究计划项目(2017YFC0703404);湖南省自然科学杰出青年基金项目(2019JJ20029)
详细信息
    作者简介:

    丁发兴(1979-),男,浙江人,教授,工学博士,主要从事混凝土及岩石强度理论、钢-混凝土组合结构研究(E-mail:dinfaxin@csu.edu.cn);向平(1982-),男,湖南人,特聘教授,工学博士,主要从事混凝土结构抗震及计算力学研究(E-mail:pxiang@)csu.edu.cn);余志武(1955-),男,湖南人,教授,工学硕士,主要从事结构工程、桥梁工程与防灾工程研究(E-mail:zhwyu@csu.edu.cn);龚琛杰(1990-),男,重庆人,讲师,工学博士,主要从事岩石力学与隧道工程研究(E-mail:gongcj@csu.edu.cn).

    通讯作者: 吴霞(1996-),女,四川人,硕士生,主要从事混凝土及岩石强度理论研究(E-mail:wuxia1@csu.edu.cn).
  • 中图分类号: TU501;TU45

REVIEWS ON STRENGTH THEORIES OF CONCRETE AND ISOTROPIC ROCK

  • 摘要: 强度理论是研究复杂应力状态下材料是否破坏的理论,该文总结了古典强度理论以及混凝土和各向同性岩石等两类现代强度理论,将各项同性现代强度理论分为剪应力强度理论、八面体强度理论与主应力强度理论。通过收集国内外已有相关三轴实验数据对各种主要强度理论进行论述、比较与评价,在此基础上对混凝土和各向同性岩石的主应力空间损伤比强度理论进行展望。
  • [1] Coulomb C A. Sur une application des regles de maximis et minimis aquelques problemes de statique relatifs al'architecture[J]. Memoires de Mathematique et de Physique, 1773, 7:343-382.
    [2] Mohr O. Welche Umstande bedingen die Elastizitatsgrenze und den bruch eines materials[J]. Zeitschrift des Vereins Deutscher Ingenieure, 1900, 44:1524-1530.
    [3] 过镇海. 混凝土的强度和变形-试验基础和本构关系[M]. 北京:清华大学出版社, 1997. Guo Zhenhai. Deformation and strength of concreteexperimental foundation and constitutive relation[M]. Beijing:Tsinghua University Press, 1997. (in Chinese)
    [4] 周筑宝, 卢楚芬. 三轴应力状态下混凝土的一种新强度准则[J]. 固体力学学报, 1999, 20(3):272-280. Zhou Zhubao, Lu Chufeng. A new strength criterion of plain concrete under triaxial stresses conditions[J]. Acta Mechanica Solida Sinica, 1999, 20(3):272-280. (in Chinese)
    [5] 俞茂宏. 混凝土强度理论及其应用[M]. 北京:高等教育出版社, 2002. Yu Maohong. Concrete strength theory and its application[M]. Beijing:High Education Press, 2002. (in Chinese)
    [6] Bresler B, Pister K S. Strength of concrete under combined stresses[J]. Journal Proceedings, 1958, 55(9):321-345.
    [7] William K J, Warnke E P. Constitutive models for the triaxial behavior of concrete[C]//Proceedings of the International Association for Bridge and Structural Engineering. Bergamo, Italy, Zurich, 1975(19):1-30.
    [8] Ottosen N S. A failure criterion for concrete[J]. Journal of Engineering Mechanics, 1977, 103(4):527-535.
    [9] Hesieh S S, Ting E C, Chen W F. An elasticity-fracture model for concrete[C]//Proceeding of 3rd Engineering Mechanics Division, Special Conference ASCE. Austin, Johnson C P, ed, 1979:437-440.
    [10] Kotsovos M D. A mathematical description of the strength properties of concrete under generalized stress[J]. Magazine of Concrete Research, 1979, 31(108):151-158.
    [11] Podgorski J. General failure criterion for isotropic media[J]. Journal of Engineering Mechanics, 1984, 111(2):188-201.
    [12] 过镇海, 王传志. 多轴应力下混凝土的强度和破坏准则研究[J]. 土木工程学报, 1991, 24(3):1-14. Guo Zhenhai, Wang Chuanzhi. Investigation of strength and failure criterion of concrete under multiaxial stresses[J]. China Civil Engineering Journal, 1991, 24(3):1-14. (in Chinese)
    [13] 宋玉普, 赵国藩, 彭放, 等. 多轴应力下多种混凝土材料的通用破坏准则[J]. 土木工程学报, 1996, 29(1):25-32. Song Yupu, Zhao Guofan, Peng Fang, et al. General failure criterion for different concrete materials under multiaxial stresses[J]. China Civil Engineering Journal, 1996, 29(1):25-32. (in Chinese)
    [14] 宋玉普, 赵国藩, 彭放. 三轴加载下混凝土的变形和强度[J]. 水利学报, 1991(12):17-24. Song Yupu, Zhao Guofan, Peng Fang. Deformation and strength of concrete under triaxial loading[J]. Journal of Hydraulic Engineering, 1991(12):17-24. (in Chinese)
    [15] Yu M H, He L N. A new model and theory on yield and failure of materials under the complex stress state[C]//Mechanical Behaviour of Materials 6. Oxford, Jono M and Inoue T (editors), Pergamon Press, 1991:841-846.
    [16] Yu M H. Twin shear stress yield criterion[J]. International Journal of Mechanical Sciences, 1983, 25(1):71-74.
    [17] Yu M H, He L N, Song L Y. Twin shear stress theory and its generalization[J]. Science in China, Series A, 1985, 28(11):1174-1183.
    [18] 俞茂宏, 刘凤羽. 广义双剪应力准则角隅模型[J]. 力学学报, 1990, 22(2):213-216. Yu Maohong, Liu Fengyu. Smooth ridge model of generalized twin shear stress criterion[J]. Acta Mechanica Sinica, 1990, 22(2):213-216. (in Chinese)
    [19] 俞茂宏, 刘凤羽. 双剪应力三参数准则及其角隅模型[J]. 土木工程学报, 1988, 21(3):90-95. Yu Maohong, Liu Fengyu. Twin shear stress three parameter criterion and its corner model[J]. China Civil Engineering Journal, 1988, 21(3):90-95. (in Chinese)
    [20] 俞茂宏, 刘凤羽, 刘锋, 等. 一个新的普遍形式的强度理论[J]. 土木工程学报, 1990, 23(1):34-40. Yu Maohong, Liu Fengyu, Liu Feng, et al. A new general strength theory[J]. China Civil Engineering Journal, 1990, 23(1):34-40. (in Chinese)
    [21] Yu M H. Advances in strength theories for materials under complex stress state in the 20th century[J]. Applied Mechanics Reviews, 2002, 55(3):169-218.
    [22] 俞茂宏. 岩土类材料的统一强度理论及其应用[J]. 岩土工程学报, 1994, 16(2):1-10. Yu Maohong. Unified strength theory for geomaterials and its application[J]. Chinese Journal of Geotechnical Engineering, 1994, 16(2):1-10. (in Chinese)
    [23] 俞茂宏, 李晓玲, 张义军. 岩土材料四参数强度准则[C]//第五届岩石、混凝土断裂和强度学术会议. 长沙:国防科技大学出版社, 1993:244-248. Yu Maohong, Li Xiaoling, Zhang Yijun. Four-parameter strength criterion of rock and soil material[C]//Fifth Symposium on Fracture and Strength of Rock and Concrete. Changsha:National University of Defense Technology Press, 1993:244-248. (in Chinese)
    [24] Yu M H, Liu F Y, Li Y, et al. Twin shear stress five-parameter criterion and its smooth ridge model[J]. International Academic Publishers, 1989, 1:244-248.
    [25] Yu M H, Zhao J, Guan L W. Strength theory for rock and concrete:History, present situation and development[J]. Progress in Natural Science, 1998, 8(4):394-402.
    [26] 丁发兴, 余志武. 基于损伤泊松比的混凝土多轴强度准则[J]. 固体力学学报, 2007, 28(1):13-19. Ding Faxing, Yu Zhiwu. Strength criterion for plain concrete under multiaxial stress based on damage Poisson's ratio[J]. Acta Mechanica Solida Sinica, 2007, 28(1):13-19. (in Chinese)
    [27] Ding F X, Yu Z W. Strength criterion for plain concrete under multiaxial stress based on damage Poisson's ratio[J]. Acta Mechanica Solida Sinica, 2006, 19(4):307-315.
    [28] 梁伟, 吴佩刚, 赵光仪, 等. 高强混凝土三轴强度规律与破坏准则[J]. 建筑结构, 2003, 33(1):17-19. Liang Wei, Wu Peigang, Zhao Guangyi, at al. Triaxial strength regularities and failure criterion of high strength concrete[J]. Building Structure, 2003, 33(1):17-19. (in Chinese)
    [29] 宋玉普, 何振军. 高强高性能混凝土在多轴压下强度与变形性能的试验研究[J]. 岩石力学与工程学报, 2008, 27(增刊2):3575-3584. Song Yupu, He Zhenjun. Experimental investigation on strength and deformation of plain high-strength high-performance concrete under multiaxial compression[J]. Chinese Journal of Rock Mechanics and Engineering, 2008, 27(Suppl 2):3575-3584. (in Chinese)
    [30] 宋玉普, 赵国藩, 彭放, 等. 多轴应力下混凝土的破坏准则[C]//第五届岩石、混凝土断裂和强度学术会议. 长沙:国防科技大学出版社, 1993:121-129. Song Yupu, Zhao Guofan, Peng Fang, et al. Failure criterion of concrete under multiaxial stress[C]//Fifth Symposium on Fracture and Strength of Rock and Concrete. Changsha:National University of Defense Technology Press, 1993:121-129. (in Chinese)
    [31] Rong C, Shi Q, Zhang T, et al. New failure criterion models for concrete under multiaxial stress in compression[J]. Construction and Building Materials, 2018, 161:432-441.
    [32] 叶献国. 三轴变形混凝土的强度试验和混凝土破坏准则的研究[D]. 北京:清华大学, 1987. Ye Xianguo. Investigation of strength tests and failure criterion of concrete under triaxial compression[D]. Beijing:Tsinghua University, 1987. (in Chinese)
    [33] 刘洪春. 高强混凝土在三轴受压及两压一拉应力状态下强度与变形的试验研究[D]. 北京:清华大学, 1997. Liu Hongchun. Experimental investigation on strength and deformation of high-strength concrete under triaxial compression and compression-compression-tension stresses conditions[D]. Beijing:Tsinghua University, 1997. (in Chinese)
    [34] Chern J, Yang H, Chen H. Behavior of steel fiber reinforced concrete in multiaxial loading[J]. ACI Materials Journal, 1992, 89(1):32-40.
    [35] Candappa D, Sanjayan J, Setunge S. Complete triaxial stress-strain curves of high-strength concrete[J]. Journal of Materials in Civil Engineering, 2001, 13(3):209-215.
    [36] 王敬忠. 三轴拉压强度试验和混凝土破坏准则的研究[D]. 北京:清华大学, 1989. Wang Jingzhong. Investigation of strength tests and failure criterion of concrete under triaxial compressiontension[D]. Beijing:Tsinghua University, 1989. (in Chinese)
    [37] Xie J, Elwi A, Mac Gregor J. Mechanical properties of three high-strength concretes containing slica fume[J]. ACI Materials Journal, 1995, 92(2):135-145.
    [38] 俞茂宏, Oda Y, 盛谦, 等. 统一强度理论的发展及其在土木水利等工程中的应用和经济意义[J]. 建筑科学与工程学报, 2005, 22(1):24-41. Yu Maohong, Oda Y, Sheng Qian, et al. Development of unified strength theory and its applications in civil engineering and its economic significance[J]. Journal of Architecture and Civil Engineering, 2005(1):24-41. (in Chinese)
    [39] 宋玉普, 赵国藩, 彭放, 等. 三轴受压状态下轻骨料混凝土的强度特性[J]. 水利学报, 1993(6):10-16. Song Yupu, Zhao Guofan, Peng Fang, et al. Strength of lightweight concrete under triaxial compression[J]. Journal of Hydraulic Engineering, 1993(6):10-16. (in Chinese)
    [40] 王立成, 宋玉普. 一个针对轻骨料混凝土的四参数多轴强度准则[J]. 土木工程学报, 2005, 38(7):27-33. Wang Licheng, Song Yupu. A four-parameter multi-axial strength criterion for lightweight aggregate concrete[J]. China Civil Engineering Journal, 2005, 38(7):27-33. (in Chinese)
    [41] Wang W Z, Chen Y J, Chen F Y. An egg-shaped failure criterion for lightweight aggregate concrete[J]. Advanced Materials Research, 2011, 250:2085-2088.
    [42] 叶艳霞, 张志银, 刘月, 等. 基于弹头型屈服的轻骨料混凝土强度准则[J]. 工程力学, 2019, 36(1):138-145. Ye Yanxia, Zhang Zhiyin, Liu Yue, et al. A strength criterion for lightweight aggregate concrete based on warhead yield[J]. Engineering Mechanics, 2019, 36(1):138-145. (in Chinese)
    [43] 王立成, 日和田·希与志. 基于统一强度理论的轻骨料混凝土多轴强度准则[J]. 工程力学, 2006, 23(5):125-131. Wang Licheng, Hiwada Kiyoshi. Multi-axial strength criterion for lightweight aggregate concrete based on the unified strength theory[J]. Engineering Mechanics, 2006, 23(5):125-131. (in Chinese)
    [44] Ren Y, Yu Z P, Huang Q, et al. Constitutive model and failure criterions for lightweight aggregate concrete:A true triaxial experimental test[J]. Construction and Building Materials, 2018, 171:759-769.
    [45] Hoek E, Brown E T. Empirical strength criterion for rock masses[J]. Journal of the Geotechnical Engineering Division, 1980, 106(9):1013-1035.
    [46] Drucker D C, Prager W. Soil mechanics and plastic analysis or limit design[J]. Quarterly of Applied Mathematics, 1952, 10(2):157-165.
    [47] Griffith J E, Baldwin W M. Failure theories for generally orthotropic materials[J]. Developments of Theory & Application Mechanics, 1962, 1:410-420.
    [48] Mogi K. Effect of the intermediate principal stress on rock failure[J]. Journal of Geophysical Research Atmospheres, 1967, 72:5117-5131.
    [49] Mogi K. Fracture and flow of rocks under high triaxial compression[J]. Journal of Geophysical Research Atmospheres, 1971, 76:1255-1269.
    [50] Argyris J H, Faust G, Szimmat J, et al. Recent developments in the finite element analysis of prestressed concrete reactor vessels[C]//Proceeding of 2nd International Conference SMIRT. Berlin, 1973.
    [51] Gudehus G. Elastoplasticher stoffgleichungen fur trockenn sand[J]. Ingeniur Archiv, 1973, 42:151-169.
    [52] Zienkiewicz O C, Pande G N. Some useful forms of isotropic yield surfaces for soil and rock mechanics[C]//Finite Elements in Geomechanics. New York:John Wiley &Sons, 1977:179-190.
    [53] 史述昭, 杨光华. 岩体常用屈服函数的改进[J]. 岩土工程学报, 1987, 9(4):60-69. Shi Shuzhao, Yang Guanghua. An improvement of the commonly used yield function for rock material[J]. Chinese Journal of Geotechnical Engineering, 1987, 9(4):60-69. (in Chinese)
    [54] Kim M K, Lade P V. Modelling rock strength in three dimensions[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1984, 21(1):21-33.
    [55] Lade P V. Elasto-plastic stress-strain theory for cohesionless soil with curved yield surfaces[J]. International Journal of Solids and Structures, 1977, 13(11):1019-1035.
    [56] Lade P V, Duncan J M. Elastoplastic stress-strain the-ory for cohesionless soil[J]. Journal of the Geotechnical Engineering Division, 1975, 101(10):1037-1053.
    [57] Aubertin M, Li L, Simon R, et al. Formulation and application of a short-term strength criterion for isotropic rocks[J]. Canadian Geotechnical Journal, 1999, 36(5):947-960.
    [58] Pariseau W G. On the significance of dimensionless failure criteria[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1994, 31(5):555-560.
    [59] Pan X D, Hudson J A. A simplified three-dimensional Hoek-Brown yield criterion[J]. International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts, 1989, 26(2):59.
    [60] Zhang L Y, Zhu H H. Three-dimensional Hoek-Brown strength criterion for rocks[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2007, 133(9):1128-1135.
    [61] 姜华. 一种简便的岩石三维Hoek-Brown强度准则[J]. 岩石力学与工程学报, 2015, 34(增刊1):2996-3004. Jiang Hua. A simple convenient three-dimensional Hoek-Brown criterion for rocks[J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(Suppl 1):2996-3004. (in Chinese)
    [62] 昝月稳, 俞茂宏. 岩石广义非线性统一强度理论[J]. 西南交通大学学报, 2013, 48(4):616-624.Zan Yuewen, Yu Maohong. Generalized nonlinear unified strength theory of rock[J]. Journal of Southwest Jiaotong University, 2013, 48(4):616-624. (in Chinese)
    [63] 昝月稳, 俞茂宏, 王思敬. 岩石的非线性统一强度准则[J]. 岩石力学与工程学报, 2002, 21(10):1435-1441. Zan Yuewen, Yu Maohong, Wangsijing. Nonlinear unified strength criterion of rock[J]. Chinese Journal of Rock Mechanics and Engineering, 2002, 21(10):1435-1441. (in Chinese)
    [64] 张金铸, 林天健. 三轴试验中岩石的应力状态和破坏性质[J]. 力学学报, 1979(2):99-106. Zhang Jinzhu, Lin Tianjian. Stress conditions and the variation of rupture characteristics of a rock an shown by triaxial tests[J]. Acta Mechanica Sinica, 1979(2):99-106. (in Chinese)
    [65] 田军. 经验型岩石强度准则的探讨[J]. 金属矿山, 2001(2):23-25. Tian Jun. Discussion on the experimental rock strength criterion[J]. Metal Mine, 2001(2):23-25. (in Chinese)
    [66] 尹光志, 李贺, 鲜学福, 等. 工程应力变化对岩石强度特性影响的试验研究[J]. 岩土工程学报, 1987, 9(2):20-28. Yin Guangzhi, Li He, Xian Xuefu, et al. The experimental study of the influence of engineering stress changes on strength characteristics of rocks[J]. Chinese Journal of Geotechnical Engineering, 1987, 9(2):20-28. (in Chinese)
    [67] 高延法, 陶振宇. 岩石强度准则的真三轴压力试验检验与分析[J]. 岩土工程学报, 1993, 15(4):26-32. Gao Yanfa, Tao Zhenyu. Examination and analysis of true triaxial compression testing of strength criteria of rock[J]. Chinese Journal of Geotechnical Engineering, 1993, 15(4):26-32. (in Chinese)
    [68] Jiang H. A failure criterion for rocks and concrete based on the Hoek-Brown criterion[J]. International Journal of Rock Mechanics and Mining Sciences, 2017, 95:62-72.
    [69] Haimson B, Chang C. True triaxial strength and deformability of the German continental deep drilling program (KTB) deep hole amphibolite[J]. Journal of Geophysical Research, 2000, 105:18999-19013.
    [70] Haimson B, Chang C. A new true triaxial cell for testing mechanical properties of rock, and its use to determine rock strength and deformability of Westerly granite[J]. International Journal of Rock Mechanics and Mining Sciences, 2000, 37:285-296.
    [71] Jaeger J C, Cook N. Fundamentals of Rock Mechanics[M]. 3rd ed. London:Chapman and Hall, 1979.
    [72] Hoek E. Practical rock engineering[EB/OL]. https://www.rocscience.com/assets/resources/learning/hoek/PracticalRock-Engineering-Full-Text.pdf, 2007.
  • [1] 邵珠山, 魏玮, 陈文文, 郜介璞, 袁媛.  微波加热岩石与混凝土的研究进展与工程应用 . 工程力学, 2020, 37(5): 140-155,165. doi: 10.6052/j.issn.1000-4750.2019.07.0352
    [2] 管俊峰, 宋志锴, 姚贤华, 陈珊珊, 袁鹏, 刘泽鹏.  采用无缝试件确定混凝土岩石的断裂韧度 . 工程力学, 2020, 37(3): 36-45,107. doi: 10.6052/j.issn.1000-4750.2019.03.0082
    [3] 荣华, 王玉珏, 赵馨怡, 佘吉.  不同粗糙度岩石-混凝土界面断裂特性研究 . 工程力学, 2019, 36(10): 96-103,163. doi: 10.6052/j.issn.1000-4750.2018.09.0485
    [4] 黄景琦, 杜修力, 马超, 赵密, 刘晶波, 金浏.  岩石三维强度准则的研究 . 工程力学, 2018, 35(3): 30-40. doi: 10.6052/j.issn.1000-4750.2017.03.0216
    [5] 王永亮, 柳占立, 林三春, 庄茁.  基于连续损伤的岩石渗流有限元分析 . 工程力学, 2016, 33(11): 29-37. doi: 10.6052/j.issn.1000-4750.2015.03.0229
    [6] 郑山锁, 杨丰, 谢明, 侯丕吉.  混凝土双轴拉-压综合随机损伤本构关系研究 . 工程力学, 2013, 30(9): 111-116,131. doi: 10.6052/j.issn.1000-4750.2012.05.0327
    [7] 荣华, 董伟, 吴智敏, 范兴朗.  大初始缝高比混凝土试件双K断裂参数的试验研究 . 工程力学, 2012, 29(1): 162-167.
    [8] 商怀帅, 欧进萍, 宋玉普.  混凝土结构冻融损伤理论及冻融可靠度分析 . 工程力学, 2011, 28(1): 70-074.
    [9] 张慧梅, 杨更社.  冻融荷载耦合作用下岩石损伤力学特性 . 工程力学, 2011, 28(5): 161-165.
    [10] 朱宏平, 徐文胜, 陈晓强, 夏 勇.  利用声发射信号与速率过程理论对混凝土损伤进行定量评估 . 工程力学, 2008, 25(1): 0-191.
    [11] 杨健辉, 杨正浩, 黄 辉, 秦本东, 方坤河.  多种混凝土材料的多轴强度模型 . 工程力学, 2008, 25(11): 100-110.
    [12] 覃丽坤, 宋玉普, 陈浩然, 张众, 于长江.  高温后混凝土在双轴拉压下的强度和变形试验研究 . 工程力学, 2006, 23(1): 112-116.
    [13] 曹文贵, 张升, 赵明华.  软化与硬化特性转化的岩石损伤统计本构模型之研究 . 工程力学, 2006, 23(11): 110-115.
    [14] 韦立德, 杨春和, 徐卫亚.  考虑体积塑性应变的岩石损伤本构模型研究 . 工程力学, 2006, 23(1): 139-143.
    [15] 张立翔, 王时越, 赵造东.  混凝土疲劳损伤强度可靠度置信限分析 . 工程力学, 2004, 21(4): 139-143,.
    [16] 韩菊红, 赵国藩, 张雷顺.  新老混凝土粘结面断裂损伤过程区研究 . 工程力学, 2004, 21(6): 31-35.
    [17] 吕培印, 李庆斌, 张立翔.  定侧压混凝土双压疲劳损伤模型 . 工程力学, 2004, 21(5): 77-82.
    [18] 俞茂宏, M. Yoshimine, 强洪夫, 昝月稳, 肖耘, 李林生, 盛祖铭.  强度理论的发展和展望 . 工程力学, 2004, 21(6): 1-20.
    [19] 范重.  正方形断面钢管混凝土短柱轴心受压极限承载力的研究 . 工程力学, 1994, 11(3): 80-86.
    [20] 李宏, 刘西拉.  混凝土拉、剪临界破坏及纯剪强度 . 工程力学, 1992, 9(4): 1-9.
  • 加载中
计量
  • 文章访问数:  166
  • HTML全文浏览量:  0
  • PDF下载量:  177
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-05-31
  • 修回日期:  2019-12-16
  • 刊出日期:  2020-05-27

混凝土与各向同性岩石强度理论研究进展

doi: 10.6052/j.issn.1000-4750.2019.05.ST07
    基金项目:  国家重点研究计划项目(2017YFC0703404);湖南省自然科学杰出青年基金项目(2019JJ20029)
    作者简介:

    丁发兴(1979-),男,浙江人,教授,工学博士,主要从事混凝土及岩石强度理论、钢-混凝土组合结构研究(E-mail:dinfaxin@csu.edu.cn);向平(1982-),男,湖南人,特聘教授,工学博士,主要从事混凝土结构抗震及计算力学研究(E-mail:pxiang@)csu.edu.cn);余志武(1955-),男,湖南人,教授,工学硕士,主要从事结构工程、桥梁工程与防灾工程研究(E-mail:zhwyu@csu.edu.cn);龚琛杰(1990-),男,重庆人,讲师,工学博士,主要从事岩石力学与隧道工程研究(E-mail:gongcj@csu.edu.cn).

    通讯作者: 吴霞(1996-),女,四川人,硕士生,主要从事混凝土及岩石强度理论研究(E-mail:wuxia1@csu.edu.cn).
  • 中图分类号: TU501;TU45

摘要: 强度理论是研究复杂应力状态下材料是否破坏的理论,该文总结了古典强度理论以及混凝土和各向同性岩石等两类现代强度理论,将各项同性现代强度理论分为剪应力强度理论、八面体强度理论与主应力强度理论。通过收集国内外已有相关三轴实验数据对各种主要强度理论进行论述、比较与评价,在此基础上对混凝土和各向同性岩石的主应力空间损伤比强度理论进行展望。

English Abstract

丁发兴, 吴霞, 向平, 余志武, 龚琛杰. 混凝土与各向同性岩石强度理论研究进展[J]. 工程力学, 2020, 37(2): 1-15. doi: 10.6052/j.issn.1000-4750.2019.05.ST07
引用本文: 丁发兴, 吴霞, 向平, 余志武, 龚琛杰. 混凝土与各向同性岩石强度理论研究进展[J]. 工程力学, 2020, 37(2): 1-15. doi: 10.6052/j.issn.1000-4750.2019.05.ST07
DING Fa-xing, WU Xia, XIANG Ping, YU Zhi-wu, GONG Chen-jie. REVIEWS ON STRENGTH THEORIES OF CONCRETE AND ISOTROPIC ROCK[J]. Engineering Mechanics, 2020, 37(2): 1-15. doi: 10.6052/j.issn.1000-4750.2019.05.ST07
Citation: DING Fa-xing, WU Xia, XIANG Ping, YU Zhi-wu, GONG Chen-jie. REVIEWS ON STRENGTH THEORIES OF CONCRETE AND ISOTROPIC ROCK[J]. Engineering Mechanics, 2020, 37(2): 1-15. doi: 10.6052/j.issn.1000-4750.2019.05.ST07
参考文献 (72)

目录

    /

    返回文章
    返回