留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

采用无缝试件确定混凝土岩石的断裂韧度

管俊峰 宋志锴 姚贤华 陈珊珊 袁鹏 刘泽鹏

管俊峰, 宋志锴, 姚贤华, 陈珊珊, 袁鹏, 刘泽鹏. 采用无缝试件确定混凝土岩石的断裂韧度[J]. 工程力学, 2020, 37(3): 36-45,107. doi: 10.6052/j.issn.1000-4750.2019.03.0082
引用本文: 管俊峰, 宋志锴, 姚贤华, 陈珊珊, 袁鹏, 刘泽鹏. 采用无缝试件确定混凝土岩石的断裂韧度[J]. 工程力学, 2020, 37(3): 36-45,107. doi: 10.6052/j.issn.1000-4750.2019.03.0082
GUAN Jun-feng, SONG Zhi-kai, YAO Xian-hua, CHEN Shan-shan, YUAN Peng, LIU Ze-peng. DETERMINATION OF FRACTURE TOUGHNESS OF CONCRETE AND ROCK USING UNNOTCHED SPECIMENS[J]. Engineering Mechanics, 2020, 37(3): 36-45,107. doi: 10.6052/j.issn.1000-4750.2019.03.0082
Citation: GUAN Jun-feng, SONG Zhi-kai, YAO Xian-hua, CHEN Shan-shan, YUAN Peng, LIU Ze-peng. DETERMINATION OF FRACTURE TOUGHNESS OF CONCRETE AND ROCK USING UNNOTCHED SPECIMENS[J]. Engineering Mechanics, 2020, 37(3): 36-45,107. doi: 10.6052/j.issn.1000-4750.2019.03.0082

采用无缝试件确定混凝土岩石的断裂韧度

doi: 10.6052/j.issn.1000-4750.2019.03.0082
基金项目: 国家自然科学基金项目(51779095);河南省高校科技创新人才支持计划资助项目(20HASTIT013)
详细信息
    作者简介:

    宋志锴(1995-),男,河南人,硕士生,主要从事混凝土岩石断裂力学研究(E-mail:806931971@qq.com);姚贤华(1976-),男,河南人,实验师,博士,主要从事混凝土损伤与断裂力学研究(E-mail:yaoxianhua@ncwu.edu.cn);陈珊珊(1990-),女,河南人,助教,硕士,主要从事材料与结构基本理论研究(E-mail:chenshanshan@ncwu.edu.cn);袁鹏(1996-),男,河南人,硕士生,主要从事混凝土岩石断裂力学研究(E-mail:809783444@qq.com);刘泽鹏(1994-),男,河南人,硕士生,主要从事混凝土岩石断裂力学研究(E-mail:861216643@qq.com).

    通讯作者: 管俊峰(1980-),男,河南人,教授,博士,主要从事混凝土岩石断裂力学研究(E-mail:guanjunfeng1980@126.com).
  • 中图分类号: TU528;TU501

DETERMINATION OF FRACTURE TOUGHNESS OF CONCRETE AND ROCK USING UNNOTCHED SPECIMENS

  • 摘要: 该文建立了由无缝试件确定混凝土和岩石断裂韧度的理论模型及其解析表达式。该模型考虑了混凝土骨料粒径与岩石颗粒尺寸的重要影响,仅需小尺寸无缝试件的峰值荷载,即可直接确定出无尺寸效应的混凝土与岩石的断裂韧度。进一步,进行了含不同裂缝长度的岩石试件的系列断裂试验,研究结果表明:基于该文模型由无缝试件确定的岩石断裂韧度,与采用含1 mm预制浅裂缝试件的确定结果相吻合,与基于回归分析方法由含不同长度预制裂缝试件确定的断裂韧度基本一致。同时,基于所提模型,对其他学者完成的岩石与混凝土无缝与含缝试件的试验成果进行了深入分析,验证了所提模型与方法的合理性及适用性。该文研究为由实验室小尺寸无缝试件确定混凝土与岩石无尺寸效应的断裂韧度提供了新思路。
  • [1] DL/T 5332-2005, 水工混凝土断裂试验规程[S]. 北京:中国电力出版社, 2006. DL/T 5332-2005, Norm for fracture test of hydraulic concrete[S]. Beijng:China Electric Power Press, 2006. (in Chinese)
    [2] RILEM TC-50 FMC (Draft Recommendation). Determination of the fracture energy of mortar and concrete by means of three-point bend tests on notched beams[J]. Materials and Structures, 1985, 18(6):285-290.
    [3] Shah S P, Carpinteri A. Fracture mechanics test methods for concrete:Report of Technical Committee 89-FMT Fracture Mechanics of Concrete, Test Methods, RILEM[M]. London; New York:Chapman and Hall, 1991.
    [4] ISRM Testing Commission. Suggested methods for determining the fracture toughness of rock[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1988, 25(2):71-96.
    [5] ISRM Testing Commission. Suggested method for determining mode I fracture toughness using cracked chevron notched Brazilian disc (CCNBD) specimens[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1995, 32(1):57-64
    [6] ASTM E399-90, Standard test method for plane-strain fracture toughness testing of metallic materials[S]. Philadelphia:American Society for Testing and Materials, 1990.
    [7] ASTM E399-12e2, Standard test method for linear-elastic plane-strain fracture toughness testing of high strength metallic materials[S]. Philadelphia:American Society for Testing and Material, 2013.
    [8] Li Qingbin, Guan Junfeng, Wu Zhimin, et al. Fracture behavior of site-casting dam concrete[J]. ACI Material Journal, 2015, 112(1):11-20.
    [9] Li Qingbin, Guan Junfeng, Wu Zhimin, et al. Equivalent maturity for ambient temperature effect on fracture parameters of site-casting dam concrete[J]. Construction and Building Materials, 2016, 120(9):293-308.
    [10] Guan Junfeng, Li Qingbin, Wu Zhimin, et al. Relationship between fracture parameters of site-casting and sieved concrete[J]. Magazine of Concrete Research, 2016, 68(1):43-54.
    [11] Hoover C G, Bažant Z P, Vorel J, et al. Comprehensive concrete fracture tests:Description and results[J]. Engineering Fracture Mechanics, 2013, 114(12):92-103.
    [12] Çağlar Y, Şener S. Size effect tests of different notch depth specimens with support rotation measurements[J]. Engineering Fracture Mechanics, 2016, 157(5):43-55.
    [13] Jiang Y P, Guo W L, Shao X J. On the study of the effects of notch shape on the creep damage under cyclic loading[J]. International Journal of Fatigue, 2007, 29(5):836-842.
    [14] Berto F, Fergani O. A review of the notch rounding approach under in plane mixed mode loading[J]. International Journal of Fatigue, 2017, 101(8):127-136.
    [15] Ayatollahi M R, Torabi A R, Bahrami B. Comprehensive notch shape factors for V-notched Brazilian disk specimens loaded under mixed mode I/II from pure opening mode to pure closing mode[J]. Archive of Applied Mechanics, 2017, 87(2):299-313.
    [16] Li J, Su CY, Lu L, et al. Investigation on fatigue crack growth behavior for commercial pure titanium at different crack tip plastic deformed levels[J]. Theoretical and Applied Fracture Mechanics, 2019, 100(4):1-13.
    [17] Zaitsev Y V, Kovler K L. Notch sensitiv ity of concrete and size effect. Part I:Effect of specimen size and crack length by 3-point bending[J]. Cement and Concrete Research, 1985, 15(6):979-987.
    [18] Zaitsev Y V, Kovler K L. Notch sensitivity of concrete and size effect. Part II:Stress state effect[J]. Cement & Concrete Research, 1986, 16(1):7-16.
    [19] Guan Junfeng, Li Changming, Juan Wang, et al. Determination of fracture parameter and prediction of structural fracture using various concrete specimen types[J]. Theoretical and Applied Fracture Mechanics, 2019, 100(4):114-127.
    [20] Lin Peng, Guan Junfeng, Peng Haoyang, et al. Horizontal cracking and crack repair analysis of a super high arch dam based on fracture toughness[J]. Engineering Failure Analysis, 2019, 97(3):72-90.
    [21] 管俊峰, 胡晓智, 王玉锁, 等. 用边界效应理论考虑断裂韧性和拉伸强度对破坏的影响[J]. 水利学报, 2016, 47(10):1298-1306. Guan Junfeng, Hu Xiaozhi, Wang Yusuo, et al. Effect of fracture toughness and tensile strength on fracture based on boundary effect theory[J]. Journal of Hydraulic Engineering, 2016, 47(10):1298-1306. (in Chinese)
    [22] 管俊峰, 王强, 胡晓智, 等. 考虑骨料尺寸的混凝土岩石边界效应断裂模型[J]. 工程力学, 2017, 34(12):22-30. Guan Junfeng, Wang Qiang, Hu Xiaozhi, et al. Boundary effect fracture model for concrete and granite considering aggregate size[J]. Engineering Mechanics, 2017, 34(12):22-30. (in Chinese)
    [23] 管俊峰, 钱国双, 白卫峰, 等. 岩石材料真实断裂参数确定及断裂破坏预测方法[J]. 岩石力学与工程学报, 2018, 37(5):1146-1160. Guan Junfeng, Qian Guoshuang, Bai Weifeng, et al. Method for predicting fracture and determining true material parameters of rock[J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37(5):1146-1160. (in Chinese)
    [24] 管俊峰, 胡晓智, 李庆斌, 等. 边界效应与尺寸效应模型的本质区别及相关设计应用[J]. 水利学报, 2017, 48(8):955-967. Guan Junfeng, Hu Xiaozhi, Li Qingbin, et al. Essential difference and design application of boundary effect model and size effect model[J]. Journal of Hydraulic Engineering, 2017, 48(8):955-967. (in Chinese)
    [25] Hillerborg A, Modeer M, Petersson P E. Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements[J]. Cement Concrete Research, 1976, 6(6):773-782.
    [26] Bažant Z P. Size effect in blunt fracture:Concrete, rock, metal[J]. Journal of Engineering Mechanics, 1984, 110(4):518-535.
    [27] Jenq Y S, Shah S P. Two parameter fracture model for concrete[J]. Journal Engineering Mechanics-ASCE, 1985, 111(10):1227-1241.
    [28] Karihaloo B L, Nallathambi P. Effective crack model for the determination of fracture toughness (Ke IC) of Concrete[J]. Engineering Fracture Mechanics, 1990, 35(4/5):637-645.
    [29] Carpinteri A. Fractal nature of material microstructure and size effects on apparent mechanical properties[J]. Mechanics of Materials, 1994, 18(2):89-101.
    [30] Xu S L, Reinhardt H W. Determination of double-K criterion for crack propagation in quasi-brittle fracture, Part II:Analytical evaluating and practical measuring methods for three-point bending notched beams[J]. International Journal of Fracture, 1999, 98(2):151-177.
    [31] Hoover C G, Bažant Z P. Universal size-shape effect law based on comprehensive concrete fracture tests[J]. Journal Engineering Mechanics, 2014, 140(3):473-479.
    [32] 管俊峰, 李庆斌, 吴智敏. 采用峰值荷载法确定全级配水工混凝土断裂参数[J]. 工程力学, 2014, 31(8):8-13. Guan Junfeng, Li Qingbin, Wu Zhimin. Determination of fully-grade hydraulic concrete fracture parameters by peak-load method[J]. Engineering Mechanics, 2014, 31(8):8-13. (in Chinese)
    [33] Hoover C G, Bažant Z P. Comparison of Hu-Duan boundary effect model to size-shape effect law for quasi-brittle fracture based on new comprehensive fracture tests[J]. Journal Engineering Mechanics, 2014, 140(3):480-486.
    [34] Hu Xiaozhi, Guan Junfeng, Wang Yusuo, et al. Comparison of boundary and size effect models based on new developments[J]. Engineering Fracture Mechanics, 2017, 175(4):146-167.
    [35] 管俊峰, 姚贤华, 白卫峰, 等. 由小尺寸试件确定混凝土的断裂韧度与拉伸强度[J]. 工程力学, 2019, 36(1):70-79, 87. Guan Junfeng, Yao Xianhua, Bai Weifeng, et al. Determination of fracture toughness and tensile strength of concrete using small specimens[J]. Engineering Mechanics, 2019, 36(1):70-79, 87. (in Chinese)
    [36] Hu Xiaozhi. Size effect on tensile softening relation[J]. Materials and Structures, 2011, 44(1):129-138.
    [37] Hu X Z, Wittmann F. Size effect on toughness induced by crack close to free surface[J]. Engineering Fracture Mechanics, 2000, 65(2/3):209-221.
    [38] Hu X Z. An asymptotic approach to size effect on fracture toughness and fracture energy of composites[J]. Engineering Fracture Mechanics, 2002, 69(5):555-564.
    [39] Hu X Z, Duan K. Size effect and quasi-brittle fracture:the role of FPZ[J]. International Journal of Fracture, 2008, 154(1):3-14.
    [40] Guan Junfeng, Hu X Z, Li Qingbin. In-depth analysis of notched 3-p-b concrete fracture[J]. Engineering Fracture Mechanics, 2016, 165(10):57-71.
    [41] Guan Junfeng, Hu Xiaozhi, Xie Chaopeng, et al. Wedge-splitting tests for tensile strength and fracture toughness of concrete[J]. Theoretical and Applied Fracture Mechanics, 2018, 93(2):263-275.
    [42] Guan Junfeng, Hu Xiaozhi, Yao Xianhua, et al. Fracture of 0.1 and 2 m long mortar beams under threepoint-bending[J]. Materials & Design, 2017, 133(11):363-375.
    [43] Wang Y S, Hu X Z. Determination of strength and toughness of granite using notched three-point-bend samples[J]. Rock Mechanics and Rock Engineering, 2017, 50(1):1-12.
  • [1] 邵珠山, 魏玮, 陈文文, 郜介璞, 袁媛.  微波加热岩石与混凝土的研究进展与工程应用 . 工程力学, 2020, 37(5): 140-155,165. doi: 10.6052/j.issn.1000-4750.2019.07.0352
    [2] 管俊峰, 刘泽鹏, 姚贤华, 李列列, 何双华, 张敏.  确定混凝土开裂与拉伸强度及双K断裂参数 . 工程力学, 2020, 37(): 1-14. doi: 10.6052/j.issn.1000-4750.2020.02.0084
    [3] 金浏, 余文轩, 杜修力, 张帅, 李冬.  低应变率下混凝土动态拉伸破坏尺寸效应细观模拟 . 工程力学, 2019, 36(8): 59-69,78. doi: 10.6052/j.issn.1000-4750.2018.03.0144
    [4] 金浏, 余文轩, 杜修力, 张帅, 杨旺贤, 李冬.  基于细观模拟的混凝土动态压缩强度尺寸效应研究 . 工程力学, 2019, 36(11): 50-61. doi: 10.6052/j.issn.1000-4750.2018.06.0363
    [5] 荣华, 王玉珏, 赵馨怡, 佘吉.  不同粗糙度岩石-混凝土界面断裂特性研究 . 工程力学, 2019, 36(10): 96-103,163. doi: 10.6052/j.issn.1000-4750.2018.09.0485
    [6] 管俊峰, 姚贤华, 白卫峰, 陈记豪, 付金伟.  由小尺寸试件确定混凝土的断裂韧度与拉伸强度 . 工程力学, 2019, 36(1): 70-79,87. doi: 10.6052/j.issn.1000-4750.2017.09.0705
    [7] 金浏, 杜敏, 杜修力, 李振宝.  箍筋约束混凝土圆柱轴压破坏尺寸效应行为 . 工程力学, 2018, 35(5): 93-101. doi: 10.6052/j.issn.1000-4750.2017.01.0036
    [8] 赵燕茹, 王磊, 韩霄峰, 时金娜.  冻融条件下玄武岩纤维混凝土断裂韧度研究 . 工程力学, 2017, 34(9): 92-101. doi: 10.6052/j.issn.1000-4750.2016.04.0262
    [9] 杜敏, 金浏, 李冬, 杜修力.  骨料粒径对混凝土劈拉性能及尺寸效应影响的细观数值研究 . 工程力学, 2017, 34(9): 54-63. doi: 10.6052/j.issn.1000-4750.2016.02.0122
    [10] 管俊峰, 王强, HU Xiaozhi, 白卫峰, 姜斌.  考虑骨料尺寸的混凝土岩石边界效应断裂模型 . 工程力学, 2017, 34(12): 22-30. doi: 10.6052/j.issn.1000-4750.2016.08.0652
    [11] 王立成, 邢立坤, 宋玉普.  混凝土劈裂抗拉强度和弯曲抗压强度尺寸效应的细观数值分析 . 工程力学, 2014, 31(10): 69-76. doi: 10.6052/j.issn.1000-4750.2013.03.0259
    [12] 冯 峰, 韦重耕, 王启智.  用中心直裂纹平台巴西圆盘测试岩石动态断裂韧度的尺寸效应 . 工程力学, 2009, 26(4): 167-173.
    [13] 赵艳华, 杨树桐, 韩 飞, 陈 晋.  混凝土紧凑拉伸试件断裂韧度计算模型 . 工程力学, 2009, 26(12): 127-132.
    [14] 徐世烺, 赵艳华.  混凝土裂缝扩展的断裂过程准则与解析 . 工程力学, 2008, 25(增刊Ⅱ): 20-033.
    [15] 赵艳华, 聂玉强, 徐世烺.  混凝土断裂能的边界效应确定法 . 工程力学, 2007, 24(1): 0-061.
    [16] 杨圣奇, 苏承东, 徐卫亚.  岩石材料尺寸效应的试验和理论研究 . 工程力学, 2005, 22(4): 112-118.
    [17] 张彤, 孟庆元, 杜善义.  基于定长裂缝试件的脆性材料尺寸效应实验方法 . 工程力学, 2001, 18(5): 127-132,.
    [18] 吴智敏, 王金来, 徐世烺, 刘毅.  基于虚拟裂缝模型的混凝土等效断裂韧度 . 工程力学, 2000, 17(1): 99-104.
    [19] 庄青峰, 冯乃谦.  加气混凝土断裂能测定的尺寸效应 . 工程力学, 1995, 12(1): 30-38.
    [20] 吴智敏, 赵国藩.  混凝土非线性断裂韧度 GIc及其尺寸效应 . 工程力学, 1995, 12(4): 9-16.
  • 加载中
计量
  • 文章访问数:  94
  • HTML全文浏览量:  2
  • PDF下载量:  74
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-03-03
  • 修回日期:  2019-07-24
  • 刊出日期:  2020-05-27

采用无缝试件确定混凝土岩石的断裂韧度

doi: 10.6052/j.issn.1000-4750.2019.03.0082
    基金项目:  国家自然科学基金项目(51779095);河南省高校科技创新人才支持计划资助项目(20HASTIT013)
    作者简介:

    宋志锴(1995-),男,河南人,硕士生,主要从事混凝土岩石断裂力学研究(E-mail:806931971@qq.com);姚贤华(1976-),男,河南人,实验师,博士,主要从事混凝土损伤与断裂力学研究(E-mail:yaoxianhua@ncwu.edu.cn);陈珊珊(1990-),女,河南人,助教,硕士,主要从事材料与结构基本理论研究(E-mail:chenshanshan@ncwu.edu.cn);袁鹏(1996-),男,河南人,硕士生,主要从事混凝土岩石断裂力学研究(E-mail:809783444@qq.com);刘泽鹏(1994-),男,河南人,硕士生,主要从事混凝土岩石断裂力学研究(E-mail:861216643@qq.com).

    通讯作者: 管俊峰(1980-),男,河南人,教授,博士,主要从事混凝土岩石断裂力学研究(E-mail:guanjunfeng1980@126.com).
  • 中图分类号: TU528;TU501

摘要: 该文建立了由无缝试件确定混凝土和岩石断裂韧度的理论模型及其解析表达式。该模型考虑了混凝土骨料粒径与岩石颗粒尺寸的重要影响,仅需小尺寸无缝试件的峰值荷载,即可直接确定出无尺寸效应的混凝土与岩石的断裂韧度。进一步,进行了含不同裂缝长度的岩石试件的系列断裂试验,研究结果表明:基于该文模型由无缝试件确定的岩石断裂韧度,与采用含1 mm预制浅裂缝试件的确定结果相吻合,与基于回归分析方法由含不同长度预制裂缝试件确定的断裂韧度基本一致。同时,基于所提模型,对其他学者完成的岩石与混凝土无缝与含缝试件的试验成果进行了深入分析,验证了所提模型与方法的合理性及适用性。该文研究为由实验室小尺寸无缝试件确定混凝土与岩石无尺寸效应的断裂韧度提供了新思路。

English Abstract

管俊峰, 宋志锴, 姚贤华, 陈珊珊, 袁鹏, 刘泽鹏. 采用无缝试件确定混凝土岩石的断裂韧度[J]. 工程力学, 2020, 37(3): 36-45,107. doi: 10.6052/j.issn.1000-4750.2019.03.0082
引用本文: 管俊峰, 宋志锴, 姚贤华, 陈珊珊, 袁鹏, 刘泽鹏. 采用无缝试件确定混凝土岩石的断裂韧度[J]. 工程力学, 2020, 37(3): 36-45,107. doi: 10.6052/j.issn.1000-4750.2019.03.0082
GUAN Jun-feng, SONG Zhi-kai, YAO Xian-hua, CHEN Shan-shan, YUAN Peng, LIU Ze-peng. DETERMINATION OF FRACTURE TOUGHNESS OF CONCRETE AND ROCK USING UNNOTCHED SPECIMENS[J]. Engineering Mechanics, 2020, 37(3): 36-45,107. doi: 10.6052/j.issn.1000-4750.2019.03.0082
Citation: GUAN Jun-feng, SONG Zhi-kai, YAO Xian-hua, CHEN Shan-shan, YUAN Peng, LIU Ze-peng. DETERMINATION OF FRACTURE TOUGHNESS OF CONCRETE AND ROCK USING UNNOTCHED SPECIMENS[J]. Engineering Mechanics, 2020, 37(3): 36-45,107. doi: 10.6052/j.issn.1000-4750.2019.03.0082
参考文献 (43)

目录

    /

    返回文章
    返回