留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

考虑力学机制和不确定性影响的钢筋混凝土柱概率抗剪承载力模型

刘圣宾 凌干展 余波

刘圣宾, 凌干展, 余波. 考虑力学机制和不确定性影响的钢筋混凝土柱概率抗剪承载力模型[J]. 工程力学, 2019, 36(11): 183-194. doi: 10.6052/j.issn.1000-4750.2018.12.0664
引用本文: 刘圣宾, 凌干展, 余波. 考虑力学机制和不确定性影响的钢筋混凝土柱概率抗剪承载力模型[J]. 工程力学, 2019, 36(11): 183-194. doi: 10.6052/j.issn.1000-4750.2018.12.0664
LIU Sheng-bin, LING Gan-zhan, YU Bo. PROBABILISTIC SHEAR STRENGTH MODEL OF REINFORCED CONCRETE COLUMNS CONSIDERING MECHANICAL MECHANISM AND UNCERTAINTIES[J]. Engineering Mechanics, 2019, 36(11): 183-194. doi: 10.6052/j.issn.1000-4750.2018.12.0664
Citation: LIU Sheng-bin, LING Gan-zhan, YU Bo. PROBABILISTIC SHEAR STRENGTH MODEL OF REINFORCED CONCRETE COLUMNS CONSIDERING MECHANICAL MECHANISM AND UNCERTAINTIES[J]. Engineering Mechanics, 2019, 36(11): 183-194. doi: 10.6052/j.issn.1000-4750.2018.12.0664

考虑力学机制和不确定性影响的钢筋混凝土柱概率抗剪承载力模型

doi: 10.6052/j.issn.1000-4750.2018.12.0664
基金项目: 国家自然科学基金项目(51668008,51738004);广西自然科学基金项目(2018GXNSFAA281344)
详细信息
    作者简介:

    刘圣宾(1993-),男,河南人,硕士生,主要从事钢筋混凝土柱承载力分析与校准研究(E-mail:liushengbin@st.gxu.edu.cn);凌干展(1994-),男,广西人,硕士生,主要从事钢筋混凝土构件概率承载力模型研究(E-mail:lingganzhan@st.gxu.edu.cn).

    通讯作者: 余波(1982-),男,四川人,教授,博士,博导,主要从事钢筋混凝土结构全寿命性能研究(E-mail:gxuyubo@gxu.edu.cn).
  • 中图分类号: TU375.3

PROBABILISTIC SHEAR STRENGTH MODEL OF REINFORCED CONCRETE COLUMNS CONSIDERING MECHANICAL MECHANISM AND UNCERTAINTIES

  • 摘要: 为了克服传统确定性抗剪承载力模型无法合理考虑不确定性因素影响所存在的缺陷,研究建立了一种能够综合考虑力学机制和不确定性影响的钢筋混凝土(RC)柱概率抗剪承载力模型。首先基于桁架-拱模型,综合考虑混凝土、箍筋和拱作用的抗剪承载力贡献以及不确定性的影响,建立了RC柱概率抗剪承载力模型的解析表达式;然后结合贝叶斯理论和马尔科夫链蒙特卡洛(MCMC)法,确定了概率模型参数的后验分布信息,并分析了概率模型参数的先验分布信息以及更新批次对概率模型参数后验分布的稳定性和收敛性的影响;最后利用试验数据验证了该概率模型的有效性。分析表明,随着试验数据的增加,概率模型参数的后验分布可以实现不断更新;概率抗剪承载力模型不仅可以合理描述抗剪承载力的概率分布特性,而且可以校准分析传统确定性抗剪承载力模型的计算精度。
  • [1] 张勤, 王娜, 贡金鑫. 钢筋混凝土柱地震破坏模式及考虑剪切变形的抗震性能研究进展[J]. 建筑结构学报, 2017, 38(8):1-13. Zhang Qin, Wang Na, Gong Jinxing. State of the art of seismic performance including shear effects and failure modes of reinforced concrete columns[J]. Journal of Building Structures, 2017, 38(8):1-13. (in Chinese)
    [2] 余波, 陈冰, 吴然立. 剪切型钢筋混凝土柱抗剪承载力计算的概率模型[J]. 工程力学, 2017, 34(7):136-145. Yu Bo, Chen Bing, Wu Ranli. Probabilistic model for shear strength of shear-critical reinforced concrete columns[J]. Engineering Mechanics, 2017, 34(7):136-145. (in Chinese)
    [3] 邓明科, 张阳玺, 胡红波. 高延性混凝土加固钢筋混凝土柱抗剪承载力计算[J]. 工程力学, 2018, 35(3):159-166. Deng Mingke, Zhang Yangxi, Hu Hongbo. Experimental study and calculation of the shear capacity of RC columns strengthened with high ductile concrete[J]. Engineering Mechanics, 2018, 35(3):159-166. (in Chinese)
    [4] Armen D K, Ditlevsen O. Aleatory or epistemic? Does it matter?[J]. Structural Safety, 2009, 31(2):105-112.
    [5] Murphy C, Gardoni P, Harris C E. Classification and moral evaluation of uncertainties in engineering modeling[J]. Science and Engineering Ethics, 2011, 17(3):553-570.
    [6] 余波, 陈冰. 锈蚀钢筋混凝土梁抗剪承载力计算的概率模型[J]. 工程力学, 2018, 35(11):115-124. Yu Bo, Chen Bing. Probabilistic model for shear strength of corroded reinforced concrete beams[J]. Engineering Mechanics, 2018, 35(11):115-124. (in Chinese)
    [7] 余波, 陶伯雄, 刘圣宾. 一种箍筋约束混凝土峰值应力的概率模型[J]. 工程力学, 2018, 35(9):135-144. Yu Bo, Tao Boxiong, Liu Shengbin. A probabilistic model for peak stress of concrete confined by ties[J]. Engineering Mechanics, 2018, 35(9):135-144. (in Chinese)
    [8] Chen J B, Wan Z Q. A compatible probabilistic framework for quantification of simultaneous aleatory and epistemic uncertainty of basic parameters of structures by synthesizing the change of measure and change of random variables[J]. Structural Safety, 2019, 78:76-87.
    [9] Yu B, Tang R K, Li B. Probabilistic calibration for development length models of reinforcing bar[J]. Engineering Structures, 2019, 182:279-289.
    [10] Yu B, Liu S B, Li B. Probabilistic calibration for shear strength models of reinforced concrete columns[J]. Journal of Structural Engineering, 2019, 145(5):04019026-1-04019026-14.
    [11] Ritter W. Die bauweise hennebique[J]. Chweizerische Bauzeitung, 1899, 33(7):59-61.
    [12] Vecchio F J, Collins M P. The modified compressionfield theory for reinforced concrete elements subjected to shear[J]. ACI Structural Journal, 1986, 83(2):219-231.
    [13] CSA A23.3-04, Design of concrete structures[S]. Mississauga, Ontario, Canada:Canadian, Canadian Standards Association, 2004.
    [14] 魏巍巍, 贡金鑫. 钢筋混凝土构件基于修正压力场理论的受剪承载力计算[J]. 工程力学, 2011, 28(2):111-117. Wei Weiwei, Gong Jinxin. Shear strength of reinforced concrete members based on modified compression field theory[J]. Engineering Mechanics, 2011, 28(2):111-117. (in Chinese)
    [15] Biskinis D E, Roupakias G K, Fardis M N. Degradation of shear strength of reinforced concrete members with inelastic cyclic displacements[J]. ACI Structural Journal, 2004, 101(6):773-783.
    [16] Pan Z, Li B. Truss-arch model for shear strength of shear-critical reinforced concrete columns[J]. Journal of Structural Engineering, 2013, 139(4):548-560.
    [17] FEMA273, NEHRP guidelines for the seismic rehabilitation of buildings[S]. Washington, D C:Federal Emergency Management Agency, 1997.
    [18] ACI 318-11, Building code requirements for structural concrete and commentary[S]. Farmington Hills:American Concrete Institute, 2011.
    [19] SL 191-2008, 水工混凝土结构设计规范[S]. 北京:中国水利水电出版社, 2008. SL 191-2008, Design code for hydraulic structures[S]. Beijing:China Water & Power Press, 2008. (in Chinese)
    [20] EN-1998-3, CEN. Design of structures for earthquake resistance-Part 3:Assessment and retrofitting of buildings[S]. Eurocode 8. Brussell:European Committee for Standardization, 2005.
    [21] GB 50010-2010, 混凝土结构设计规范[S]. 北京:中国建筑工业出版社, 2015. GB 50010-2010, Code for design of concrete structures[S]. Beijing:China Architecture & Building Press, 2015. (in Chinese)
    [22] 吴涛, 刘喜, 邢国华. 基于贝叶斯理论的钢筋混凝土柱受剪承载力计算[J]. 工程力学, 2013, 30(5):195-201, 206. Wu Tao, Liu Xi, Xing Guohua. Study on the shear capacity of reinforced concrete column based on Bayesian theory[J]. Engineering Mechanics, 2013, 30(5):195-201, 206. (in Chinese)
    [23] 魏巍巍. 基于修正压力场理论的钢筋混凝土结构受剪承载力及变形研究[D]. 大连:大连理工大学, 2011. Wei Weiwei. Study on shear capacity and deformation for reinforced concrete structure based on modified compression field theory[D]. Dalian:Dalian University of Technology, 2011. (in Chinese)
    [24] 余波, 吴然立, 陈冰. 剪切型钢筋混凝土柱临界斜裂缝倾角的概率模型[J]. 计算力学学报, 2017, 34(5):547-554. Yu Bo, Wu Ranli, Chen Bing. Probabilistic model for critical diagonal crack angle of shear-critical reinforced concrete columns[J]. Chinese Journal of Computational Mechanics, 2017, 34(5):547-554. (in Chinese)
    [25] Umehara H, Jirsa J O. Shear strength and deterioration of short reinforced concrete columns under cyclic deformations[R]. Washington, D C:National Science Foundation, 1982.
    [26] Bett B J, Klingner R E, Jirsa J O. Behavior of strengthened and repaired reinforced concrete columns under cyclic deformations[R]. Washington, D C:National Science Foundation, 1985.
    [27] Yalçin. Seismic evaluation and retrofit of existing reinforced concrete bridge columns[D]. Canada:University of Ottawa, 1998.
    [28] Xiao Y, Martirossyan A. Seismic performance of high-strength concrete columns[J]. Journal of Structural Engineering, 1998, 124(3):241-251.
    [29] Lynn A C. Seismic evaluation of existing reinforced concrete building columns[D]. Berkeley:University of California, 2001.
    [30] Nakamura T, Yoshimura M. Gravity load collapse of reinforced concrete columns with brittle failure modes[J]. Journal of Asian Architecture and Building Engineering, 2002, 1(1):21-27.
    [31] Lam S S E, Wang Z Y, Liu Z Q, et al. Drift capacity of rectangular reinforced concrete columns with low lateral confinement and high-axial load[J]. Journal of Structural Engineering. 2003, 129(6):733-742.
    [32] Yoshimura M, Takaine Y, Nakamura T. Axial collapse of reinforced concrete columns[C]//13th World Conference on Earthquake Engineering, Vancouver, B C, Canada, 2004:1-11.
    [33] Ousalem H, Kabeyasawa T, Tasai A. Evaluation of ultimate deformation capacity at axial load collapse of reinforced concrete columns[C]//13th World Conference on Earthquake Engineering, Vancouver, B C, Canada, 2004:1-11.
    [34] Tran C T N. Experimental and analytical studies on the Seismic behavior of reinforced concrete columns with light transverse reinforcement[D]. Singapore:Nangyang Technological University, 2010.
    [35] Wibowo A, Wilson J L, Lam N T K, et al. Drift capacity of lightly reinforced concrete columns[J]. Australian Journal of Structural Engineering, 2011, 15(2):131-150.
    [36] Pham T P, Li B. Seismic performance of reinforced concrete columns with plain longitudinal reinforcing bars[J]. ACI Structural Journal, 2014, 111(3):561-572.
    [37] Li Y A, Huang Y T, Hwang S J. Seismic response of reinforced concrete short columns failed in shear[J]. ACI Structural Journal, 2014, 111(4):945-954.
    [38] Gardoni P, Der Kiureghian A, Mosalam K M. Probabilistic capacity models and fragility estimates for reinforced concrete columns based on experimental observations[J]. Journal of Engineering Mechanics, 2002, 128(10):1024-1038.
    [39] Haario H, Laine M, Mira A, et al. DRAM:Efficient adaptive MCMC[J]. Statistics & Computing, 2006, 16(4):339-354.
    [40] 刘纲, 罗钧, 秦阳, 等. 基于改进MCMC方法的有限元模型修正研究[J]. 工程力学, 2016, 33(6):138-145. Liu Gang, Luo Jun, Qin Yang, et al. A finite element model updating method based on improved MCMC method[J]. Engineering Mechanics, 2016, 33(6):138-145. (in Chinese)
    [41] Melchers R E. Structural reliability analysis and prediction[M]. Chichester:John Wiley and Sons, 2002.
  • [1] 蔡健, 巫博璘, 罗翼锋, 李名铠, 陈庆军, 黄少腾.  新型双层钢板-混凝土组合剪力墙力学性能研究 . 工程力学, 2020, 37(): 1-6.
    [2] 李杨, 任沛琪, 丁井臻, 李延涛, 邢万里, 宗金辉.  钢-混凝土双面组合作用梁基本力学性能试验研究与数值模拟 . 工程力学, 2020, 37(5): 82-93. doi: 10.6052/j.issn.1000-4750.2019.05.0283
    [3] 毕继红, 霍琳颖, 乔浩玥, 赵云.  单向受拉状态下的钢纤维混凝土本构模型 . 工程力学, 2020, 37(6): 155-164. doi: 10.6052/j.issn.1000-4750.2019.08.0443
    [4] 邓明科, 李彤, 范丽玮.  钢筋网高延性混凝土加固砖柱偏心受压性能试验及计算方法研究 . 工程力学, 2020, 37(): 1-11. doi: 10.6052/j.issn.1000-4750.2019.09.0550
    [5] 袁阳光, 韩万水, 李光玲, 郭琦, 许昕, 孙建鹏.  考虑非平稳因素的混凝土桥梁概率极限状态评估 . 工程力学, 2020, 37(): 1-12. doi: 10.6052/j.issn.1000-4750.2019.09.0561
    [6] 闫维明, 王宝顺, 何浩祥.  并联式单向单颗粒阻尼器力学模型及优化分析 . 工程力学, 2020, 37(): 1-13. doi: 10.6052/j.issn.1000-4750.2019.08.0487
    [7] 汪炳, 黄侨, 刘小玲.  考虑多组件疲劳损伤的组合梁剩余承载力计算方法及试验验证 . 工程力学, 2020, 37(6): 140-147. doi: 10.6052/j.issn.1000-4750.2019.08.0434
    [8] 李海艳, 张博扬, 李金书.  钢筋活性粉末混凝土简支梁受弯力学性能试验与计算 . 工程力学, 2020, 37(6): 131-139. doi: 10.6052/j.issn.1000-4750.2019.08.0428
    [9] 邓明科, 李琦琦, 马福栋, 黄政.  高延性混凝土加固RC梁抗剪性能试验研究 . 工程力学, 2020, 37(5): 55-63. doi: 10.6052/j.issn.1000-4750.2018.06.0367
    [10] 杨红, 耿南锋, 刘子珅.  考虑柱纵向钢筋屈曲特征的修正材料本构模型 . 工程力学, 2020, 37(6): 174-185. doi: 10.6052/j.issn.1000-4750.2019.08.0465
    [11] 李斌, 黄炜.  装配整体式网格剪力墙压弯承载力计算方法 . 工程力学, 2020, 37(5): 178-189. doi: 10.6052/j.issn.1000-4750.2019.07.0380
    [12] 范重, 柴会娟, 陈巍, 聂鑫, 高劲洋, 樊健生, 葛红斌, 黄进芳.  钢管柱-钢筋混凝土框架转换节点设计研究 . 工程力学, 2020, 37(6): 65-78. doi: 10.6052/j.issn.1000-4750.2019.05.0282
    [13] 徐龙河, 张焱, 肖水晶.  底部铰支自复位钢筋混凝土剪力墙设计与性能研究 . 工程力学, 2020, 37(6): 122-130. doi: 10.6052/j.issn.1000-4750.2019.04.0235
    [14] 邓宗才, 姚军锁.  高强钢筋约束超高性能混凝土柱轴心受压本构模型研究 . 工程力学, 2020, 37(5): 120-128. doi: 10.6052/j.issn.1000-4750.2019.07.0344
    [15] 邓明科, 郭莉英, 李睿喆, 陈佳莉.  高延性混凝土加固钢筋混凝土梁抗震性能试验研究 . 工程力学, 2020, 37(): 1-9. doi: 10.6052/j.issn.1000-4750.2019.04.0237
    [16] 谢志强, 张爱林, 闫维明, 张艳霞, 虞诚, 慕婷婷.  薄壁钢板自冲铆接受剪性能及承载力计算方法研究 . 工程力学, 2020, 37(6): 234-245. doi: 10.6052/j.issn.1000-4750.2019.12.0793
    [17] 邢国华, 武名阳, 常召群, 张广泰, 柳明亮.  锈蚀预应力混凝土梁承载力及破坏模式研究 . 工程力学, 2020, 37(): 1-12. doi: 10.6052/j.issn.1000-4750.2019.08.0503
    [18] 赵根田, 侯智译, 高鹏, 王达.  拟静力作用下群钉连接件抗剪性能研究 . 工程力学, 2020, 37(): 1-13. doi: 10.6052/j.issn.1000-4750.2019.09.0513
    [19] 金浏, 蒋轩昂, 杜修力.  轻骨料无腹筋混凝土梁剪切破坏及尺寸效应:细观模拟 . 工程力学, 2020, 37(): 1-11. doi: 10.6052/j.issn.1000-4750.2019.05.0253
    [20] 魏凯, 周聪, 徐博.  跨海桥梁高桩承台波浪冲击荷载概率模型 . 工程力学, 2020, 37(6): 216-224. doi: 10.6052/j.issn.1000-4750.2019.08.0500
  • 加载中
计量
  • 文章访问数:  69
  • HTML全文浏览量:  1
  • PDF下载量:  56
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-12-10
  • 修回日期:  2019-04-09
  • 刊出日期:  2019-11-25

考虑力学机制和不确定性影响的钢筋混凝土柱概率抗剪承载力模型

doi: 10.6052/j.issn.1000-4750.2018.12.0664
    基金项目:  国家自然科学基金项目(51668008,51738004);广西自然科学基金项目(2018GXNSFAA281344)
    作者简介:

    刘圣宾(1993-),男,河南人,硕士生,主要从事钢筋混凝土柱承载力分析与校准研究(E-mail:liushengbin@st.gxu.edu.cn);凌干展(1994-),男,广西人,硕士生,主要从事钢筋混凝土构件概率承载力模型研究(E-mail:lingganzhan@st.gxu.edu.cn).

    通讯作者: 余波(1982-),男,四川人,教授,博士,博导,主要从事钢筋混凝土结构全寿命性能研究(E-mail:gxuyubo@gxu.edu.cn).
  • 中图分类号: TU375.3

摘要: 为了克服传统确定性抗剪承载力模型无法合理考虑不确定性因素影响所存在的缺陷,研究建立了一种能够综合考虑力学机制和不确定性影响的钢筋混凝土(RC)柱概率抗剪承载力模型。首先基于桁架-拱模型,综合考虑混凝土、箍筋和拱作用的抗剪承载力贡献以及不确定性的影响,建立了RC柱概率抗剪承载力模型的解析表达式;然后结合贝叶斯理论和马尔科夫链蒙特卡洛(MCMC)法,确定了概率模型参数的后验分布信息,并分析了概率模型参数的先验分布信息以及更新批次对概率模型参数后验分布的稳定性和收敛性的影响;最后利用试验数据验证了该概率模型的有效性。分析表明,随着试验数据的增加,概率模型参数的后验分布可以实现不断更新;概率抗剪承载力模型不仅可以合理描述抗剪承载力的概率分布特性,而且可以校准分析传统确定性抗剪承载力模型的计算精度。

English Abstract

刘圣宾, 凌干展, 余波. 考虑力学机制和不确定性影响的钢筋混凝土柱概率抗剪承载力模型[J]. 工程力学, 2019, 36(11): 183-194. doi: 10.6052/j.issn.1000-4750.2018.12.0664
引用本文: 刘圣宾, 凌干展, 余波. 考虑力学机制和不确定性影响的钢筋混凝土柱概率抗剪承载力模型[J]. 工程力学, 2019, 36(11): 183-194. doi: 10.6052/j.issn.1000-4750.2018.12.0664
LIU Sheng-bin, LING Gan-zhan, YU Bo. PROBABILISTIC SHEAR STRENGTH MODEL OF REINFORCED CONCRETE COLUMNS CONSIDERING MECHANICAL MECHANISM AND UNCERTAINTIES[J]. Engineering Mechanics, 2019, 36(11): 183-194. doi: 10.6052/j.issn.1000-4750.2018.12.0664
Citation: LIU Sheng-bin, LING Gan-zhan, YU Bo. PROBABILISTIC SHEAR STRENGTH MODEL OF REINFORCED CONCRETE COLUMNS CONSIDERING MECHANICAL MECHANISM AND UNCERTAINTIES[J]. Engineering Mechanics, 2019, 36(11): 183-194. doi: 10.6052/j.issn.1000-4750.2018.12.0664
参考文献 (41)

目录

    /

    返回文章
    返回