留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

新型海上超大型钢-混凝土组合箱式浮体平台结构设计与分析

王晓强 陶慕轩

王晓强, 陶慕轩. 新型海上超大型钢-混凝土组合箱式浮体平台结构设计与分析[J]. 工程力学, 2019, 36(11): 147-157. doi: 10.6052/j.issn.1000-4750.2018.12.0647
引用本文: 王晓强, 陶慕轩. 新型海上超大型钢-混凝土组合箱式浮体平台结构设计与分析[J]. 工程力学, 2019, 36(11): 147-157. doi: 10.6052/j.issn.1000-4750.2018.12.0647
WANG Xiao-qiang, TAO Mu-xuan. SCHEME DESIGN AND ANALYSIS OF NOVEL VERY LARGE STEELCONCRETE COMPOSITE PONTOON-TYPE FLOATING STRUCTURES[J]. Engineering Mechanics, 2019, 36(11): 147-157. doi: 10.6052/j.issn.1000-4750.2018.12.0647
Citation: WANG Xiao-qiang, TAO Mu-xuan. SCHEME DESIGN AND ANALYSIS OF NOVEL VERY LARGE STEELCONCRETE COMPOSITE PONTOON-TYPE FLOATING STRUCTURES[J]. Engineering Mechanics, 2019, 36(11): 147-157. doi: 10.6052/j.issn.1000-4750.2018.12.0647

新型海上超大型钢-混凝土组合箱式浮体平台结构设计与分析

doi: 10.6052/j.issn.1000-4750.2018.12.0647
基金项目: 国家自然科学基金项目(51722808)
详细信息
    作者简介:

    王晓强(1994-),男,宁夏人,博士生,主要从事结构工程研究(E-mail:xiaoqiang15@mails.tsinghua.edu.cn).

    通讯作者: 陶慕轩(1985-),男,上海人,副教授,博士,主要从事结构工程研究(E-mail:taomuxuan@tsinghua.edu.cn).
  • 中图分类号: P752

SCHEME DESIGN AND ANALYSIS OF NOVEL VERY LARGE STEELCONCRETE COMPOSITE PONTOON-TYPE FLOATING STRUCTURES

  • 摘要: 钢-混凝土组合结构在大型海上人工岛的建设中具有重要的应用价值和发展潜力。该文针对传统钢结构和混凝土结构用于超大型海上浮式平台的不足,提出一种新型超大型钢-混凝土组合浮箱式平台结构,并总结了该类结构整体方案的设计流程。为实现设计流程中的水弹性力学分析,在开源水动力学程序包NEMOH的基础上基于Fortran语言开发了三维水弹性响应计算程序包THhydro,并采用日本学者Yago和Endo的试验结果验证了程序的准确性。通过水弹性响应分析与结构强度分析,对新型超大型钢-混凝土组合浮箱式平台进行了整体结构方案设计,并与传统钢结构方案设计结果进行了对比讨论。结果表明:组合结构应用于海上超大型浮式平台具有可行性;在吃水深度和应力控制水平相当的情况下,组合结构平台相比传统钢结构平台可显著降低结构用钢量;钢与混凝土之间的配比会显著影响结构用钢量和载重量等指标;波浪产生的结构效应占总效应的比例达20%~60%,可见可靠的水弹性力学分析对该类结构设计非常重要。最后,对组合结构应用于超大型海上浮式平台仍需进一步开展的研究工作进行了展望。
  • [1] Isobe E. Research and development of Mega-Float[C]. Proceedings of the 3rd International Workshop on Very Large Floating Structures. 1999:7-13.
    [2] Remmers G, Zueck R, Palo P, et al. Mobile offshore base[C]. The Eighth International Offshore and Polar Engineering Conference, International Society of Offshore and Polar Engineers, 1998.
    [3] Yago K, Endo H. On the hydoroelastic response of box-shaped floating structure with shallow draft[J].Journal of the Society of Naval Architects of Japan, 1996, 1996(180):341-352.
    [4] Iijima K. Hydrodynamic and hydroelastic analyses of very large floating structures in waves[C]. Proceedings 16th International Conference on Offshore Mechanics and Arctic Engineering, 1997(4):139-145.
    [5] Kim J W. An eigenfunction expansion method for predicting hydroelastic behavior of a shallow-draft VLFS[C]. Proc. 2nd Intl. Conf. on Hydroelasticity in Marine Tech., Fukuoka, 1998:47-59.
    [6] Oci H. A computer program for the hydroelastic response analysis of ocean structures[J]. OffCoast. Inc, Kailua, HI, 2005(1):52.
    [7] CSSRC Manual. The software of three-dimensional hydroelastic analyses of ships THAFTS and NTHAFTS-theories and user's manual[R]. Wuxi, China:China Ship Scientific Research Center, 2011.
    [8] Fujikubo M. Structural analysis for the design of VLFS[J]. Marine Structures, 2005, 18(2):201-226.
    [9] Inoue K, Nagata S, Niizato H. Stress analysis for detailed mega-float structures subject to wave loads[C]. The Twelfth International Offshore and Polar Engineering Conference. International Society of Offshore and Polar Engineers, 2002.
    [10] Oka M, Oka S, Masanobu S, et al. Wave-induced stress analysis for detailed structural members on a very large floating structure (Mega-Float)[J]. Journal of the Society of Naval Architects of Japan, 2002, 2002(192):639-652.
    [11] Kim J G, Cho S P, Kim K T, et al. Hydroelastic design contour for the preliminary design of very large floating structures[J]. Ocean Engineering, 2014, 78:112-123.
    [12] 聂建国, 李法雄. 钢-混凝土组合板的弹性弯曲及稳定性分析[J]. 工程力学, 2009, 26(10):59-66. Nie Jianguo, Li Faxiong. Elastic bending and stability of steel-concrete composite plate[J]. Engineering Mechanics, 2009, 26(10):59-66. (in Chinese)
    [13] 聂建国, 李法雄. 钢-混凝土组合板单向受压稳定性研究[J]. 中国铁道科学, 2009, 30(6):27-32. Nie Jianguo, Li Faxiong. Study on the stability of steel-concrete composite plates under uniaxial compressed load[J]. China Railway Science, 2009, 30(6):27-32. (in Chinese)
    [14] 吴丽丽, 聂建国. 四边简支钢-混凝土组合板的弹性局部剪切屈曲分析[J]. 工程力学, 2010, 27(1):52-57. Wu Lili, Nie Jianguo. Elastic local shear buckling analysis on simply supported steel-concrete composite slab[J]. Engineering Mechanics, 2010, 27(1):52-57. (in Chinese)
    [15] Uy B. Stability and ductility of high performance steel sections with concrete infill[J]. Journal of Constructional Steel Research, 2008, 64(7/8):748-754.
    [16] Liang Q Q, Uy B, Wright H D, et al. Local buckling of steel plates in double skin composite panels under biaxial compression and shear[J]. Journal of Structural Engineering, 2004, 130(3):443-451.
    [17] Baskar K, Shanmugam N E. Steel-concrete composite plate girders subject to combined shear and bending[J]. Journal of Constructional Steel Research, 2003, 59(4):531-557.
    [18] Uy B, Bradford M A. Elastic local buckling of steel plates in composite steel-concrete members[J]. Engineering Structures, 1996, 18(3):193-200.
    [19] 周萌. 钢-混凝土组合抗拉基本理论及方法研究[D]. 北京:清华大学, 2016. Zhou Meng. Study on basic theory and method of steel-concrete composite tension problem[D]. Beijing:Tsinghua University, 2016. (in Chinese)
    [20] Wu Y. Hydroelasticity of floating bodies[D]. London:University of Brunel, 1984.
    [21] Price W G, Yousheng W. Hydroelasticity of marine structures[C]. The 16th International Congress of Theoretical and Applied Mechanics, 1985:311-337.
    [22] Iijima K. Hydroelastic response of very large floating structures[M]//Encyclopedia of Maritime and Offshore Engineering. NJ:John Wiley & Sons Inc, 2017:1-8.
    [23] 崔维成. 超大型海洋浮式结构物水弹性响应预报的研究现状和发展方向[J]. 船舶力学, 2002, 6(1):73-90. Cui Weicheng. Current status and future directions in predicting the hydroelastic response of very large floating structures[J]. Journal of Ship Mechanics, 2002, 6(1):73-90. (in Chinese)
    [24] 崔维成, 吴有生, 李润培. 超大型海洋浮式结构物动力特性研究综述[J]. 船舶力学, 2001, 5(1):73-81. Cui Weicheng, Wu Yousheng, Li Runpei. Recent researches on dynamic performances of very large floating structures[J]. Journal of Ship Mechanics, 2001, 5(1):73-81. (in Chinese)
    [25] 田超, 吴有生. 航行船舶的三维非线性水弹性分析[J]. 船舶力学, 2007, 11(1):68-78. Tian Chao, Wu Yousheng. Three-dimensional non-linear hydroelastic analysis on ships with forward speed[J]. Journal of Ship Mechanics, 2007, 11(1):68-78. (in Chinese)
    [26] 田超, 吴有生. 船舶水弹性力学理论的研究进展[J]. 中国造船, 2008, 49(4):1-11. Tian Chao, Wu Yousheng. Review of research on the hydroelasticity of ship[J], Shipbuilding of China, 2008, 49(4):1-11. (in Chinese)
    [27] 崔维成, 吴有生. 超大型海洋浮式结构物开发过程需要解决的关键技术问题[J]. 海洋工程, 2000, 18(3):1-8. Cui Weicheng, Wu Yousheng. Technical problems in the development of very large floating structures[J]. The Ocean Engineering, 2000, 18(3):1-8. (in Chinese)
    [28] 滕斌, 勾莹. 大型浮体水弹性作用的频域分析[J]. 工程力学, 2006, 23(增刊2):36-48.Teng Bin, Gou Ying. Hydroelastic analysis of very large floating structure in frequency domain[J]. Engineering Mechanics, 2006, 23(Suppl 2):36-48. (in Chinese)
    [29] 董艳秋. 船舶波浪外荷和水弹性[M]. 天津:天津大学出版社, 1991. Dong Yanqiu. Wave load and hydroelasticity of ships[M]. Tianjin:Tianjin University Press, 1991. (in Chinese)
    [30] Journée J M J, Massie W W. Offshore hydrodynamics[J]. Delft University of Technology, 2001, 4:38.
    [31] Huler S. Defining the wind:The Beaufort Scale and how a 19th-century admiral turned science into poetry[M]. Crown, 2007.
    [32] 聂建国, 陶慕轩, 樊建生, 等. 双钢板-混凝土组合剪力墙研究新进展[J]. 建筑结构, 2011, 41(12):52-60. Nie Jianguo, Tao Muxuan, Fan Jiansheng, et al. Research advances of composite shear walls with double steel plates and filled concrete[J]. Building Structure, 2011, 41(12):52-60. (in Chinese)
    [33] 胡红松, 聂建国. 双钢板-混凝土组合剪力墙变形能力分析[J]. 建筑结构学报, 2013, 34(5):52-62. Hu Hongsun, Nie Jianguo. Deformability analysis of composite shear walls with double steel plates and infill concrete[J]. Journal of Building Structures, 2013, 34(5):52-62. (in Chinese)
    [34] 马晓伟, 聂建国, 陶慕轩, 等. 双钢板-混凝土组合剪力墙压弯承载力数值模型及简化计算公式[J]. 建筑结构学报, 2013, 34(4):99-106. Ma Xiaowei, Nie Jianguo, Tao Muxuan, et al. Numerical model and simplified formula of axial force-moment capacity of composite shear wall with double steel plates and infill concrete[J]. Journal of Building Structures, 2013, 34(4):99-106. (in Chinese)
    [35] 聂建国, 卜凡民, 樊健生. 高轴压比、低剪跨比双钢板-混凝土组合剪力墙拟静力试验研究[J]. 工程力学, 2013, 30(6):60-66. Nie Jianguo, Bu Fanming, Fan Jiansheng. Quasi-static test on low shear-span ratio composite shear wall with double steel plates and infill concrete under high axial compression ratio[J]. Engineering Mechanics, 2013, 30(6):60-66. (in Chinese)
    [36] 聂建国, 卜凡民, 樊健生. 低剪跨比双钢板-混凝土组合剪力墙抗震性能试验研究[J]. 建筑结构学报, 2011, 32(11):74-81. Nie Jianguo, Bu Fanming, Fan Jiansheng. Experimental research on seismic behavior of low shear-span ratio composite shear wall with double steel plates and infill concrete[J]. Journal of Building Structures, 2011, 32(11):74-81. (in Chinese)
    [37] 卜凡民, 聂建国, 樊健生. 高轴压比下中高剪跨比双钢板-混凝土组合剪力墙抗震性能试验研究[J]. 建筑结构学报, 2013, 34(4):91-98. Bu Fanming, Nie Jianguo, Fan Jiansheng. Experimental study on seismic behavior of medium and high shear-span ratio composite shear wall with double steel plates and infill concrete under high axial compression ratio[J]. Journal of Building Structures, 2013, 34(4):91-98. (in Chinese)
    [38] 马晓伟, 聂建国, 陶慕轩. 钢板-混凝土组合剪力墙正常使用阶段有效刚度[J]. 土木工程学报, 2014(7):18-26. Ma Xiaowei, Nie Jianguo, Tao Muxuan. Effective stiffness of steel plate-concrete composite shear wall structures in serviceability state[J]. China Civil Engineering Journal, 2014(7):18-26. (in Chinese)
    [39] 邓明科, 吕浩, 宋恒钊. 外包钢板-高延性混凝土组合连梁抗震性能试验研究[J]. 工程力学, 2019, 36(3):192-202. Deng Mingke, Lu Hao, Song Hengzhao. Experimental research on aseismic behavior of high ductile concrete filled steel plate composite coupling beams[J]. Engineering Mechanics, 2019, 36(3):192-202. (in Chinese)
    [40] 李小军, 李晓虎. 核电工程双钢板混凝土组合剪力墙面内受弯性能研究[J]. 工程力学, 2017(9):52-62. Li Xiaojun, Li Xiaohu. Study on in-plane flexural behavior of double steel plates and concrete infill composite shear walls for nuclear engineering[J]. Engineering Mechanics, 2017(9):52-62. (in Chinese)
    [41] Lu D, Fu S, Zhang X, et al. A method to estimate the hydroelastic behaviour of VLFS based on multi-rigid-body dynamics and beam bending[J]. Ships and Offshore Structures, 2019, 14(4):354-362.
    [42] Yan J B, Liu X M, Liew J Y R, et al. Steel-concrete-steel sandwich system in Arctic offshore structure:Materials, experiments, and design[J]. Materials & Design, 2016, 91:111-121.
  • [1] 蔡健, 巫博璘, 罗翼锋, 李名铠, 陈庆军, 黄少腾.  新型双层钢板-混凝土组合剪力墙力学性能研究 . 工程力学, 2020, 37(): 1-11. doi: 10.6052/j.issn.1000-4750.2019.10.0680
    [2] 贾明明, 李志平, 吕大刚, 侯宪安, 郎路光.  超大型冷却塔风荷载时程响应及动力抗风性能分析 . 工程力学, 2019, 36(S1): 118-124. doi: 10.6052/j.issn.1000-4750.2018.05.S021
    [3] 栾乐乐, 许斌, 陈洪兵.  界面剥离钢-混凝土组合结构应力波传播谱元法模拟研究 . 工程力学, 2017, 34(2): 145-152. doi: 10.6052/j.issn.1000-4750.2015.07.0596
    [4] 汤序霖, 丁昌银, 陈庆军, 蔡健, 邓恺坚, 郑旭东.  带加劲肋多腔双层钢板-混凝土组合剪力墙的抗震性能试验 . 工程力学, 2017, 34(12): 150-161. doi: 10.6052/j.issn.1000-4750.2016.08.0639
    [5] 王元清, 王综轶, 杜新喜, 衡月昆, 宗亮, 秦中华.  超大型中微子探测器有机玻璃球与不锈钢网壳方案的设计优化分析 . 工程力学, 2016, 33(3): 10-17. doi: 10.6052/j.issn.1000-4750.2015.06.ST05
    [6] 康啊真, 祝兵, 邢帆, 韩兴.  超大型结构物受波浪力作用的数值模拟 . 工程力学, 2014, 31(8): 108-115. doi: 10.6052/j.issn.1000-4750.2013.03.0151
    [7] 王宇航, 聂建国, 樊健生.  考虑扭转效应的钢管混凝土纤维梁模型应用研究 . 工程力学, 2014, 31(7): 45-53. doi: 10.6052/j.issn.1000-4750.2012.11.0829
    [8] 王宇航, 聂建国, 樊健生, 杨小刚.  罕遇地震下曲线钢-混凝土组合梁桥的墩柱扭转效应 . 工程力学, 2014, 31(9): 42-50,56. doi: 10.6052/j.issn.1000-4750.2012.12.0929
    [9] 卫 星, 强士中.  斜拉桥桥塔钢-混凝土结合段传力机理试验研究 . 工程力学, 2013, 30(1): 255-260,313. doi: 10.6052/j.issn.1000-4750.2011.06.0351
    [10] 徐亚洲, 白国良.  考虑混凝土材料变异性的超大型冷却塔随机屈曲承载力分析 . 工程力学, 2012, 29(8): 208-212. doi: 10.6052/j.issn.1000-4750.2010.11.0853
    [11] 聂建国, 王宇航.  基于ABAQUS的钢-混凝土组合结构纤维梁模型的开发及应用 . 工程力学, 2012, 29(1): 70-80. doi: 10.6052/j.issn.1000-4750.2010.04.0278
    [12] 肖林, 强士中, 李小珍, 卫星.  考虑开孔钢板厚度的PBL剪力键力学性能研究 . 工程力学, 2012, 29(8): 282-288, 296. doi: 10.6052/j.issn.1000-4750.2011.06.0343
    [13] 李法雄, 聂建国.  钢-混凝土组合梁剪力滞效应弹性解析解 . 工程力学, 2011, 28(9): 1-008.
    [14] 韩林海, 宋天诣, 谭清华.  钢-混凝土组合结构抗火设计原理研究 . 工程力学, 2011, 28(增刊Ⅱ): 54-66.
    [15] 黄 侨, 孙永明, 李 莹.  基于组合单元的混凝土斜拉桥结构分析 . 工程力学, 2009, 26(2): 137-141,.
    [16] 孙永明, 黄 侨, 任 远.  基于组合单元的混凝土结构徐变分析方法 . 工程力学, 2009, 26(1): 98-103,.
    [17] 赵存宝, 魏英杰, 张嘉钟, 黄文虎.  弹性浮板在周期集中载荷作用下的水弹性响应 . 工程力学, 2008, 25(7): 0-228.
    [18] 杨允表, 吕忠达.  大跨度斜拉桥索塔锚固区钢-混凝土结构竖向受力机理的有限元法 . 工程力学, 2008, 25(12): 153-161.
    [19] 滕 斌, 勾 莹.  大型浮体水弹性作用的频域分析 . 工程力学, 2006, 23(增刊Ⅱ): 0-048.
    [20] 喻永声, 林家浩.  超大型结构特征值问题求解的多重子结构子空间迭代 . 工程力学, 2003, 20(6): 149-153,.
  • 加载中
计量
  • 文章访问数:  89
  • HTML全文浏览量:  1
  • PDF下载量:  122
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-12-02
  • 修回日期:  2019-06-11
  • 刊出日期:  2019-11-25

新型海上超大型钢-混凝土组合箱式浮体平台结构设计与分析

doi: 10.6052/j.issn.1000-4750.2018.12.0647
    基金项目:  国家自然科学基金项目(51722808)
    作者简介:

    王晓强(1994-),男,宁夏人,博士生,主要从事结构工程研究(E-mail:xiaoqiang15@mails.tsinghua.edu.cn).

    通讯作者: 陶慕轩(1985-),男,上海人,副教授,博士,主要从事结构工程研究(E-mail:taomuxuan@tsinghua.edu.cn).
  • 中图分类号: P752

摘要: 钢-混凝土组合结构在大型海上人工岛的建设中具有重要的应用价值和发展潜力。该文针对传统钢结构和混凝土结构用于超大型海上浮式平台的不足,提出一种新型超大型钢-混凝土组合浮箱式平台结构,并总结了该类结构整体方案的设计流程。为实现设计流程中的水弹性力学分析,在开源水动力学程序包NEMOH的基础上基于Fortran语言开发了三维水弹性响应计算程序包THhydro,并采用日本学者Yago和Endo的试验结果验证了程序的准确性。通过水弹性响应分析与结构强度分析,对新型超大型钢-混凝土组合浮箱式平台进行了整体结构方案设计,并与传统钢结构方案设计结果进行了对比讨论。结果表明:组合结构应用于海上超大型浮式平台具有可行性;在吃水深度和应力控制水平相当的情况下,组合结构平台相比传统钢结构平台可显著降低结构用钢量;钢与混凝土之间的配比会显著影响结构用钢量和载重量等指标;波浪产生的结构效应占总效应的比例达20%~60%,可见可靠的水弹性力学分析对该类结构设计非常重要。最后,对组合结构应用于超大型海上浮式平台仍需进一步开展的研究工作进行了展望。

English Abstract

王晓强, 陶慕轩. 新型海上超大型钢-混凝土组合箱式浮体平台结构设计与分析[J]. 工程力学, 2019, 36(11): 147-157. doi: 10.6052/j.issn.1000-4750.2018.12.0647
引用本文: 王晓强, 陶慕轩. 新型海上超大型钢-混凝土组合箱式浮体平台结构设计与分析[J]. 工程力学, 2019, 36(11): 147-157. doi: 10.6052/j.issn.1000-4750.2018.12.0647
WANG Xiao-qiang, TAO Mu-xuan. SCHEME DESIGN AND ANALYSIS OF NOVEL VERY LARGE STEELCONCRETE COMPOSITE PONTOON-TYPE FLOATING STRUCTURES[J]. Engineering Mechanics, 2019, 36(11): 147-157. doi: 10.6052/j.issn.1000-4750.2018.12.0647
Citation: WANG Xiao-qiang, TAO Mu-xuan. SCHEME DESIGN AND ANALYSIS OF NOVEL VERY LARGE STEELCONCRETE COMPOSITE PONTOON-TYPE FLOATING STRUCTURES[J]. Engineering Mechanics, 2019, 36(11): 147-157. doi: 10.6052/j.issn.1000-4750.2018.12.0647
参考文献 (42)

目录

    /

    返回文章
    返回